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EDINBURGH MATHEMATICAL NOTES

INERTIA INVARIANTS OF A SET OF PARTICLES

by N. B. SLATER

The formal object of this note is the calculation of the principal moments of
inertia of a set of particles at their mass centre, in terms of their mutual distances;
the calculation brings in some identities which although simple may be in part
novel.

If 7y is the inertia tensor at a point O, the quantities (with S denoting a
sum over axes 1, 2, 3)

J = S / n , V =S(hJ22-l\2), I" =det(/v) (1)

are invariant for rotation of axes; and the principal moments at O are the
roots in X of

x3-n2+rx-r = o (2)
The problem, then, is to calculate these inertia invariants (1) when O is the
mass centre.

The masses and positions of particles will be denoted by a, b, c, ... and
A, B, C, ... respectively, and 2 will imply a sum over all the particles. Thus
the inertia tensor at O is

Iij =ZaOA2Sij—I,aOAiOAj (3)

where OAt is a component of the vector OA.
The invariants (1) are dimensionally the squares of distances, areas and

volumes respectively; so it is natural to relate them to squares of the extensions
of lines, triangles and tetrahedra determined by sets of points or particles.
The three geometrical invariants, (4) below, are of these types. The first forms
in (4) refer to an arbitrary origin O; as we shall see later, these may be trans-
formed, when O is the mass centre, into the second forms which involve
configurations AB, ABC, ABCD of the particles alone:

J = XaOA2 (s) m'^'abAB2 \
J' = Z'abOAB2 (=) m"1!' abc ABC2 (4)
J" = 2 ' abc OABC2 ( = ) m~l 2' abed ABCD2 j

Here m = 2a is the total mass, 2' denotes a sum over all distinct choices
(without reference to order) of sets of two, three or four particles in the respective
summands; and

ABC= ABxAC, ABCD = AB.(ACxAD) (5)
E.M.S.—Q
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Deferring consideration of the second forms in (4) and allowing O to be
arbitrary, we find that the inertia invariants (1) at O are in terms of the first
forms in (4)

I = U, I'=J2+J', F=JJ'-J" (6)
The first relation is trivial. To prove the second, it is observed that a separation
of the two sums in (3) puts /n/22~^i2 into the form

ZaOA2XbOB2
 + *a°Al *bOBlOB2 ( ? )

I.aOA1OA2 ZbOBJ

A pair A,B of distinct particles contributes to this determinant terms which
add up to ab{(OA x OB)3}

2. Summation of (7) over the axes now gives the
second relation (6). The third relation follows by a slight extension.

When O is the mass centre G, the corresponding inertia invariants satisfy
(6), with now the two identifiable forms (4) of J, J' and J". The identity of the
two forms follows from the condition that, when O is at G,

•LaOA = 0 (8)

The identity (4) for J is well known, the second form being Jacobi's function.
In the second form of J', the sum E' may be replaced by one-sixth of a complete
summation over all A, B and C. This gives (using AB = OB—OA etc. in
ABC)

J' = (6m) ^YLab^OB x OC+ OC x OA + OA x OB)2 (9)
Cross terms like (OBxOC).(OCxOA) vanish on summation by (8), and
so we arrive at the first form of J ' in (4). The two forms of J" may be identified
similarly.

By (4) and (6) the inertia invariants at G are expressed in terms of the
squared extensions of the distances, triangles and tetrahedra determined by
the particles. These quantities can all be expressed in squares of mutual
distances; for example

0 1 1 1

" f — i I ' l l (I0)

1 P a. 0
where a, /?, y = BC2, CA2, AB2. There is a similar form for ABCD2. This
completes the formal solution of the problem stated.

The following points may be noticed about the identities (4). (i) The
identities hold also for " components ", that is, we may replace the squares
of OA, OAB, OABC by the squares of OA,, (OA x OB), and OA,(OBx OC),
if we make similar replacements in the second forms, (ii) The identities may
be put in algebraic or determinant forms, (iii) A geometrical form of the
J' and J" identities for n equal masses is that the sum of the squares of the
triangles or tetrahedra on n points is n times the sum of the squares of the
triangles or tetrahedra the points subtend at their mean centre. This could be
generalised to higher dimensions.
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An alternative approach. The initial problem was first solved by using
the inertia tensor at G in the form involving solely relative positions, namely

Iu = m"1E' abAB25u-m-lI,' abABxAB3 (11)

If this is used in (1) with a method of expansion as in (7), we find that the
inertia invariants are given by (6), with J as in (4) (second form) and with

J' = m-2I,"abcd(ABxCD)2, (12)

J" = m-3I.mabcdef[(ABxCD) . EF]2 (13)

Here E" denotes a sum over distinct pairs of distinct pairs A,B and C,D,
and E" over distinct triples of distinct pairs. These forms (12) and (13) arise
naturally in a vibration problem; their direct conversion into the second
forms of (4) is of some interest.

To convert (12), we replace the sum E" by one-eighth of a complete sum
over all A, B, C, D, and then use the identity (compare (5))

(ABx CD)2 + (ACx BD)2 + (AD x BC)2

= ABC2+ABD2+ACD2 + BCD2 (14)

which gives J' as in (4). To convert (13), the sum E" is first replaced by a
complete sum. The identity (14) is true also for squares of components
(replacing ABC2 by {(ABC)^2 etc.), and so it can be used to replace sums of
six-point vector expressions in (13) by the five-point type (ABC. EF)2. These
may be reduced to four-point or tetrahedral type ABCD by the identity

(AB. CDE)2 + (AC. BDE)2 + (AD . BCE)2 + (AE. BCD)2

= ABCD2+ABCE2 + ABDE2 + ACDE2 + 2BCDE2 (15)

In this way the expression J" of (13) is reduced to the second form in (4).
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