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Lifting line theory describes the cumulative effect of shed vorticity from finite span
lifting surfaces. In this work, the theory is reformulated to improve the accuracy of
the actuator line model (ALM). This model is a computational tool used to represent
lifting surfaces, such as wind-turbine blades in computational fluid dynamics. In
ALM, blade segments are represented by means of a Gaussian body force distribution
with a prescribed kernel size. Prior analysis has shown that a representation of
the blade using an optimal kernel width εopt of approximately one quarter of the
chord size results in accurate predictions of the velocity field and loads along the
blades. Also, simulations have shown that use of the optimal kernel size yields
accurate representation of the tip-vortex size and the associated downwash resulting
in accurate predictions of the tip losses. In this work, we address the issue of how
to represent the effects of finite span wings and tip vortices when using Gaussian
body forces with a kernel size larger than the optimal value. This question is relevant
in the context of coarse-scale large-eddy simulations that cannot afford the fine
resolutions required to resolve the optimal kernel size. For this purpose, we present a
filtered lifting line theory for a Gaussian force distribution. Based on the streamwise
component of the vorticity transport equation, we develop an analytical model for
the induced velocity resulting from the spanwise changes in lift force for an arbitrary
kernel scale. The results are used to derive a subfilter-scale velocity model that is
used to correct the velocity along the blade when using kernel sizes larger than
εopt. Tests are performed in large-eddy simulation of flow over fixed wings with
constant and elliptic chord distributions using various kernel sizes. Results show that
by using the proposed subfilter velocity model, kernel-size independent predictions of
lift coefficient and total lift forces agree with those obtained with the optimal kernel
size.

Key words: general fluid mechanics

1. Introduction
The actuator line model (ALM) has become a prominent tool to represent lifting

surfaces, such as wind-turbine blades, without having to resolve the entire flow field

† Email address for correspondence: luis.martinez@nrel.gov
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270 L. A. Martínez-Tossas and C. Meneveau

near the blades (Sørensen & Shen 2002; Ivanell, Sørensen & Henningson 2007;
Mikkelsen et al. 2007; Troldborg, Sørensen & Mikkelsen 2010; Porté-Agel et al.
2011; Churchfield et al. 2012; Jha et al. 2014; Martínez-Tossas, Churchfield &
Leonardi 2015; van Kuik 2018). ALM involves distributing actuator points on a line
along the span of a blade, along which the lift force is evaluated from tabulated or
otherwise known lift and drag coefficients and the local incoming flow conditions. For
implementation in a computational simulation code, such as in large-eddy simulations
(LES), the resulting line force is filtered using a Gaussian kernel with characteristic
length scale ε representing the spatial extent over which the force is spatially
distributed. In recent work (Martínez-Tossas, Churchfield & Meneveau 2017), an
optimal smoothing length scale εopt was determined, which minimizes the error
between the actual velocity field and that modelled by ALM in two-dimensional
(ideal) flow over a lifting airfoil. Specifically, when using εopt

≈ 0.25c, where c is
the blade’s chord length, it was shown in Martínez-Tossas et al. (2017) that the flow
field obtained by using the Gaussian body force provided good agreement with the
potential flow solution for flow over a Joukowski airfoil. The latter was the flow
solution taken to be the ground truth for the purpose of the comparison with the
flow induced by the Gaussian force. Numerical tests have obtained similar values
for the optimal smoothing length (Shives & Crawford 2013; Jha et al. 2014). Use
of the optimal kernel scale was tested in a three-dimensional simulation of a wind
turbine using the ALM (Martínez-Tossas, Churchfield & Meneveau 2016). Very good
agreement was found between the simulation and blade element momentum (BEM)
theory with a tip loss correction (Hansen 2007), especially near the tip. The accuracy
was attributed to the capability of the simulation with εopt to generate shed vorticity
and resulting tip vortices with a realistic core size.

As is known from classical lifting line theory (Prandtl & Tietjens 1957; Batchelor
2000; Anderson Jr 2010), the downwash associated with the tip vortex changes the
local angle of attack along the blade, thus affecting the lift coefficient. In the ALM,
the body force smooths the vorticity generation encountered by the incoming flow,
resulting in a vortex with a finite core. The prior results (Martínez-Tossas et al. 2016)
show that if the kernel size is chosen appropriately, good results may be obtained
using the ALM without any additional tip loss correction, owing to the fact that the
tip vortex core induced by the optimal Gaussian kernel size is realistic.

However, the optimal kernel size is rather small, as one quarter of the chord
is often considered too expensive for practical applications of the ALM, and use
of significantly larger kernel sizes is often unavoidable in practice. Prior attempts
of using coarse kernel sizes (e.g. Stevens, Martínez-Tossas & Meneveau 2018) have
shown good results in terms of the downstream flow (wakes in wind farm simulations),
but the blade torque and power generation were generally too high, sometimes even
exceeding the Betz limit. The reason is that the use of ε > εopt leads to LES tip
vortices that are too thick and too weak. Hence, the downwash is underpredicted and
the lift is overpredicted, especially near the blade tip or near regions in the blade
where the lift coefficient or chord (i.e. the circulation) varies significantly.

For LES using ε > εopt, we therefore require a subfilter model for the local induced
velocity that mimics the effect of a fully resolved tip vortex as well as any shed
vorticity along the span. Developing such a model is the main purpose of this paper.
In § 2, we briefly review elements of classic lifting line theory and show that the
Gaussian filtering associated with the ALM leads to an unclosed subfilter modelling
problem, even if the problem appears at first sight to be a linear one. Therefore, a
lifting line theory must be derived for a Gaussian-filtered lift force distribution, which
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Filtered actuator line modelling 271

is accomplished in § 3. It is shown in § 4 that with certain simplification, a general
semianalytical solution can be derived. Attention is placed in developing practically
useful approximate calculation methods to facilitate implementation in LES, as
described in § 5. In recent work, (Dag 2017; Dag & Sørensen 2018) researchers have
proposed a similar approach based on empirical observations about velocity profiles
in shed vortices with smoothed cores. As will be shown, the present theory serves as
formal proof that their approach can be derived from first principles and as a starting
point for detailed analysis. Sample large-eddy simulations of flow over three types
of finite-length lifting surfaces are presented in § 6, testing the subfilter-scale velocity
correction derived using the proposed theory. Conclusions are presented in § 7.

