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The renormalization method proposed by Batchelor is used to derive gradient
diffusion coefficients in Brownian suspensions of hard spheroidal particles with
aspect ratio λ in the range 1 6 λ 6 3.5. The theory is based on pairwise steric and
hydrodynamic interactions, and the results are therefore valid for dilute suspensions
such that λ2φ � 1, where φ is the particle volume fraction. The driving force for
gradient diffusion, i.e. the gradient in chemical potential, is larger for suspensions of
spheroidal particles than for spheres at the same volume fraction. The hydrodynamic
resistance also increases with aspect ratio, but the increase is weaker than that in
the driving force. Consequently, at the same particle volume fraction, the increases
in rates of gradient diffusion are greater for spheroidal particles than for spheres.
The concentration-dependent gradient diffusion coefficient D(φ, λ) is shown to be
closely approximated by D(φ, λ)= ξmD0{1+ 1.45φ[1+ 0.259(λ− 1)+ 0.126(λ− 1)2]},
which reduces to the result for spheres when λ= 1. Here, D0 is the Stokes–Einstein
diffusivity of a spherical particle with its radius equal to the longer dimension of
the spheroidal particle, and ξmD0 is the orientation-averaged diffusivity of an isolated
spheroidal particle.

Key words: colloids, suspensions

1. Introduction
Colloidal particles diffuse down a concentration gradient at a rate that is determined

by a balance between the driving force, the gradient in their chemical potential and the
resistance to their motion offered by the suspending solvent (Einstein 1956; de Groot
& Mazur 1984; Russel, Saville & Schowalter 1989; Felderhof 2017). At infinite
dilution, particle interactions of any kind are negligible, and this balance leads to the
Stokes–Einstein equation (Deen 2012). When the particle concentration is finite but
small, the effect of concentration on the rate of gradient diffusion may be evaluated
by using only two-particle interactions. The chemical-potential driving force is then
captured by the second virial coefficient (Hill 1960; Mulder & Frenkel 1985), and
may be evaluated using expressions known from statistical thermodynamics. However,
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887 A1-2 R. J. Phillips

evaluation of the effect of two-particle interactions on the hydrodynamic resistance
is complicated by the slow rate of decay of particle–particle interactions under the
low-Reynolds-number conditions usually associated with Brownian particles.

In a series of influential papers, Batchelor (1972, 1976, 1983) showed that
two-sphere hydrodynamic interactions can be ‘renormalized’ by using known, mean
properties of a suspension, permitting the evaluation of the sedimentation velocity of
suspensions of spheres to O(φ), where φ is particle volume fraction. Combined with
the second virial coefficient of hard-sphere suspensions, the concentration-dependent
sedimentation resistance yielded the prediction for the gradient or collective diffusion
coefficient D(φ):

D
D0
= 1+ 1.45φ, (1.1)

where D0 is the Stokes–Einstein diffusivity. An alternative derivation by Felderhof
(1978) yielded a very similar result, but with the 1.45 replaced by 1.56. Here and
in the text below, by gradient diffusion coefficient D we refer to the coefficient that
relates the volume flux N of particles to the gradient in particle volume fraction, i.e.

N=−D(φ)∇φ, (1.2)

relative to volume-fixed coordinates (i.e. the volume-average velocity is zero). More
than 40 years after publication of these results, there still appears to be no published
work showing how Batchelor’s method, and (1.1), are altered when the diffusing
particles are not spherical. In this paper we extend Batchelor’s method to solutes that
are rigid, prolate spheroids.

Significant contributions to renormalization and theories of colloidal diffusion have
been made since the publications by Batchelor (1972, 1976) and Felderhof (1978).
Hinch (1977) and O’Brien (1979) further developed and systemized averaging methods
for calculating the bulk properties of suspensions. Cichocki & Felderhof (1988)
calculated two-sphere interactions in inverse powers of the interparticle separation,
and with 150 terms in the expansion obtained a result consistent with the coefficient of
1.45 in (1.1). More recently, Felderhof (2017) published an interesting overview of the
generalized Einstein equation. Beenakker & Mazur (1984) incorporated many-sphere
interactions into a theory for self- and gradient diffusion that yields results at higher
volume fractions than (1.1), and Cichocki et al. (2002) derived accurate three-sphere
interactions and calculated sedimentation rates to O(φ2). Those theoretical results
compare well with computational results obtained by implementing the method of
O’Brien (1979) in Stokesian dynamics simulations (Brady et al. 1988; Phillips, Brady
& Bossis 1988a,b). Computational results obtained by using the lattice-Boltzmann
method are also in agreement with theoretical predictions at low volume fractions
(Ladd 1994; Segre, Behrend & Pusey 2016). Buck, Dungan & Phillips (1999) apply
Batchelor’s method to Brinkman’s equation, and show that the resulting theory
for gradient diffusion in polymer gels agrees with experimental data. A helpful
compilation of existing experimental data, theoretical predictions and computational
results for diffusion in hard-sphere suspensions may be found in figure 3.4 in the
chapter by Zia & Brady (2015).

As the coefficient that relates the flux of a solute to its concentration gradient,
the gradient diffusivity is of direct relevance in applications, and there are several
methods for measuring it in colloidal suspensions. For example, interferometric
techniques such as Rayleigh and holographic interferometry have been applied
successfully to this purpose (Wakeham, Nagashima & Sengers 1991; Buck et al.
1999; Zhang & Annunziata 2008). The Taylor dispersion method has also been used
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Gradient diffusion of hard spheroidal particles 887 A1-3

(Alizadeh, de Castro & Wakeham 1980; Wakeham et al. 1991; Alexander, Phillips
& Dungan 2019), as has a hydrodynamic instability method proposed by Taylor
(Selim, Al-Naafa & Jones 1993). For many years, dynamic light scattering (DLS) has
been a very useful method for studying transport processes in colloidal suspensions,
including short-time and long-time self-diffusion, and gradient or collective diffusion.
The theory supporting DLS and its connection to diffusion, and the importance of
time scales in defining short- and long-time self-diffusion, are described by Pusey
& Tough (1982) and Rallison & Hinch (1986). Pusey & Tough (1982), in particular,
note that to linear order in the volume fraction there is no difference between short-
and long-time gradient diffusion (see the discussion below their equation (36)). Much
of the data plotted by Zia & Brady (2015) in their figure 3.4, mentioned above, were
obtained by DLS. Obtaining gradient diffusivities by DLS requires extrapolation to
very small scattering vectors, which can be problematic for some systems (Segre
et al. 2016).