2. Gaussian filtering and linearity
We begin by considering the case of an infinitely long (two-dimensional (2-D))

lifting surface. In that case, the lift force (per unit fluid mass) as an actuator line
may be thought of as distributed over a (singular) line, according to:

1
ρ

fy(x, y, z)=−ΓU∞δ(x)δ(y)=−
1
2

cLcU2
∞
δ(x)δ(y). (2.1)

Here, Γ is the circulation, U∞ the inflow velocity, c the chord length, cL the lift
coefficient and δ are delta Dirac functions. Also, x is the coordinate in the direction
of the incoming flow, y is the direction of the lift force and z is the coordinate along
the blade span. We consider the actuator line model using a (three-dimensional (3-D))
Gaussian kernel as proposed in the original introduction of the ALM (Sørensen &
Shen 2002):

ηε(x, y, z)=
1

ε3π3/2
e−(x

2
+y2
+z2)/ε2

. (2.2)

For the case of an infinitely long blade, integration along the spanwise direction (from
z=−∞ to z=∞) leads to the 2-D force distribution:

1
ρ

f̃y(x)=
∫

1
ρ

fy(x′)ηε(x− x′)d3x′ =−
1
ε2π

1
2

cLcU2
∞

e−(x
2
+y2)/ε2

. (2.3)

As derived in Martínez-Tossas et al. (2017), the curl of this force is a source in the
transport equation for the z-component vorticity. The linearized z-component vorticity
transport equation (linearized in the sense that the advection velocity in the x-direction
is set to a constant velocity U∞ everywhere) was integrated and the z-component
vorticity distribution derived. The result is a Gaussian distribution with width ε
(see also Forsythe et al. 2015). Applying Biot–Savart then leads to the perturbation
(tangential) velocity distribution:

ũ′θ =
1

4π
cLU∞

c
r
(1− e−r2/ε2

), (2.4)

where r2
= x2
+ y2. This flow is a Lamb–Oseen vortex with core size ε representing

the bound vorticity resulting from the Gaussian-filtered lifting surface.
It turns out that the same result is obtained if one simply applies the Gaussian filter

to an ideal vortex velocity distribution. That is to say, recall that if one uses Biot–
Savart on the initially unfiltered line vortex, one obtains the ideal bound vortex with
tangential perturbation velocity u′θ = (1/4π)cLU∞(c/r). When this velocity is filtered
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FIGURE 1. (Colour online) (a) Sketch of finite lifting surface, where the origin of the
coordinate system is placed at the blade tip, where z= 0. (b) Illustration of the Gaussian-
filtered actuator line model with a force distribution across the blade’s cross-section and
z-dependent lift force (or circulation) distribution. Also shown (in green) are some ‘thick’
shed vortices and (in blue along the z-axis) their induced velocity, u′y. The distribution of
the total induced y-velocity as a function of the span is obtained by an integration over
induced velocity from the shed vorticity.

(in two dimensions) using the kernel ηε(x, y), the same Lamb–Oseen vortex with
tangential velocity ũ′θ and core size ε as given in (2.4) is obtained. This equivalence
occurs because the relationship between perturbation velocity and applied force, under
the assumption of linearized perturbation vorticity transport, is linear. That is to say,
we can write u′ =L( f ), where L represents linear operations (taking the curl of the
force, integrating the linearized vorticity transport equation and applying Biot–Savart).
Applying the Gaussian filter to this expression leads to ũ′ = L̃( f ) = L( f̃ ), allowing
us to obtain the result of Martínez-Tossas et al. (2017) by simply filtering the ideal
vortex tangential velocity distribution.

Next, we consider the case of a finite-length lifting surface represented as a singular
line as in (2.1) but with Γ (z)= 0 for z< 0. Figure 1(a) shows the coordinate system
for which z= 0 is at the tip of the blade and the blade extends toward z> 0.

In this case, classical lifting line theory states that because Γ in (2.1) depends
on z, vorticity is shed, generating an induced velocity at the blade that changes the
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Filtered actuator line modelling 273

angle of attack and affects the lift coefficient and thus Γ itself. A self-consistency
condition leads to the classical integro-differential equation for the circulation (Prandtl
& Tietjens 1957) along the blade:

Γ (z)=
1
2

(
cLb +

dcLb

dα
u′y(z)

U∞

)
cU∞ =

1
2

cLbcU∞ +
1
2

dcLb

dα
c
∫ L

0

Γ ′(z′)
4π(z′ − z)

dz′, (2.5)

where cLb is the lift coefficient at the baseline angle of attack (i.e. corresponding to
the local free-stream velocity U∞), dcLb/dα is the slope of the lift versus angle of
attack curve (typically close to 2π) and u′y(z) is the induced downwash velocity at
position z because of changes in circulation everywhere on the blade of span L. The
typical approach solves this equation by expanding Γ (z) into a Fourier series, and
using the condition that Γ (z)= 0 at the blade tips leads to the choice of a sine series.
In general, the Fourier coefficients must be found numerically, even for the simple
case of a constant chord and baseline lift parameters, cLb and dcLb/dα. Stewartson
(1960) provides an analytical solution for the case of a semi-infinite constant chord
wing.

At this stage, consider the case when the corresponding lift force distribution

1
ρ

fy(x, y, z) = −Γ (z)U∞δ(x)δ(y)H(z)

= −
1
2

(
cLb +

dcLb

dα
u′y(x, y, z)

U∞

)
cU2
∞
δ(x)δ(y)H(z), (2.6)

is filtered with the Gaussian kernel, ηε (H(z) is the Heaviside function because there
is no force at z < 0 even if u′y is non-zero there). Even though in this case we can
still write a linear equation, u′ = L( f ) = L( f b + c1u′), the spatially filtered velocity
no longer solves the same equation as the original lifting line theory:

ũ′ =L( f̃ )=L( f̃ b + c̃1u′) 6=L(f̃ b + c1ũ′). (2.7)

The reason is that the prefactor, c1, in this case contains the Heaviside function, H(z),
and clearly H̃u′y 6=Hũ′y. Further, the velocity field induced by a force filtered at scale
ε is given by:

u′ε =L( f̃ )=L( f̃ b + c̃1u′ε). (2.8)

Clearly, u′ε 6= ũ′ because c̃1u′ 6= c̃1ũ′. As a result, we cannot simply use the solution
of the classical lifting line theory, u′, for an ideal line force and spatially filter the
velocity to obtain the correct result corresponding to a filtered force distribution along
a finite-length lifting blade. A full derivation is therefore needed to determine u′ε as
solution to (2.8), to which the next section is devoted.

3. Gaussian-filtered lifting line theory
For generality, we assume a span-dependent chord length, c(z), inflow velocity,

U∞(z) and lift coefficient, cL(z; ε) and we note that the effective lift coefficient
depends upon the kernel size, ε(z). We define cLb(z) to be the (known) lift coefficient
at the baseline angle of attack (i.e. corresponding to the local free-stream velocity,
U∞(z)). For simplicity, we assume that the chord and kernel size do not vary rapidly
along the span (i.e. at various stages we will assume dc/dz � 1 and dε/dz � 1).
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274 L. A. Martínez-Tossas and C. Meneveau

Later, applications with variable ε(z) and c(z) will show that accurate results may
also be obtained in such cases.

As in the prior section, we consider the unfiltered actuator line to be a lifting
surface represented as a ‘delta function’ distribution in the xy plane and a z-dependent
force (per unit length) along a line (i.e. the z-dependent lift distribution) is given by:

1
ρ

fy(x, y, z)=−G(z)δ(x)δ(y), (3.1)

where
G(z)= Γ (z)U∞(z)= 1

2 cL(z)c(z)U2
∞
(z)H(z). (3.2)

To explicitly take into account modifications of the local lift coefficient due to changes
in incident velocity direction, we recall that the effective lift coefficient can be written
as:

cL(z; ε)= cLb(z)+
dcL

dα
(z)

u′y(0, 0, z; ε)

U∞(z)
, (3.3)

where u′y(0, 0, z; ε) is the local perturbation velocity (evaluated at x = y = 0) due to
downwash from shed vorticity. For an ideal lifting surface, one may use dcL/dα= 2π

but, in practice, different values may be used.
As described in the preceding section, in the actuator line model the actual force

per unit volume seen by the fluid is given by the convolution of the line strength with
the Gaussian kernel ηε according to:

1
ρ

f̃y(x) =
∫

1
ρ

fy(x′)ηε(x− x′) d3x′

= −

∫∫∫
1

ε3π3/2
G(z′)δ(x′)δ(y′)e−[(x−x′)2+(y−y′)2+(z−z′)2]/ε2

dx′ dy′ dz′. (3.4)

Evaluating the xy integrals and changing variables to z′′ = z′ − z, we obtain:

1
ρ

f̃y(x, y, z)=
1
ρ

fy(x, y, z; ε)=−
1

ε3π3/2
e−(x

2
+y2)/ε2

∫
∞

−∞

G(z′′ + z)e−z′′2/ε2
dz′′, (3.5)

where from here on we omit tildes to denote filtered variables and indicate their
dependence on ε instead.

3.1. Distribution of shed vorticity
Next, we consider the steady-state vorticity transport equation for the streamwise
vorticity component in the presence of the Gaussian-filtered lift body force in ideal,
steady flow (neglecting viscosity and turbulence), also neglecting changes in advective
velocity due to the vorticity (linearization). The only term generating vorticity is the
curl of the Gaussian body force, whose streamwise component can be expressed in
the x-component vorticity transport equation:

U∞(z)
∂ωx

∂x
=

1
ρ
(∇× f )x =−

1
ρ

∂fy

∂z
=

e−(x2
+y2)/ε2

ε3π3/2

∫
∞

−∞

d
dz

G(z′′ + z)e−z′′2/ε2
dz′′. (3.6)
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Filtered actuator line modelling 275

Integrating in x between −∞ and x, assuming that ωx = 0 when x → −∞ and
changing variables back to z′ = z′′ + z, yields the following streamwise vorticity
distribution:

ωx(x; ε)=
1

2U∞(z)ε2π
[erf(x/ε)+ 1]e−y2/ε2

∫
∞

−∞

dG(z′)
dz′

e−(z−z′)2/ε2
dz′. (3.7)

This ωx(x; ε) distribution arises from the downstream transport of the fluid rotation
induced by the transverse variations of lift induced by the Gaussian-filtered ALM
force. Approaching the blade near the tip with the free stream, the vorticity rises from
zero to its downstream value following the error function, it has a Gaussian profile
in the cross-stream y-direction, while the shape of the tip vortex in the spanwise
direction is non-trivial and involves the integrated effects from the possibly varying lift
coefficient. If the actual lift coefficient, chord and velocity were constant for z> 0 and
zero otherwise (i.e. G(z) = (1/2)cL0cU2

∞0H(z) so that G′(z) = (1/2)cL0cU2
∞0δ(z)) and

if the lift did not change with angle of attack (i.e. dcL/dα = 0, which is unphysical),
equation (3.7) shows that the tip vortex for x/ε � 1 is a Lamb–Oseen vortex with
Gaussian vorticity distribution in the zy plane whose core size is precisely ε (similar
to the bound vortex representing the blade circulation in the xy plane analysed in
Martínez-Tossas et al. 2017). However, the induced velocity changes the local lift
coefficient and so we seek a more general solution that takes this effect into account.

3.2. Induced velocity perturbation
To find the induced vertical velocity along the blade associated with this 3-D vorticity
distribution, we use the Biot–Savart equation:

u′y(0, 0, z; ε)=−
1

4π

∫∫∫
ωx(x′′; ε)(z− z′′)

(x′′2 + y′′2 + (z− z′′)2)3/2
d3x′′ =−

1
8π2ε2

∫
∞

−∞

dG(z′)
dz′∫∫∫

1
U∞(z′′)

(z− z′′)[erf(x′′/ε)+ 1]
[x′′2 + y′′2 + (z− z′′)2]3/2

e−(y
′′2
+(z′′−z′)2)/ε2

dx′′ dy′′ dz′′ dz′.


(3.8)

To proceed, it is useful to neglect the z′′ variations of U∞(z′′) in the denominator
inside the integral and approximate U∞(z′′)≈U∞(z). This can be justified because the
kernel (z− z′′)/|x− x′′|3 peaks at z′′= z. Furthermore, we recognize that the integrand
in x′′ is even in the denominator while in the numerator the erf(..) term is odd. Hence,
we are left with:

u′y(0, 0, z; ε)=−
1

8π2ε2U∞(z)

∫
∞

−∞

dG(z′)
dz′

∫∫∫
(z− z′′)e−(y′′2+(z′′−z′)2)/ε2

[x′′2 + y′′2 + (z− z′′)2]3/2
dx′′ dy′′ dz′′ dz′,

(3.9)
which, with an additional change of variables, ζ = z′′ − z′ can be rewritten as:

u′y(0, 0, z; ε)=−
1

8π2εU∞(z)

∫
∞

−∞

dG(z′)
dz′

F(z− z′) dz′, (3.10)

where

F(z)=
1
ε

∫∫∫
(z− ζ )

[x′′2 + y′′2 + (z− ζ )2]3/2
e−(y

′′2
+ζ 2)/ε2

dx′′ dy′′ dζ . (3.11)
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The integration yields (Martínez-Tossas 2017):

F(z)=
2πε

z

(
1− e−(z/ε)

2
)
. (3.12)

Hence, we find that the velocity perturbation may be written as a superposition of
shifted Lamb–Oseen vortices, weighted by the gradient of the lift function G(z):

u′y(z; ε)=−
1

U∞(z)

∫
∞

−∞

dG(z′)
dz′

1
4π(z− z′)

(
1− e−(z−z′)2/ε2

)
dz′, (3.13)

where u′y(0, 0, z; ε) on the x= y= 0 axis has been denoted as u′y(z; ε), also indicating
that the solution depends on the kernel width, ε. This is the Gaussian force field
analogue of lifting line theory in which the induced velocity from thin tip vortices
may be expressed as an integral of the spanwise derivative of circulation. Because of
the Gaussian smoothing, a Lamb–Oseen kernel arises in this expression, again with a
core size exactly equal to ε used in the Gaussian applied body force that represents
the lifting surface. Note that the same expression proposed by Dag (2017) and Dag &
Sørensen (2018) was based on observations that smoothed tip vortices in ALM have
the shape of Lamb–Oseen vortices. The result in (3.13) serves as formal proof that
their empirically motivated approach can also be derived from first principles. It also
enables further analysis and solution methods as detailed below.