The need for rigorous theoretical results for the concentration effect on rates of
diffusion of non-spherical particles is apparent when one considers that common
colloidal particles and proteins are often non-spherical: bovine serum albumin (BSA),
for example, a globular blood protein frequently used in laboratory experiments, has
been described as a prolate spheroid with an aspect ratio that has been estimated as
1.9 (Jachimska, Wasilewska & Adamczyk 2008) or 3.5 (Squire, Moser & O’Konski
1968; Wright & Thompson 1975). There are also several studies that have concluded
that BSA is more ‘heart shaped’, or closer to an oblate spheroid, than a prolate
spheroid (Carter & Ho 1994; Ferrer, Duchowicz & Carrasco 2001; Leggio, Galantini
& Pavel 2008). Rigorous results for the effect of shape on rates of diffusion can
help to resolve such discrepancies. In fact, comparison of protein diffusion data with
theoretical results based on hydrodynamic and excluded-volume interactions has been
recommended as a means for assessing protein–protein interactions (Sorret et al.
2016).

Both the chemical potential and the hydrodynamic interactions between diffusing
particles are affected by a change in shape. For spherical particles, the second virial
coefficient B2, normalized by the sphere volume, is well known to be 4, B2 = 4.
The second and third virial coefficients for prolate spheroidal particles depend on
the particle aspect ratio, and have been calculated numerically by Mulder & Frenkel
(1985). Hydrodynamic interactions between two spherical particles may be described
by two scalar functions of the two-sphere separation, and those functions are known
to a high degree of accuracy (Stimson & Jeffery 1926; Goldman, Cox & Brenner
1966; Jeffery & Onishi 1984; Kim & Mifflin 1985). However, two-particle interactions
between prolate spheroids are more complicated, being orientation and aspect-ratio
dependent. Two-particle interactions between prolate spheroids have not been studied
to nearly the same extent as two-sphere interactions, and results to the level of
accuracy needed to obtain the equivalent of (1.1) for prolate spheroids are not
available.

Several theoretical and numerical studies of two-spheroid interactions have been
done. In the far-field limit, Kim (1985) used the singularity representations of Chwang
& Wu (1975, 1976), and derived solutions for two interacting spheroids to the
level of the first and second reflections. His results compare well with numerical
results obtained by boundary collocation for specific configurations (Gluckman,
Pfeffer & Weinbaum 1971). In addition, Claeys & Brady (1993a,b) used the first
reflection in Kim (1985), in conjunction with lubrication interactions, to develop a
Stokesian-dynamics-like method for simulating the motion of spheroidal particles and
suspensions.
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887 A1-4 R. J. Phillips

It is worth noting that the non-Brownian sedimentation problem that provides
the hydrodynamic resistance in (1.1) has no counterpart with prolate spheroidal
particles. Sedimenting suspensions of non-Brownian spheroidal particles, i.e. in the
high-Péclet-number limit, are unstable and become non-homogeneous during
sedimentation (Koch & Shaqfeh 1989). Partly for that reason, in their study of
the hydrodynamic transport properties of suspensions of prolate spheroids, Claeys &
Brady (1993a,b) do not report sedimentation velocities. However, this instability does
not change the fact that the mobility of a homogeneous suspension of Brownian,
diffusing spheroidal particles (i.e. in the limit of small Péclet number) is needed to
describe the concentration dependence of the gradient diffusion coefficient.

Here we calculate near-field two-particle interactions using the singularity method
originally proposed by Dabros (1985). In this method, a collection of point-force or
higher-order singularities are placed within the solid particles. The strengths of these
singularities are then chosen so as to impose boundary conditions on the particle
surfaces (Gotz 2005; Phillips 1995; Zhou & Pozrikidis 1995; Phillips 2003), in a way
that accounts for translation–rotation coupling. We have used this method previously
to calculate two-sphere interactions and rates of hindered diffusion in hydrogels (Buck
et al. 1999; Musnicki et al. 2011).

In the sections below we first summarize the renormalization method of Batchelor
(1972, 1976), which involves separation of two-particle far-field and near-field
interactions. We then show how it can be extended to suspensions of non-spherical
particles. Although for prolate spheroids the renormalized far-field interactions cannot
be calculated in purely analytical form, they can be evaluated using relatively
straightforward numerical methods. The near-field interactions require the more
involved numerical approach using singularities placed inside the particles. We
combine the far- and near-field results to compute the rate of gradient diffusion of
prolate spheroidal particles to O(φ), for aspect ratios λ ranging from 1 (i.e. spheres)
to 3.5, and compare with some experimental data from the literature in § 5.

2. Suspensions of spherical particles
We begin with a summary of the theory for the rate of gradient diffusion in

suspensions of spherical particles, as that work provides the foundation for our own.
Enough detail is provided so that similarities and differences between the spherical
and spheroidal configurations can be identified. In the presence of a concentration
gradient, particles of any shape move as if acted upon by a ‘thermodynamic force’
Fµ given by (Batchelor 1976)

Fµ =−
∇µ

1− φ
, (2.1)

where µ is the chemical potential of the diffusing particles at constant pressure
and temperature. The denominator in (2.1) accounts for the enhanced motion that
is contributed by the chemical potential gradient acting to push the solvent up the
particle concentration gradient. Felderhof (2017) discusses and compares different
expressions for the driving force for diffusion, and for colloidal suspensions arrives
at a result equivalent to (2.1).

At low Reynolds number, the mean solute velocity U is related to this force linearly,
i.e.

U=M ·Fµ, (2.2)
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Gradient diffusion of hard spheroidal particles 887 A1-5

where a mean particle mobility M has been defined. In the limit of infinite dilution,
φ→ 0, the mean mobility for spheres is found from Stokes’ solution for flow around
an isolated sphere to be (Happel & Brenner 1986)

M=
(

1
6πηa

)
I, (2.3)

where η is the solvent viscosity, a is the radius of the spherical particle and I is the
identity tensor.