Since the effective lift coefficient will vary due to the induced downwash, the
strength of the vortex spanwise change, dG(z′)/dz′, will be affected by the downwash
as a result of a modification of cL(z):

G(z)=Gb(z)+
1
2

dcL

dα
(z)u′y(z; ε)U∞(z)c(z), where

Gb(z)=
1
2

cLb(z)c(z)U2
∞
(z)

 (3.14)

corresponds to the ‘baseline’ case (i.e. the lift coefficient appropriate for the
undisturbed inflow angle of attack) without downwash. Replacing G(z) in (3.13),
we obtain:

u′y(z; ε)U∞(z) =
∫
∞

−∞

dGb(z′)
dz′

g(z− z′; ε) dz′

+

∫
∞

−∞

d
dz′

[
1
2

dcL

dα
(z′)u′y(z

′
; ε)U∞(z′)c(z′)

]
g(z− z′; ε) dz′, (3.15)

where
g(z, ε)=−

1
4πz

(1− e−z2/ε2
). (3.16)

This expression is an integro-differential equation that also appears in the classical
lifting line theory. In prior applications (without the Gaussian filtering), such an
equation (usually formulated for the circulation) is solved for each case using a
sine series expansion. Here, we propose to first recast this expression as a proper
Fredholm integral equation of the second kind, using integration by parts for the
second term:

u′y(z; ε)U∞(z) =
∫
∞

−∞

dGb(z′)
dz′

g(z− z′, ε) dz′

+

∫
∞

−∞

θ(z′)u′y(z
′
; ε)U∞(z′)c(z′)k(z− z′; ε) dz′, (3.17)
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where

k(z; ε)=π
d
dz

[
−

1
4πz

(1− e−z2/ε2
)

]
=

1
4z2
(1− e−z2/ε2

)−
1

2ε2
e−z2/ε2

. (3.18)

Note that we have also introduced a variable that describes possible deviations from
the idealized lift curve slope:

θ(z)=
1

2π

dcL

dα
(z). (3.19)

The equation is cast most naturally in terms of the unknown perturbation momentum
flux:

M(z; ε)= u′y(z; ε)U∞(z)c(z). (3.20)

Multiplying (3.17) by c(z) yields:

M(z; ε)=
∫
∞

−∞

dGb(z′)
dz′

c(z)g(z− z′; ε) dz′+
∫
∞

−∞

θ(z′)M(z′; ε)c(z)k(z− z′; ε) dz′. (3.21)

For general distributions of c(z), ε(z) and θ(z) along the blade, one must solve this
integral equation numerically for each individual case.

4. Simplifications, solutions and approximate analytical fit

Next, we propose an approximate method that will be shown to be of sufficient
accuracy for many applications and helpful as a reference solution of an interesting
special case. Specifically, we consider a lifting surface extending to lengths much
larger than the chord length. The blade tip is located at, say, z = 0. Also, we
approximate θ(z) by its average distribution over the blade, θ (i.e. θ(z) ≈ θH(z)).
Under these conditions, we may rewrite (3.21) as:

M(z; ε)=
∫
∞

−∞

dGb(z′)
dz′

c(z)g(z− z′; ε) dz′ + θ
∫
∞

0
M(z′; ε)c(z)k(z− z′; ε) dz′. (4.1)

A further simplification is proposed; namely, we consider the special case when
the ratio ε(z)/c(z) is held constant. We thus define the z-independent dimensionless
parameter:

ε≡
ε(z)
c(z)θ

. (4.2)

As mentioned before, the optimal kernel size requires εopt(z)≈ 0.25c(z) (i.e. εoptθ ≈

0.25 (constant)). For ε les values typically used in coarse-scale LES, εles � c(z), in
which case the solution to the integral equation is simple. As will be shown later, in
the limit εles� c(z), the second term on the right-hand side of (4.1) can be neglected
and the induced velocity is proportional to g(z; ε).

We now proceed assuming a constant ε(z)/c(z). As shown in appendix A, the
solution to the integral equation may be written in the form:

M(z; ε)=
1
ε

∫
∞

−∞

dGb(z′′)
dz′′

S(ξ , ξ ′′, ε) dz′′, with ξ =
z
ε(z)

, ξ ′′ =
z′′

ε(z)
, (4.3)
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and where S(ξ , ξ ′′, ε) is the solution to what we term the canonical integral equation
of the Gaussian-filtered lifting line theory:

S(ξ , ξ ′′, ε)= g∗(ξ − ξ ′′)+
1
ε

∫
∞

0
S(ξ ′, ξ ′′; ε)k∗(ξ − ξ ′) dξ ′. (4.4)

The basic kernels are given by:

g∗(ξ)=−
1

4πξ

(
1− e−ξ

2
)

and k∗(ξ)=
1

4ξ 2

(
1− e−ξ

2
)
−

1
2

e−ξ
2
. (4.5a,b)

Recalling the definition of M(z; ε), and with (4.3), the perturbation velocity ratio is
given by:

u′y(z; ε)

U∞(z)
=

1
ε(z)U2

∞
(z)

∫
∞

−∞

dGb(z′′)
dz′′

(z′′)S
(

z
ε(z)

,
z′′

ε(z)
; ε

)
dz′′. (4.6)

We note from (4.4) that when ε� 1, the solution is simply S(ξ , ξ ′′; ε) = g∗(ξ −
ξ ′′). For finite ε, it is possible to solve (4.4) numerically, for various ε and ξ ′′ as
parameters. An iterative algorithm is used with under-relaxation. Figure 2 shows the
solutions for various ε and ξ ′′ values. As shown, the solutions for ξ ′′ = 0 have the
expected downwash perturbation velocity but include a ‘regularized’ behaviour near
the tip (z = 0), where the perturbation velocity drops to zero at the ‘core’ of the
tip vortex in which the thickness depends upon ε. For ξ ′′ > 0, we begin to see the
other side of the shed vortex with a positive perturbation velocity but somewhat non-
trivial shape toward the blade tip. As ξ ′′ grows, at distances large (compared to chord)
from the tip and for large ε/c, the solution approaches a function proportional to the
function g.

4.1. Empirical fits
For practical applications, one may wish to avoid having to solve numerically the
canonical lifting line equation. Therefore, it is useful to provide a functional form for
the solution S(ξ , ξ ′′; ε), even if approximate. After some experimentation, we have
found that the following expression represents the numerical solution with very good
accuracy for ε> 0.25:

Sfit(ξ , ξ ′′, ε)=−sgn(ξ − ξ ′′)[1− 0.25e−ε(1− e−0.2|ξ ′′|)] f (ξ − ξ ′′; ε), (4.7)

where

f (ξ ; ε)=
[

1
4π|ξ |

(
1− e−ξ

2
)
−

0.029ε−2/3

ξ 2

(
1− e−0.357|ξ |3

)]
. (4.8)

The dot-dashed lines in figure 2 show the proposed fitted functional form, Sfit(ξ , ξ ′′; ε),
compared to the accurate full numerical solution (solid lines). As shown, for ε> 0.25,
the agreement is quite good with a root-mean-square error between the fit and the
numerical integration over the range of parameter values (0.25 6 ε 6 5, 0 6 ξ ′′ 6
10, 0 6 ξ 6 16) of 0.0023 (i.e. less than 2 % of the peak value of |S| shown). The
maximum difference found over this range is 0.029, which can still be considered
small for practical applications. For smaller values of ε (ε < 0.25), the comparison
(not shown) begins to deteriorate and (4.7) should not be used.
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FIGURE 2. (Colour online) Solutions to the canonical filtered lifting line (4.4), for various
ε and ξ ′′ values; namely, ξ ′′ = 0 (a), ξ ′′ = 1 (b), ξ ′′ = 5 (c) and ξ ′′ = 10 (d). Solid lines:
S(ξ , ξ ′′; ε)/ε obtained from numerical solutions to (4.4). In each panel, the various curves
shown are for ε = 0.25 (black), 0.5 (green), 0.75 (blue), 1.0 (red), 2.0 (cyan) and 5.0
(magenta). The dot-dashed lines correspond to the proposed empirical fit, Sfit(ξ , ξ ′′; ε)/ε,
given by (4.7) (same colours as the lines for corresponding ε).

In figure 2, the solutions have been plotted as a function of the variable, ξ (i.e.
z scaled with the filter width ε). To provide additional insights, the results can be
plotted as a function of z/c, for different ε, as presented in figure 3. This also enables
us to compare with classical lifting line theory, which is the expected behaviour of
the filtered lifting line solution when ε→ 0. Note that this could not be displayed
as a function of ξ because the limit ε → 0 is singular for our filtered line theory.
The result from the classical lifting line theory for a semi-infinite wing of constant
chord is shown as a dashed black line for which we have used the solution provided
by Stewartson (1960), summarized in appendix B. As expected, the solution to the
filtered lifting line theory tends to the classical result in the limit ε→ 0.

For practical implementations, a discrete version of (4.6) can be written on
N discrete element points zi = (i − 1)L/(N − 1), covering a span of length, L and
where z1 and zN are the two ends of the blade. However, recall that the canonical
case considered, as well as the approximated fit, were derived for a semi-infinite
blade. We thus approximate the real case as a superposition of the solutions of two
semi-infinite blades. The summation is divided into two parts: from one tip to the
middle of the span and another covering the other half of the span to the other tip.
That is to say, we approximate the contributions from half of the span as coming
from a semi-infinite blade with one tip at z = z1 = 0 and similarly the other side
starting from the other side with the tip at z= L= zN .
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0 2 4
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-0.10
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-0.20

-0.25

S(
≈, 

0,
 Ó

)/
Ó

FIGURE 3. (Colour online) Solutions to the canonical filtered lifting line equation for ξ ′′=
0 plotted as a function of z/c= ξε. Solid lines: S(ξ , ξ ′′= 0; ε)/ε obtained from numerical
solutions to (4.4) for various ε values. The curves shown are for ε= 0.10 (blue), ε= 0.25
(black), ε= 0.5 (green), 0.75 (blue), 1.0 (red), 2.0 (cyan) and 5.0 (magenta). The dashed
line is the ideal lifting line solution (Stewartson 1960) for a semi-infinite singular line
(see appendix B). The dot-dashed lines correspond to the proposed empirical fit given by
(4.7) for the ε> 0.25 cases.

Thus, we write

u′y(zi; ε)

U∞(zi)
=

1
ε(zi)U2

∞
(zi)

[
N/2∑
j=1

1Gb(zj)S
(

zi

ε(zi)
,

zj

ε(zi)
; ε

)

−

N∑
j=N/2+1

1Gb(zj)S
(

L− zi

ε(zi)
,

L− zj

ε(zi)
; ε

)]
, (4.9)

where 1Gb(zj) = (1/2)[Gb(zj+1) − Gb(zj−1)], for j = 2, 3, . . . , N − 1, and where
it is understood that 1Gb(z1) = Gb(z1) because Gb(z0) = 0 as z0 falls outside the
blade. At the other end, for zN , the same holds but now 1Gb(zN)=−Gb(zN) because
Gb(zN+1)= 0 as zN+1 falls outside the blade.

4.2. Numerical tests and examples
To test the proposed approximation of (4.7) and to illustrate some sample solutions
to the filtered lifting line in (3.21), we compare the predicted velocity perturbation
as obtained by numerical integration of the Fredholm integral in (3.21) with the
approximate solution using (4.9) and the fitted function. Different cases to be tested
can be characterized by various baseline lift coefficient distributions, cLb(z), blade
chord distributions, c(z), and free-stream velocity, U∞(z).

The first case tested is for a constant chord wing of length, L, with chord c(z)= c0,
L/c0 = 20 and a constant lift coefficient cLb(z) = 1 and constant lift slope (θ(z) =
1) along the span. U∞ is constant as well. Three cases are compared: ε/c0 = ε =
0.25, 0.5 and 1.5. In all cases, numerical integration of the integral equation is done
on a sufficiently fine grid for fully converged results. The approximated discrete sum
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FIGURE 4. (Colour online) Comparisons of the full numerical solution of filtered lifting
line theory (lines) (3.21) applied to a constant chord, c, blade of constant lift coefficient,
cLb = 1 and finite length L/c= 20, with discrete superposition (4.9) of the fitted solution
to the canonical filtered lifting line solution (symbols). U∞ is constant. Black line and
squares: ε= 0.25, blue line and circles: ε= 0.5. Red line and triangles: ε= 1.5.

in (3.21) involves N = 101 points over the same length, L (i.e. 1z/c0 = 0.2 is used).
Results are shown in figure 4. As shown, the agreement is very good. This same case
will be considered later using an implementation of a constant chord, finite airfoil in
LES.

The second case tested is again for a constant chord, c(z) = c0, but with three
sections with different lift coefficients along the span. Specifically, cLb = 1 for 0 6
z/c0 < 2.5, cLb = 1.5 for 2.5 6 z/c0 < 5 and cLb = 0.5 for z/c0 > 5 up to z = L =
20c0. U∞ is constant as well and the case ε/c0 = ε = 0.5 is used. Similar numerical
implementations as in the prior example are used. Results are shown in figure 5. As
shown, the agreement between the full numerical solution and the approximation is
very good, even for cases of variable cLb.