Substituting the chemical potential of an ideal solution,

µ=µ	 + kT ln φ, (2.4)

into (2.1), and using (2.2) and (2.3) at infinite dilution to obtain the flux N of particle
volume,

N=Uφ, (2.5)

shows that

N=−
(

kT
6πηa

)
∇φ. (2.6)

Comparison with Fick’s law of diffusion yields the Stokes–Einstein equation for the
infinite-dilution diffusivity D0:

D0 =
kT

6πηa
. (2.7)

In (2.4), µ	 is a reference chemical potential and kT is the product of temperature
and Boltzmann’s constant.

2.1. Driving force for spherical particles
At low but finite particle volume fractions, φ � 1, for particles of any shape the
thermodynamic force Fµ in (2.1) can be expressed using the second virial coefficient
B2 since

φ

kT

(
∂µ

∂φ

)
P,T

1− φ
= 1+ 2B2φ. (2.8)

Here B2 has been normalized by the particle volume. For spherical particles, from
statistical thermodynamics it is known that (Hill 1960; McQuarrie 1976)

B2 =
1
Vp

1
2

∫
[1− e−

ψ
kT ] dr, (2.9)

where Vp is the volume of one particle, r is a vector from particle 1 to particle 2 and
ψ is a position-dependent interaction energy. As mentioned above, for two spheres
undergoing only steric interactions (2.9) yields a second virial coefficient equal to four,
B2 = 4.
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2.2. Average mobility for spherical particles
To account for two-particle interactions in (2.2), we distinguish between the velocity
U0 of an isolated sphere and the velocity U(x0, x1) of a system of two identical
spheres located at positions x0 and x1 = x0 + r. Averaging over configurations, but
neglecting three-particle interactions, yields the result (Batchelor 1972)

U=U0 +

∫
r
[U(x0, x0 + r)−U0]P(x0 + r|x0) dr, (2.10)

which is sufficient to obtain U to O(φ). In (2.10), the conditional probability P(x0 +

r|x0) has been used, and is defined as the probability a particle is at position x0 + r
given that the test particle is at x0. The integral is over all space, but overlapping
positions are precluded by the conditional probability.

Equation (2.10) cannot be evaluated as written, because it fails to account for the
unbounded nature of the suspension. This problem manifests itself mathematically
through the lack of convergence of the integral on the right side. At large separations,
r� a where r = |r|, the conditional probability is equal to the number density n, a
constant that is related to the volume fraction φ by

φ = 4
3πa3n. (2.11)

The far-field effect of the sphere at x1 on the velocity of the sphere at x0 may be
evaluated by using Faxen’s law (Happel & Brenner 1986; Kim & Karrila 1991; Deen
2012),

U(x0, x1)=U0 +

(
1+

a2

6
∇

2

)
u(x)|x=x0−x1 (r� a), (2.12)

where the velocity field u(x) is the disturbance velocity at position x relative to an
isolated sphere,

u(x)=U0

(
3a
r
+

a3

4r3

)
+U0 ·

xx
r3

(
3a
r
−

3a3

4r3

)
, (2.13)

and r = |x|. Substitution of (2.13) into (2.12) shows that the change in velocity of
the sphere at x0 caused by the second sphere at x1 has contributions that decay as
1/r and 1/r3, both of which fail to converge to a finite result when integrated over
unbounded space, as required by (2.10).

For reference below, it is worth noting that, for a sphere subjected to a force
F= 6πηaU0, an equivalent solution for u in (2.13) can be written as

u(x)=
[(

1+
a2

6
∇

2

)
J(x)
8πη

]
·F. (2.14)

Here J is the Oseen tensor, or point-force solution, given by

J(x)=
(

I

r
+

xx
r3

)
. (2.15)
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Gradient diffusion of hard spheroidal particles 887 A1-7

Substitution of (2.14) into (2.12), and noting that ∇2
∇

2J = 0, shows that the far-field
interaction between a sphere at r= x0 − x1 and a second sphere at x1 is given by

U(1)(x0, x1)−U0 =F ·
[(

1+
a2

3
∇

2

)
J(x)
8πη

]
x=x0−x1

, (2.16)

where the term in square brackets is the Rotne–Prager–Yamakawa tensor (Yamakawa
1970; Rotne & Prager 1995). The superscript ‘(1)’ in (2.16) indicates that this level
of interaction is sometimes called the ‘first reflection’ (Happel & Brenner 1986; Kim
& Karrila 1991).

Batchelor (1972) ‘renormalized’ the integration in (2.10) by using known, mean
properties of the bulk suspension. He recognized that, although in an unbounded
suspension there is no stagnant fluid far from the moving particles of interest, and
no walls of a container that can be used as a reference, relative to volume-fixed
coordinates the suspension-average velocity (averaged over both particle and fluid
volume) must be zero. Therefore

〈u〉 =
∫

r
u(x0, x0 + r)P(x0 + r) dr= 0, (2.17)

where P(x0 + r) is the probability of a sphere being located at position x0 + r. The
integral in (2.17) is over all space; at positions inside the test particle, r < a, the
velocity u is the sphere velocity, and at positions in the fluid it may be evaluated
from (2.13). Equation (2.17) is used to renormalize the terms in Faxen’s law (2.12)
that are proportional to u.

The perturbation to the velocity of the test sphere at x0 that is contributed by the
Laplacian term in (2.12) must also be renormalized to achieve a convergent result.
Here Batchelor (1972) argues that the mean value of the deviatoric stress τ must
be constant in a sedimenting, statistically homogeneous suspension. Consequently, the
divergence of the mean deviatoric stress must be zero, or

〈∇ · τ 〉 =

∫
r<a
∇ · τ (x0 + r)P(x0 + r) dr+

∫
r>a
∇ · τ (x0 + r)P(x0 + r) dr= 0, (2.18)

where the integration over all space has intentionally been separated into positions
within the test sphere at x0, r 6 a, and positions outside it, r > a. The integral over
positions within the test sphere can be converted to a surface integral by using the
divergence theorem.

To evaluate the integrals in (2.18) to O(φ), it is sufficient to let P(x0 + r)= n and
use the deviatoric stress for an isolated spherical particle, for which on the particle
surface n · τ =−4πηaU0, where n is the normal vector to the surface. Evaluation of
the integral for positions inside the particle, r 6 a, and multiplication by a2/6η, then
permits simplification of (2.18) to

a2

6η
〈∇ · τ 〉 =−

φ

2
U0 +

a2

6η

∫
r>a
∇ · τ (x0 + r)P(x0 + r) dr= 0, (2.19)

where (2.11) has been used. Upon using Newton’s law of viscosity, the divergence
of the viscous stress becomes η∇2u. Equation (2.19) may therefore be used to
renormalize terms in (2.12) that are proportional to ∇2u.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

99
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.998
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Summing (2.17) and (2.19) yields two terms identical in form to those obtained for
U−U0 in Faxen’s law, (2.12), when substituted into (2.10). However, the suspension
average velocity and stress divergence are evaluated using the probability P(x0)
rather than the conditional probability P(x0 + r|x0). Summing (2.17) and (2.19), and
subtracting the result (known to equal zero) from (2.10), therefore leads to

U=U0 +V′ +V′′ +W, (2.20)

where V′ contains renormalized far-field interactions that are proportional to u and
V′′ contains renormalized far-field interactions that are proportional to ∇2u in (2.12),
respectively. The term W contains all other, near-field two-sphere interactions not
included in V′ and V′′.

The explicit expressions for the renormalized far-field terms are

V′ =
∫

r
u(x0, x0 + r)[P(x0 + r|x0)− P(x0 + r)] dr (2.21)

and

V′′ =
φU0

2
+

∫
r>a

a2

6
∇

2u(x, x0 + r)|x=x0[P(x0 + r|x0)− P(x0 + r)] dr. (2.22)

To the required level of accuracy both probabilities are either zero or constant, i.e.
P(x0 + r) = n at all positions, and the conditional probability P(x0 + r|x0) = n when
r > 2a but is zero for r< 2a. As a result, the integrals in (2.21) and (2.22) are both
finite, and they can be evaluated analytically using (2.13), yielding

V′ =− 11
2 φU0 (2.23)

and

V′′ = 1
2φU0. (2.24)

Equation (2.20) then becomes

U=U0(1− 5φ)+W. (2.25)

The near-field interactions in W require a solution to the complete problem of two
equal spheres sedimenting in a quiescent fluid at low Reynolds number.

The function W is formed by subtracting the far-field interaction, as obtained from
Faxen’s law, (2.12), from the complete two-sphere solution U(x+ r, x) for the velocity
of a sphere at x+ r in the presence of a second, equal sphere at x, i.e.

W(x0, x0 + r)=U(x0, x0 + r)−U0 −

[
1+

a2

6
∇

2

]
u(x, x0 + r)|x=x0 . (2.26)

The term with square brackets in (2.26) could equivalently be replaced by the right
side of (2.16). The average of W is then defined by

W = n
∫

r>2a
W(x0, x0 + r) dr. (2.27)
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The functions defining the detailed two-sphere interaction U(x0, x0+ r) were obtained
to a high level of accuracy by Stimson & Jeffery (1926) and Goldman et al. (1966),
and Batchelor (1972) used them to evaluate W, obtaining

W =−1.55φ. (2.28)

With (2.25), the mean sedimentation velocity is then

U=U0(1− 6.55φ). (2.29)

For reference below, we note that the slowest decaying interaction in W(x0, x0+ r) is
contributed by the stresslet on the sphere at x0 + r that is caused by the test sphere
at x0. This ‘second-reflection’ contribution changes the velocity of the sphere at x0
by −U0(15a4)/(4r4), a result that may be used to evaluate contributions to W from
sphere–sphere separations so large that numerical calculation becomes impractical. In
his calculation, Batchelor (1972) truncates the numerical integration in (2.27) at r=8a,
and evaluates the contribution from r> 8a by using the asymptotic, second-reflection
result. A similar approach is used below for spheroidal particles.

Returning to the flux defined in (2.5), and calculating the mean solute velocity U
using the force Fµ in (2.1) and 2.8, we obtain

D(φ)=D0(1+ 2B2φ)(1− 6.55φ). (2.30)

Using B2 = 4 for spherical solutes undergoing only steric interactions, to O(φ) one
finds that

D(φ)=D0(1+ 1.45φ), (2.31)

which was first derived by Batchelor (1976). The diffusivity D(φ) in (2.31) is the
coefficient given in (1.2). To linear order in volume fraction, it describes the diffusive
flux of particle volume in a Brownian suspension of hard spheres, relative to a volume-
fixed reference frame.

3. Suspensions of prolate spheroidal particles
The thermodynamic driving force for diffusion given in (2.1), and the relation

between the mean solute velocity and the flux in (2.5), are independent of particle
shape. In order to extend the analysis in § 2 to prolate spheroidal particles, it is
therefore necessary to obtain results for the chemical potential and average mobility
comparable to (2.8), (2.9) and (2.29).

3.1. Particle shape
By ‘prolate spheroid’ we refer to an object that is elongated along an axis of
symmetry, such that points on the surface xs are given by

(xs,1 − xc,1)
2

b2
+
(xs,2 − xc,2)

2

b2
+
(xs,3 − xc,3)

2

a2
= 1 (3.1)

for a particle centred at xc. Equation (3.1) describes a prolate spheroid with a major
axis of half-length a, i.e. a> b, aligned with the z, or x3, axis. The minor axes have
half-length b. For the special case a = b, (3.1) reduces to the equation describing a
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887 A1-10 R. J. Phillips

sphere with radius a, whereas for a spheroid the aspect ratio λ = a/b > 1. A more
general description of a prolate spheroidal particle, centred at xc but with arbitrary
orientation, is given by

(x− xc) ·

[
1
b2
(e1e1 + e2e2)+

1
a2

dd
]
· (x− xc)= 1, (3.2)

where the unit vector d is in the direction of the major axis, the axis of symmetry,
and the unit vectors e1 and e2 are orthogonal to d and to each other.

3.2. Driving force for prolate spheroids
Evaluation of the second virial coefficient for prolate spheroids is more complicated
than for spheres, because as non-isotropic particles they have a clearly defined
orientation d. For prolate spheroidal particles undergoing only steric interactions,
Mulder & Frenkel (1985) have derived an expression for the second virial coefficient
by means of statistical thermodynamics, and they show that

B2 =−
1

2(4π)2

∫
dr
∫ ∫

dΩ0 dΩ1f (r, d0, d1), (3.3)

where r is the centre-to-centre vector between the particles, and d0 and d1 (or angles
contained in Ω0 and Ω1) define their orientations. The function f (r, d0, d1) is the
Mayer function, and for hard particles equals −1 if they overlap and zero otherwise.
The integration over the particle orientation angles Ωk requires consideration of all
orientations dk. However, because only two particles are involved and the surrounding
medium is isotropic, it is sufficient to fix one particle and obtain all two-particle
configurations by changing the position and orientation of the other. It has been
assumed in (3.3) that the particles are equally likely to have any non-overlapping
orientation, so that their orientational distribution functions are normalized by 4π.