The last test case is a wing with a chord distribution reminiscent of a wind-turbine
blade, with three distinct linear segments as shown with the bottom dot-dashed line
in figure 6. The tip is at z= 0 and the root of the blade at z= L. We use a varying
sectional lift coefficient along the span, with cLb= 1.5 between 06 z/c0< 16, cLb= 0.5
between 166 z/c0< 18 and cLb= 0 between 186 z/c0 6 20, mimicking the non-lifting,
typically cylindrical portion near the nacelle. Also, in this case, we vary U∞(z) as if
it was the relative velocity of a blade operating at a tip-speed ratio of U∞-tip/Uaxial= 5,
namely:

U∞(z)=U∞-tip

√[
5
(

1−
z
L

)]2
+ 12. (4.10)

In this case, we use a constant kernel size; namely, ε/c0=0.25 (black line and squares
in figure 6) and ε/c0= 2.0 (blue line and circles). The comparison in figure 6 shows
that the approximate method gives very good results, except for small ε in the near-
hub region, where the accuracy of the approximate method is less critical because cLb

is very small and the impact on actual lift forces would be small.
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FIGURE 5. (Colour online) Comparison of numerical solution of filtered lifting line theory
(line) (3.21) applied to a constant chord, c= c0, wing of variable lift coefficient (cLb = 1
for 0< z/c0< 2.5, cLb= 1.5 for 2.5< z/c0< 5 and cLb= 0.5 for z/c0> 5) and finite length,
L/c0 = 20, with discrete superposition (4.9) of the fitted solution to the canonical filtered
lifting line solution (symbols), using ε= 0.75. U∞ is constant.

0 2 4 6 8 10
z/c0

c(
z)

/c
0

12 14 16 18 20
0
1
2
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-0.05

-0.10

u� y/
U

∞
-

tip

FIGURE 6. (Colour online) Numerical solution (lines) of filtered lifting line theory (3.21)
applied to a case with a wind-turbine-blade-like chord distribution, compared to the
discrete superposition (4.9) of the fitted solution (symbols). Black line and squares, ε/c0=

0.25; blue line and circles, ε= 2.0. Note that in this case, ε= ε/c(z) varies as a function
of z, causing possible differences with the approximate solution that assumes that ε is
constant (and also that dε/dz � 1). The dot-dashed line at the bottom (right y-axis)
displays the chord distribution, c(z)/c0, where c0 = L/20 is a reference scale and, in this
case, c0 = ctip.

A test case for an elliptical wing yielded less precise agreement between the theory
and numerical integrations because for such distributions the simplifying assumptions
used in this section (e.g. small variations of ε along z) are violated, especially near
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the tip. However, as shown in § 5, a fully explicit numerical approach applicable in
LES also yields excellent results for such cases.

5. Velocity correction as a subfilter model for LES
In the ALM, we sample the fluid velocity, ũ(xi), at the ith actuator point,

xi = (xi, yi, zi); this velocity is used to evaluate the local ALM force, typically
using tabulated lift and drag coefficients. Both the magnitude and direction of the
local velocity matter. As has been argued in Martínez-Tossas et al. (2017), the bound
vorticity resulting from the application of ALM forces does not affect the sampled
velocity at the actuator point itself, for an infinite span wing, and when the effects
of drag on the local velocity may be neglected. For a finite wing span, however,
the local velocity is affected by the induced velocity, uy(zi; ε

LES) (henceforth we
omit the prime in denoting the perturbation velocity). Thus, an approximation to
the unperturbed incoming velocity, U∞(xi) (excluding the effects of the velocity
perturbation caused by shed vorticity) is given by:

U∞(xi)= ũ(xi)− uy(zi; ε
LES)j, (5.1)

where it is understood that i, k and j are unit vectors in the directions of U∞(xi), the
blade span and the direction perpendicular to both (in the lift direction), respectively.

The real blade, however, of size typically much smaller than the filter/kernel scale,
εLES, will induce more concentrated shed vortices and induced velocity corrections,
especially near regions of rapidly changing circulation (e.g. near the tip). As has been
determined in Martínez-Tossas et al. (2017), a good representation of the flow for a
real airfoil can be obtained using an optimal filter/kernel size, εopt

≈ 0.25c. Therefore,
we seek the velocity (denoted as û(xi)) that would have occurred had we used, in
the LES, a kernel scale, εopt. This velocity can be obtained by adding to U∞(xi) the
velocity perturbation corresponding to εopt:

û(xi)= ũ(xi)+ [uy(zi; ε
opt)− uy(zi; ε

LES)] j. (5.2)

Thus, the difference 1uy= uy(zi; ε
opt)− uy(zi; ε

LES), can be considered as the subfilter
velocity model to be added to the LES-sampled velocity. The corrected velocity, û(xi)
(its magnitude and, importantly, its direction with modified angle of attack) can then
be used in the determination of lift and drag coefficients as well as the direction of
the applied ALM forces. The lift is applied perpendicular to û(xi) whereas the drag
force is parallel.

5.1. Numerical implementation of subfilter scale velocity model
Here, we describe the procedure for implementing the subgrid-scale velocity correction
in the actuator line model. There are two approaches to determining the velocity
correction, 1uy, from the velocity perturbations evaluated at the two (LES and
optimal) ε values. A first approach is to use (4.9) with the empirical fit function
for the solution to the canonical filtered lifting line equation. A second approach is
to implement a direct numerical solution to the original expression in (3.13) using
a fully explicit approach to solve the integral equation via successive substitution
and under-relaxation. In practical applications, we prefer this approach because it
has similar numerical costs and requires less assumptions (e.g. dε(z)/dz� 1 is not
required). The method consists of the following steps, where we assume the time
step is denoted by superscripts n (present) and n− 1 (prior past time step):
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(i) To compute 1un
y(zi), the (new) velocity correction at the ALM point, zi,

determine the distribution of G(z) = (1/2)cL(z)c(z)U2
∞
(z) at all other N ALM

points on the blade (i.e. evaluate Gn−1(zj)) from the previous time step according
to:

Gn−1(zj)=
1
2 c(zj)U2

∞
(zj)cL(zj). (5.3)

(ii) To evaluate numerically the integral of (3.13), compute the finite difference of
Gn−1(z):

1Gn−1(zj)=
1
2 [G

n−1(zj+1)−Gn−1(zj−1)], for j= 2, 3, . . . ,N − 1, (5.4)

where the first and last points are:

1Gn−1(z1)=Gn−1(z1) and 1Gn−1(zN)=−Gn−1(zN). (5.5a,b)

(iii) Compute numerically the new (not yet relaxed) induced perturbation velocities
(superscript *) for both εi = ε

opt
i and εi = ε

LES
i :

un∗
y (zi; εi) = −

1
U∞(zi)

∫
∞

−∞

dGn−1(z′)
dz′

1
4π(zi − z′)

(
1− e−(zi−z′)2/ε2

i

)
dz′ (5.6)

≈ −
1

U∞(zi)

N∑
j=1

1Gn−1(zj)
1

4π(zi − zj)

(
1− e−(zi−zj)

2/ε2
i

)
. (5.7)

Note that the perturbation velocities are perpendicular to the velocity U∞(xi).
(iv) Compute the updated difference between induced velocities for εLES

i and εopt
i and

apply under-relaxation:

1un
y(zi)= fu

[
un∗

y

(
zi; ε

opt
i

)
− un∗

y

(
zi; ε

LES
i

)]
+ (1− fu)

[
un−1

y (zi; ε
opt
i )− un−1

y (zi; ε
LES
i )
]
.