We define a conditional probability Pp(x1, Ω1|x0, Ω0) as the probability that a
particle is at position x1 with orientation Ω1, given that a test particle is at position
x0 with orientation Ω0. Under dilute conditions, when the particle separation is
greater than 2a, r > 2a, this conditional probability is n/4π. Averaged over all
possible orientations Ω0 and Ω1, we denote the average by Pp(x0 + r|x0), which is a
function of r= |r| only, where r= x1 − x0. In terms of the Mayer function,

Pp(x0 + r|x0)=
1

(4π)2

∫ ∫
dΩ0 dΩ1f (r, d0, d1). (3.4)

Comparison with (3.3) shows that

B2 =−
1
2

∫
drPp(x0 + r|x0). (3.5)

In the development of Mulder & Frenkel (1985) it is convenient to reverse the
order of integration relative to that shown in (3.3). Doing the integration over
relative particle-to-particle separations r first is useful, because Isihara (1951)
derived an explicit expression for the excluded volume of two prolate spheroids
with fixed orientations. Although using Pp(x0 + r|x0) precludes use of the analytic
result of Isihara (1951), and therefore yields slightly less accurate results, the
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0 1 2 3
r/b

4 5 6

0.2 1.25 2.0 3.0

0.41-
P- p/

n 0.6

0.8

1.0

FIGURE 1. Plot of 1− Pp/n versus r/b for λ= 1.25, 2.0 and 3.0. Results decay to zero
for r/b> 2λ, where λ= a/b.

λ B2 B2 (Mulder & Frenkel 1985)

1 4 4
1.25 4.0533 4.0534
1.5 4.1783 —
2.0 4.5383 4.5385
2.5 4.9750 —
2.75 5.2103 5.2107
3.0 5.4534 5.4537
3.5 5.9569 —

TABLE 1. Second virial coefficients for spheroidal particles.

orientation-averaged conditional probability in (3.4) is needed in the hydrodynamic
renormalization procedure below.

A plot of Pp(x0 + r|x0) for values of λ of 1.25, 2.0 and 3.0 is given in figure 1.
For a dilute suspension of spherical particles, for which b = a, the function plotted,
1−Pp/n, would fall vertically from 1.0 to zero at r= 2b. For hard spheroidal particles,
it is still impossible for two particle centres to be closer than 2b, but in the region
2b 6 r 6 2a, some orientations are permitted and others are excluded because they
correspond to particle overlap. All of the curves become zero for r > 2λb, but for
spheroids the decay is gradual rather than abrupt as it is for spherical particles.

Evaluation of the integral in (3.4) requires an efficient method for determining when
two spheroidal particles overlap. For two identical spheroids, Perram & Wertheim
(1985) propose such an algorithm that is computationally efficient and accurate. They
define a scalar ‘contact function’ based on the positions and orientations of the
particles. The maximum value of the contact function is shown to be unique, and
when it is less than one they show that the particles must overlap. We calculated the
maximum value numerically using Brent’s method (Press et al. 1989), and evaluated
the integrals in (3.4) numerically by using the trapezoid rule. Our results for B2,
normalized by the particle volume, agree with those in table 1 of the paper by
Mulder & Frenkel (1985), and are shown in our table 1.
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3.3. Far-field interactions between spheroidal particles
Extending the dilute-limit, two-particle ensemble average for sedimentation velocity to
account for orientation, the equation for prolate spheroidal particles corresponding to
(2.10) is

Up = Up,0 +

∫
r

∫
Ω0

∫
Ω1

[Up(x0, Ω0, x0 + r, Ω1)−Up,0]

×Pp(x0 + r, Ω1|x0, Ω0) dΩ0 dΩ1 dr. (3.6)

Here, the orientations are accounted for explicitly through their two orientation angles,
represented by Ω0 and Ω1, and a subscript ‘p’ indicates a quantity for a spheroidal,
rather than a spherical, particle. The overbar on Up,0 in (3.6) implies an orientation
average over an isolated particle. The relation between volume fraction and number
density for the spheroidal particles comparable to (2.11) is

φ = 4
3πb2an. (3.7)

Because we consider two-particle interactions only, we require that the volume fraction
be low, φ�1. However, for elongated particles with large aspect ratio λ�1, the more
stringent requirement that φλ2

� 1 must also be satisfied.
As the velocity disturbance for any particle, regardless of shape, is given by

the point-force disturbance J · F (cf. (2.14)) at positions far from it, two-particle
interactions for spheroids must have a slowly decaying 1/r interaction just as is
present with spherical particles. Renormalization is therefore required. However, the
precise nature of how to achieve it depends on the detailed nature of the two-particle
interactions. In particular, the 1/r3 interaction term for spherical particles is shape
dependent, and a comparable term for non-spherical particles must therefore likewise
be shape dependent.

3.3.1. First-reflection interactions between spheroidal particles
The low-Reynolds-number disturbance velocity caused by isolated prolate spheroidal

particles, and interactions between two such particles, have been of interest for some
time, and results for large separations and specific configurations were obtained
by Wakaya (1965) and Gluckman et al. (1971), among others. For our purposes
the paper by Kim (1985), which relies heavily on the contributions of Chwang &
Wu (1975, 1976), is particularly useful. With it we can evaluate the form of all
non-convergent far-field interactions between two spheroidal particles, permitting
selection of a suitable method of renormalization. For spherical particles these
non-convergent interactions are given in (2.16), and Kim (1985) provides the
corresponding ‘first-reflection’ result for spheroids. Stresslet-level interactions, or
the ‘second reflection’ for distant particles, are also very useful in permitting the
longest-range convergent interactions to be accounted for analytically.

The relation between the force F and velocity Up,0 of an isolated spheroidal particle
is given by

Up,0 =
F

6πηa
·

[
1

XA
dd+

1
YA
(I − dd)

]
, (3.8)

where the parameters XA and YA are (Kim & Karrila 1991)

XA
=

8
3
ε3

[
−2ε + (1+ ε2) ln

(
1+ ε
1− ε

)]−1

(3.9)
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and

YA
=

16
3
ε3

[
2ε + (3ε2

− 1) ln
(

1+ ε
1− ε

)]−1

. (3.10)

Here, ε is the spheroid eccentricity, related to the aspect ratio λ= a/b by

ε = [1− λ−2
]

1/2. (3.11)

For diffusion over time scales long enough that the isolated particle samples all
orientations, an isotropic mobility relates the particle force and velocity. Averaging
(3.8) over all possible orientations yields

Up,0 =
F

6πηa

(
1
3

1
XA
+

2
3

1
YA

)
(3.12)

from which the average mobility in (2.2) in the limit φ→ 0 follows directly.
The fluid velocity disturbance up at position x caused by an isolated spheroid with

centre at x1 that is subject to a force F is given by (Kim 1985)

up(x, x1)=F ·
∫ k

−k

dξ
2εa

[
1+ (ε2a2

− ξ 2)
1− ε2

4ε2
∇

2

]
J(x− ξ1)

8πη
dξ, (3.13)

where k = εa. As shown in figure 2, in (3.13) ξ1 is a position along the axis of
symmetry of the particle, and the integration extends from one focus to the other. This
result corresponds to u in (2.13) and (2.14) for an isolated sphere, and it is particularly
interesting to compare with (2.14). Equation (2.14) shows that the velocity disturbance
from a sphere subject to a force F is a point-force velocity disturbance J ·F added to
a quadrupole contribution proportional to ∇2J. Equation (3.1) has the same structure,
but the disturbance velocity is contributed by a line distribution of point forces and
quadrupoles.

As discussed by Kim (1985), the first-reflection description of the effect of one
spheroidal particle’s motion on a second particle, corresponding to (2.12) with (2.13)
or (2.16) for spheres, is given by

U(1)
=

F
8πη
·

∫ k

−k

dξ0

2k

∫ k

−k

dξ1

2k

[
1+ (k2

− ξ 2
0 )
(1− e2)

4e2
∇

2

+(k2
− ξ 2

1 )
(1− e2)

4e2
∇

2

]
J(x)|x=y0−y1

. (3.14)

Equation (3.14) describes the far-field effect of a spheroid at position x1 on a second,
identical, test spheroid at x0. Positions along the axes of symmetry of the spheroids
are given by the vectors y1 and y0, respectively. The vectors from a particle centre to
a point along the axis of symmetry of the same particle are given by

ξi = yi − xi, (3.15)

where i = 0 for the test particle and i = 1 for the other particle. The magnitudes of
distance along the axes are then ξ0= |ξ0− x0| for the particle at x0 and ξ1= |ξ1− x1|

for the particle at x1. The two integrations proceed from point to point along the
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≈0

≈1

y1 = X1 + ≈1

y 0 =
 X 0 

+ ≈ 0

X1

O

X0

FIGURE 2. Schematic diagram of the two spheroidal particles with centres at x0 (the test
particle) and x1. A line along the axis of symmetry extends between the foci, from ξi=−k
to ξi =+k, where i= 0 or i= 1, k= aε and ξi = |ξi|.

particle axes, from one focus at k = −aε to the other at k = +aε. The force F can
be related to the velocity of an isolated particle upon which it acts by using (3.8).

When the distance between two particles is large compared to their long dimension
a, r = |x0 − x1| � a, the contributions from one point along the particle axis
asymptotically approaches those from other points. Thus a far-field simplification
to (3.13) can be obtained by using Taylor expansions of the Oseen tensor J about
x0 − x1, with the corrections being caused by the separation between points on the
axes and the particle centres,

(y0 − y1)− (x0 − x1)= ξ0 − ξ1. (3.16)

Then the expansion is

J(y0 − y1) ≈ J(x0 − x1)+ (ξ0 − ξ1) · ∇J|x0−x1

+
1
2
(ξ0 − ξ1)(ξ0 − ξ1) :∇∇J|x0−x1 + · · · (3.17)

Substitution of (3.17) into the first-reflection expression (3.14) yields a result in which
the particle orientations are only present in the vectors ξ0 − ξ1.

Since far-field approximations are applicable when the particles are well separated,
r> 2a, the interacting particles are free to sample all possible orientations. The result
obtained by substituting (3.17) into (3.14) can therefore be simplified by averaging
over all particle orientations, using that

ξ0 − ξ1 = ξ0 − ξ1 = 0 (3.18)

and

(ξ0 − ξ1)(ξ0 − ξ1)=
1
3(ξ

2
0 + ξ

2
1 )I. (3.19)

In addition, the Oseen tensor and its gradients are evaluated at the particle centres, and
may be removed from the integrals. Substitution of (3.17) into (3.14), simplification
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of the result using (3.18) and (3.19), and doing the integrations, yields the result

U(1)
=F1 ·

[
1+

b2

3

(
1+
λ2ε2

3

)
∇

2

]
J(x)|x=x0−x1 . (3.20)

Comparison of (3.20) with (2.16) shows that, in the far-field limit, the orientation-
averaged interaction between prolate spheroids is asymptotically equivalent to that
between spheres with radii bR, where

b2
R = b2

[1+ (1/3)(λε)2] (3.21)

or, equivalently, using (3.11),

bR = b[1+ (1/3)(λ2
− 1)]1/2. (3.22)

If λ = 1 and ε = 0, the particles are interacting spheres, and (3.20) is equivalent to
(2.16) for two equal spheres with radii equal to a or b.

Although the diffusing species are prolate spheroids, all that is required for
renormalization is entities that undergo the same far-field interactions, and therefore
we choose to renormalize the spheroid interactions using spheres with radius bR.
The renormalization suspension comprised of spheres has the same number density
as the actual suspension of prolate spheroidal particles, and each sphere in the
renormalization suspension is subjected to the same force as one of the prolate
spheroidal particles. In isolation their sedimentation velocity is therefore

UR =
F

6πµbR
. (3.23)

The velocity disturbance from one of the renormalization spheres is uR, and in
isolation can be evaluated with either (2.13) or (2.14), with the radius a replaced
by bR.