(5.8)
The under-relaxation factor, fu 6 1, is used to ensure numerical convergence of
this successive substitution algorithm that can be implemented in an explicit LES
code. A factor, fu= 0.1, has been found to lead to rapidly converging and stable
results and is recommended.

(v) When sampling the LES velocity at the actuator point i for time n, add the
velocity component subgrid-scale velocity to the sampled velocity:

û(xi)= ũ(xi)+1un
y(zi)j. (5.9)

Now, with this new sampled velocity, the actuator line model can compute all of
the forces and apply them to the flow field accordingly. The correction is computed at
every time step. (Note that the operation count for the velocity correction is of order
N2 because convolutions are performed directly. If N is large, fast-Fourier-transform-
based approaches could be developed, but in our applications, N has been sufficiently
small so that further optimizations were not found to be necessary.)
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FIGURE 7. (Colour online) (a) Sketch of the computational domain used for a simulation
of a finite-length constant chord wing. (b) Volume rendering of non-dimensional vorticity
magnitude for a simulation of a stationary constant chord wing using the actuator line
model.

6. Applications in LES

We now test the proposed subfilter-scale velocity model in large-eddy simulations
of flow over several finite wings with uniform, non-turbulent inflow. Simulations
are performed using LESGO, an LES code (Calaf, Meneveau & Meyers 2010;
Graham & Meneveau 2012; Martínez-Tossas et al. 2018) that uses pseudo-spectral
discretization in the spanwise and streamwise directions and second-order finite
difference in the vertical direction. A fringe region is used to drive the flow to
desired inflow conditions (uniform in the present application) once it reaches the end
(or inflow due to periodicity) of the domain (Stevens, Graham & Meneveau 2014).
Time integration is done using a second-order Adams–Bashforth scheme. The code
uses a scale-dependent dynamic eddy-viscosity subgrid-scale model with Lagrangian
averaging (Bou-Zeid, Meneveau & Parlange 2005), although in the present application
of uniform inflow with emphasis on the aerodynamic forces induced on the blades,
the effects of the subgrid model are not crucial. An eddy-viscosity model is included
only to avoid numerical instabilities.

The simulations use a range of kernel sizes, from εLES/c = 0.25 to εLES/c = 4.
The length of the blades is denoted by S (as opposed to L used in prior sections
to avoid confusion with the domain lengths). The simulation domain is Lx/S = 2.5
in streamwise length, Ly/S = 2.5 in vertical length and Lz/S = 2.5 along the span.
Figure 7(a) shows a sketch of the simulation domain. To mitigate any possible
numerical effects, a very fine grid resolution is employed for all simulations, namely
∆/c = 0.0195, equal in all directions. The range of resolutions with respect to ε is
from ε/∆≈ 13 for the case with ε/c= 0.25, to ε/∆≈ 103 for the ε/c= 2 case. The
length of the blade is S/c = 12.5. The blade has a NACA64A17 section (the same
one used in the outer part of the NREL 5-MW reference turbine blade (Jonkman
et al. 2009)), placed at a 6◦ angle of attack so that the baseline lift coefficient is
CLb = 1.103. The drag coefficient is set to zero for the test cases presented.

The simulations were run with very high resolutions to avoid any effects of
numerical grid resolution. However, we have verified that even much coarser
resolutions (ε/1x≈ 2.8) provide essentially the same results.

When simulating a fixed wing, tip vortices are formed on both sides of the
blades. Figure 7(b) shows a volume rendering of the resulting vorticity magnitude.
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FIGURE 8. (Colour online) Induced velocity along the blade for large-eddy simulations
of a fixed wing under uniform inflow and angle of attack of 6◦. Note that r denotes the
distance from the centre of the blade of length S. Symbols denote the LES results, whereas
the solid lines are the theory and fit from (4.6) and (4.7).

The vorticity field is reasonably uniform along the z-direction along the blade until
it reaches the tip. Although some vorticity is shed along the way, it is difficult
to visualize in such a plot. At the tip, the vorticity takes a 90◦ turn and travels
downstream. Next, the downwash created by the shed vorticity is compared to the
analytical solutions found for different cases.

First, we examine the induced velocity from LES along the blade caused by the
shed vorticity in figure 8. The LES results at the various kernel sizes are shown as
symbols (note that we also include the εLES/c = 4 case). The analytical expression
((4.9), with the function S(..) evaluated using the fit of (4.7)) is plotted as solid lines.
There is excellent agreement between the theory and the LES results.

Next, we compare the perturbation velocity, uy, obtained from LES before and
after applying the subfilter-scale velocity correction. The proposed correction adds
a subgrid-scale velocity along the actuator line perpendicular to the inflow velocity
sampled at every actuator point. The desired behaviour is that the perturbation velocity
after applying the correction should be independent of εLES. As shown in figure 9(a),
the desired behaviour is indeed followed very accurately in the LES. Concomitant
to the εLES-independent velocity perturbation, the lift coefficient obtained from the
corrected velocity (figure 9b) is also εLES-independent, whereas without the correction
(dashed lines), strong dependence on εLES is observed.

Next, a similar application and analysis are performed on an elliptic wing under
uniform inflow, also at an angle of attack of 6◦. The chord distribution along the blade
span is given by:

c(r)= c0

√
1− (2r/S)2, (6.1)

where c0 is the largest chord in the middle of the blade, r is the coordinate along
the span centred at 0 and S is the total blade span. Results for the corrected and
uncorrected velocities and angles of attack are shown in figure 10. Again, we observe
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FIGURE 9. (Colour online) Simulation results from a constant chord fixed wing under
uniform inflow at an angle of attack of 6◦. Induced velocity (a) and lift coefficient (b)
along the blade for cases with and without the correction using different ε.
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FIGURE 10. (Colour online) Simulation results from an elliptic wing under uniform inflow
at a nominal angle of attack of 6◦. Induced velocity (a) and angle of attack (b) along the
blade for cases without (dashed lines) and with (solid lines) the correction for different
ε/c.

that the curves for all the cases with the proposed correction collapse. Also note
that the correction predicts a constant induced velocity throughout most of the blade,
as expected for an elliptic wing. We note that near the tips, the deviations from a
constant induced velocity are also as expected because of differences between the
Gaussian-filtered and ideal lifting line theories. Only in the limit of ε → 0 would
one expect constant induced velocity all the way to the (singular) tip. The remarkable
result is that the subfilter model enables us to correct the induced velocities and angle
of attack shown by the dashed lines to the ε-independent solid lines that all coincide
across the span of the blade.
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FIGURE 11. Total lift (a) and induced drag (b) for simulation of a constant chord wing.
Squares show results without using the subfilter-scale velocity correction; circles use the
correction. Forces are non-dimensionalized by the blade span, S, width, `, density, ρ, and
free-stream velocity, U∞.
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FIGURE 12. Total lift (a) and induced drag (b) for simulation of a constant chord wing
(top) and one with elliptic chord distribution (bottom). Squares show results without using
the subfilter-scale velocity correction; circles use the correction.