3.3.2. Second-reflection interactions between spheroidal particles
Equation (3.14) describes how the velocity disturbance from one spheroidal particle,

say Particle 1 at x1, calculated as if it were the only particle, affects the velocity of
the test particle at x0, or the ‘first reflection’. The next level of interaction, the second
reflection, accounts for the fact that the presence of the test particle at x0 alters the
stress distribution on the surface of Particle 1. That change in the surface stress gives
rise to a stresslet velocity disturbance that reflects back and alters the velocity of the
test particle. The slowest decaying stresslet disturbance decays as 1/r4, rather than 1/r
or 1/r3 as is the case with the first-reflection terms.

Although interactions to the level of the first reflection, as given by (3.14), are all
that is required to renormalize the sedimentation problem, it is very helpful to have
the slowest decaying portion of the second-reflection contribution in analytical form.
Upon integration over three-dimensional space, the stresslet interaction that decays as
1/r4 is multiplied by r2, and therefore has a significant impact on the sedimentation
velocity, even for regions far from the test particle where numerical calculation of
the interaction is computationally costly. In the calculation by Batchelor (1972),
the asymptotic result for this second reflection is used to account for two-sphere
interactions for which r > 8a, and yields a contribution of −0.47φU0 to the overall
total (from W) of −1.55φU0.
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We therefore found it convenient, even necessary, to obtain the corresponding
asymptotic result for prolate spheroidal particles. Since it is far-field interactions that
are required, only the orientation-averaged interaction is needed, and all orientations
are accessible because the separation is greater than 2a. To obtain our results, we
use somewhat lengthy expressions derived by Kim (1985), that simplify considerably
when orientation averaged and only the slowest decaying interaction is required.

The stresslet on Particle 1, located at x1 with orientation d1 is, in indicial notation,

S(1)1,ij

8πη
=

[
−

1
2
α5

(
d1,id1,j −

1
3
δij

)(
d1,kd1,` −

1
3
δk`

)
−

1
4
α∗(d1,iδjkd1,` + d1,iδj`d1,k + δi`d1,jd1,kδikd1,jd1,` − 4d1,id1,jd1,kd1,`)

−
1
2
α4 (δikδj` + δi`δjk + δijd1,kd1,` + d1,id1,jd1,kd1,`

−d1,iδjkd1,` − d1,iδj`d1,k − δi`d1,jd1,k − δikd1,jd1,`)
]

×

∫ k

−k
(k2
− ξ 2

1 )E0,k`(ξ1) dξ1 −
γ ∗

4
(d1,iεjk`d1,` + d1,jεik`d1,`)

×

∫ k

−k
(k2
− ξ 2

1 )[∇× up,0(ξ1)k − 2ω(1)1,k] dξ1. (3.24)

In (3.24), S(1)1 is the stresslet on the particle at x1 caused by the velocity disturbance
from the test particle at x0. The stresslet forms in response to the rate of strain Ep
contributed by the test particle,

Ep =
1
2(∇up,0 +∇ut

p,0), (3.25)

integrated at points a distance ξ1 from x1 along the axis of symmetry of Particle 1. In
the derivation of Kim (1985), there is an additional contribution from ∇2Ep that has
been omitted here because it decays faster than Ep.

The parameter γ ∗ in (3.24) is (Chwang & Wu 1975)

γ ∗ = γ3 − γ
′

3, (3.26)

where

γ3 = (1− ε2)

[
−2ε + (1+ ε2) ln

(
1+ ε
1− ε

)]−1

(3.27)

and

γ ′3 = γ3(1− ε2)−1. (3.28)

The α parameters are (Chwang & Wu 1975)

α3 = γ3

2ε2

[
−2ε + ln

(
1+ ε
1− ε

)]
[

2ε(2ε2 − 3)+ 3(1− ε2) ln
(

1+ ε
1− ε

)] , (3.29)
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α′3 = γ
′

3

ε2

[
−2ε + (1− ε2) ln

(
1+ ε
1− ε

)]
[

2ε(2ε2 − 3)+ 3(1− ε2) ln
(

1+ ε
1− ε

)] , (3.30)

α∗ = α3 − α
′

3, (3.31)

α4 = 2ε2(1− ε2)

[
2ε(3− 5ε2)− 3(1− ε2)2 ln

(
1+ ε
1− ε

)]−1

, (3.32)

and

α5 = ε
2

[
6ε − (3− ε2) ln

(
1+ ε
1− ε

)]−1

. (3.33)

For reference below, we note that for spherical particles, the eccentricity vanishes,
ε→ 0, and in that limit

γ ∗ =− 3
8ε , (3.34)

α4 =−
5

8ε3 , (3.35)

α5 =−
15
8ε3 , (3.36)

and

α∗ =− 5
4ε3 . (3.37)

These results are useful for making comparison with known results for spheres.
To average (3.24) over the possible orientations of Particle 1, we use that

dd= 1
3 I (3.38)

and, in indicial notation,

didjdkd` = 1
15(δijδk` + δikδj` + δi`δkj), (3.39)

where overbars again indicate averaging over orientation. In addition, the rotational
velocity ω1 in the last integral of (3.24) is given by (see Kim (1985), equation [3.11],
noting changes to notation)

ω1 =
3

8(ae)3

∫ k

−k
(k2
− ξ 2

1 )∇× up,0(ξ1) dξ1

+
3

4k3

e2

2− e2

∫ k

−k
(k2
− ξ 2

1 )[d1 × (Ep(ξ1) · d1)] dξ1. (3.40)

To obtain only the slowest decaying contribution to S(1)1 , the vorticity terms ∇× up,0
in (3.24) and (3.40) may be evaluated at the particle centre ξ1 = 0, and the result is
independent of d1. Because the prefactor averages to zero,

d1,iεjk`d1,` + d1,jεik`d1,` = 0, (3.41)

those terms make no contribution to the orientation-averaged result.
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To obtain the slowest decaying interaction from the second reflection, it is sufficient
to neglect the variation of Ep,k` and ω1

1,i along the axis of Particle 1, permitting the
integrals over ξ1 to be evaluated analytically. After some algebra, one arrives at the
result

S
(1),∞
1,ij

8πη
=−

(
4
3
ε3a3

)
αE∞p,ij(x1), (3.42)

where

α =
α5

15
+
α∗

5
+

2
5
α4 −

(
ε2

2− ε2

)
γ ∗

5
. (3.43)

Equation (3.42) provides O(a2r−2), orientation-averaged contributions to the stresslet
on Particle 1 caused by the test particle. The superscript ∞ indicates that it is valid
in the far-field limit, because contributions from ∇2Ep have been neglected.