We can evaluate integrated quantities such as the total lift and induced drag force
on the blades as a function of εLES. Figure 11 shows the total lift and induced drag
forces on the blade from LES of the constant and elliptic chord wings, both with
and without applying the subfilter-scale velocity correction. We see that the correction
eliminates the ε-dependence of predicted aerodynamic forces. Without the correction,
these important integral quantities could differ by as much as 5–10 %.

7. Conclusions

A new formulation for a filtered lifting line theory has been proposed. The main
difference from Prandtl’s original lifting line theory is that there is now a length scale
ε for each blade section that establishes the width over which vorticity is distributed,
as opposed to an infinitesimally small vorticity source. It has been found in prior work
that this thickness is related to the blade chord, and a value of ε/c≈ 0.25 provides
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optimal results. In the limit of ε going to zero, the filtered formulation yields the
original lifting line theory.

The filtered lifting line theory can be used to formulate a subfilter-scale velocity
correction. This correction is intended for simulations that cannot afford to resolve
the recommended resolution associated with the optimal length scale, ε/c ≈ 0.25.
The correction provides the subgrid-scale velocities one would obtain by running a
simulation with the optimal ε while using much coarser resolutions. It is worthwhile
to recall that the filtered lifting line theory developed here relies on a number of
crucial assumptions and simplifications, notably the neglect of viscous and turbulence
effects. As justification, we note that the lift force on the wing depends mostly upon
the pressure distribution, which is known to be relatively insensitive to viscous and
turbulence effects. Even when operating in close-to-stall conditions, where turbulence
in the wake may become substantial, we expect the model to yield accurate results,
if one is using realistic tabulated lift and drag coefficients appropriate for local flow
conditions (e.g. near stall).

The correction has been tested in large-eddy simulations of flow over a finite
wing with constant chord and an elliptic chord distribution. There is excellent
agreement between using different ε when invoking the proposed subfilter-scale
velocity correction.

Further work should focus on applications of the subfilter velocity model on wind-
turbine simulations, including blade rotation. Initial tests, to be presented elsewhere,
yield promising results. Moreover, tests on coarse-resolution LES of entire wind farms
with turbulent inflow conditions (Calaf et al. 2010; Stevens et al. 2018) are required
to explore the performance of the model in the context of more practical applications.
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Appendix A. Canonical Gaussian-filtered lifting line equation
We begin with the dimensional equation for the perturbation momentum flux M(z, ε)

from (4.1), written for the constant filter width case, dε/dz= 0:
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M(z; ε) =
∫
∞

−∞

dGb(z′)
dz′

c(z)
−1

4π(z− z′)

(
1− e−(z−z′)2/ε2

)
dz′

+ θ

∫
∞

0
M(z′; ε)c(z)

[
1

4(z− z′)2

(
1− e−(z−z′)2/ε2

)
−

1
2ε2

e−(z−z′)2/ε2

]
dz′. (A 1)

We introduce the change of variables ξ = z/ε(z), ξ ′ = z′/ε(z) and ε = ε(z)/[c(z)θ ],
where we assume ε is constant. The integral equation can then be written as:

M(ξ ; ε)=
1
ε

∫
∞

−∞

dGb(ξ
′′)

dξ ′′
g∗(ξ − ξ ′′) dξ ′′ +

1
ε

∫
∞

0
M(ξ ′; ε)k∗(ξ − ξ ′) dξ ′, (A 2)

where Gb(ξ
′′)≡Gb[z′′ = ξ ′′ε(z)], M(ξ)≡M[z= ξε(z)] and

g∗(ξ)=−
1

4πξ
(1− e−ξ

2
), (A 3)

and
k∗(ξ)=

1
4ξ 2

(1− e−ξ
2
)−

1
2

e−ξ
2
. (A 4)

The condition that the parameter ε = ε(z)/[c(z)θ ] be a constant arises from a desire
to treat it as a parameter in this equation rather than as a function of ξ or z. Because
(A 2) is linear, we anticipate a solution of the form:

M(ξ ; ε)=
1
ε

∫
∞

0

dGb(ξ
′′)

dξ ′′
S(ξ , ξ ′′; ε) dξ ′′, (A 5)

where S(ξ , ξ ′′; ε) remains to be found. Replacing into (A 2) and regrouping yields:∫
∞

−∞

1
ε

dGb(ξ
′′)

dξ ′′

[
S(ξ , ξ ′′; ε)− g∗(ξ − ξ ′′)−

∫
∞

∞

1
ε

S(ξ ′, ξ ′′; ε)k∗(ξ − ξ ′) dξ ′
]

dξ ′′ = 0.

(A 6)
Because we wish (A 6) to be true for arbitrary distributions Gb(z′′), the unknown

function S(ξ , ξ ′′; ε) must be such that:

S(ξ , ξ ′′; ε)= g∗(ξ − ξ ′′)+
1
ε

∫
∞

∞

S(ξ ′, ξ ′′; ε)k∗(ξ − ξ ′) dξ ′. (A 7)

This is the ‘canonical Gaussian-filtered lifting line equation’. Now, (A 5) may be
rewritten in dimensional form by changing the variables back to z and z′, and we
obtain (4.3) quoted in the main text.

Appendix B. Stewartson’s closed form solution
In most applications, equation (2.5) from classic lifting line theory is solved using

a Fourier series. For a semi-infinite blade of constant properties, Stewartson (1960)
provides a convenient closed form solution, summarized below. Specializing to the
case dcL/dα = 2π and defining a function fS(x) according to

Γ (z)=
1
2

cLbcU∞[1− fS(x)], where x=
4
π

z
c
, (B 1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

99
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.994


Filtered actuator line modelling 291

it can be shown that (2.5) reduces to:

fS(x)=
1
π

∫
∞

0

f ′(x′)
x′ − x

dx′ (x> 0). (B 2)

In Stewartson (1960), based on the Fourier transformation of an extended integral
equation and inverse Fourier transforming it using complex plane contour integration,
the following closed form solution for fS(x) is arrived at:

fS(x)=
1
π

∫
∞

0

e−tx

(1+ t2)3/4
exp

(
−

1
π

∫ t

0

log θ dθ
1+ θ 2

)
dt. (B 3)

Based on this expression, fS(x) can be evaluated numerically using double integration
with Matlab’s numerical ‘integrate’ functionality. Some limiting behaviours of fS(x)
itself are useful to recall (Stewartson 1960). At large x, we have fS(x) → (πx)−1

(equivalent to the u′y = (1/2)cLbU∞/(4πz) decay far from the tip). At small x, the
leading behaviour is fS(x)≈ 1− 2(x/π)1/2. Furthermore, one can show that the induced
velocity equals:

1
1
2 cLb

u′y(z)

U∞
=−

1
π

fS(x= 4z/πc), (B 4)

which is the curve shown in figure 2 as the dash-dotted line. It provides the desired
limiting case for ξ ′′ = 0, when ε→ 0.
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