Substitution of the parameters in the limit the spheroids become spheres, ε → 0,
given in (3.34)–(3.37), yields the result

α =− 5
8ε3 (ε→ 0) (3.44)

and hence

S
(1),∞
1,ij =

20
3 πηa3E∞p,ij(x1) (ε→ 0), (3.45)

where Ep is the rate of strain caused by the test particle, evaluated at the centre
of Particle 1. Equation (3.45) is the well-known result that yields, for example, the
Einstein correction to the viscosity of a dilute suspension of hard spheres.

To proceed we evaluate E∞p using (3.25) and the O(ar−1) contribution to up,0 in
(3.13), which is

u∞p,0 =
1

8πη
J ·F. (3.46)

The result is

E∞p (r)=
1

8πη

[
1
r3

Ir−
3
r5

rrr
]
·F, (3.47)

where r= x1− x0. This contribution to the rate of strain at x1 causes a stresslet on the
particle there, that in turn yields a fluid velocity disturbance that alters the velocity Up
of the test particle by an amount (cf. equation [3.8] in Kim (1985))

U(2),∞
p =

[
1

8πη

∫ k

−k

dξ0

2k

∫ k

−k

3
4

dξ1

k3
(k2
− ξ 2

1 )

]
3
r5

rrr : S(1),∞1 . (3.48)

Substitution of the rate of strain E∞p from (3.47) into (3.42), and the resulting stresslet

S(1),∞1 into (3.48), and evaluating the integrals over ξ0 and ξ1, shows that

U(2),∞
p =

k3α

πη

rr
r6
·F. (3.49)
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λ ε λ2ε3α

1 0 0.625
1.25 0.60 0.627
1.5 0.745 0.631
2.0 0.866 0.646
2.5 0.917 0.668
3.0 0.943 0.697
3.5 0.958 0.731

TABLE 2. Values of λ2ε3α.

Equation (3.49) yields the slowest decaying effect of the orientation-averaged stresslet
induced on the particle at x1 on the motion of the test particle at x0. We note that,
to this level of approximation, the result is independent of the orientation of the test
particle.

To obtain the asymptotic form of the second reflection that accounts for the
combined effect of all distant particles, one can multiply by the number density n of
particles, and integrate over positions farther than a cutoff, say r > r∗. Then the net
far-field effect is

F ·
∫
Ω

∫
∞

r∗

nk3α

πη

rr
r6

r2 dr dΩ =F
∫
∞

r∗

4nk3α

3η
r−2 dr, (3.50)

where the expression on the right is obtained by doing the integration over the solid
angle Ω . In terms of the velocity of an isolated sphere with radius a, U0 =F/6πηa,
and using (3.7) and that k= aε, the far-field effect in (3.50) takes the form

U0φ

∫
∞

r∗
6(λ2ε3α)

a2

r2
d
( r

a

)
. (3.51)

In the limit the particles become spheres, ε→ 0, (3.44) can be used to find α. Under
those conditions, the integrals in (3.50) become

−U0φ

∫
∞

r∗

15a2

4r2
d
( r

a

)
, (3.52)

which is the result for spheres mentioned below (2.29), and is discussed below (5.7) in
Batchelor’s analysis for spherical particles (Batchelor 1972). Values of λ2ε3α at several
eccentricities of interest here are provided in table 2.

3.4. Renormalizing spheroidal particle interactions
With (3.20), it is clear that the non-convergent interactions in (3.6) for spheroidal
particles are interactions that decay as 1/r and 1/r3, just as is the case for spherical
particles. In fact, when rotationally averaged, the interactions between spheroidal
particles are asymptotically equivalent to those between spheres if the sphere
radius is chosen appropriately. We can therefore renormalize the integral in (3.6)
by applying (2.17) and (2.18), in which the average velocity and divergence of the
deviatoric stress are equated to zero, to a suspension of sedimenting spheres with
radii bR = b[1+ (1/3)(λε)2]1/2.
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To effect the renormalization, we first subtract the orientation-averaged, far-field two-
particle interaction U(1)

p from the complete two-particle interaction Up to define Wp as

Wp(x0, Ω0, x0 + r, Ω1)=Up(x0, Ω0, x0 + r, Ω1)−

[
1+

b2
R

6
∇

2

]
uR. (3.53)

Equation (3.53) is analogous to the definition of W in (2.26). The contribution Wp
contains only near-field interactions, because the slowly converging parts of the
interaction have been subtracted out. In a form analogous to (2.20), we write

Up =Up,0 +Vp +Wp (3.54)

in which the average of Wp is

Wp =Up,0 +

∫
r

∫
α

∫
Ω0

Wp(x0, Ω0, x0 + r, Ω1)Pp(x0 + r, Ω1|x0, Ω0) dΩ0 dΩ1 dr, (3.55)

the position and orientation of the test particle are denoted by x0 and Ω0, respectively,
and the position and orientation of the second particle by x0+ r and Ω1, respectively.
The single-particle, orientation-averaged sedimentation velocity Up,0 is given by (3.12).

The convergence difficulties lie in Vp, which we separate into two parts as in the
sphere renormalization problem,

Vp =V′p +V′′p. (3.56)

Here the interaction between two renormalization spheres that is proportional to uR in
(2.12) is contained in the V′p term, and the interaction that is proportional to ∇2uR, is
in the V′′p term. The detailed expression for V′p is

V′p =
∫

r

∫
α

∫
Ω0

uR(x0, x0 + r)Pp(x0 + r, Ω0 + α|x0, Ω0) dΩ0 dα dr, (3.57)

and for V′′p we have

V′′p =
∫

r

∫
α

∫
Ω0

b2
R

6
∇

2uR(x, x0 + r)|x=x0Pp(x0 + r, Ω0 + α|x0, Ω0) dΩ0 dα dr. (3.58)

Equations (3.57) and (3.58) contain non-convergent integrals and cannot be evaluated
without renormalization.

Since the velocity field uR corresponds to the perturbation from a renormalization
sphere and is independent of orientation, the integrals over orientation in (3.57) can be
applied only to the probability function Pp to yield Pp(x0 + r|x0) as in (3.4). Making
that simplification, and subtracting off the renormalization quantity from (2.17), in this
case given by

〈uR〉 =

∫
r
uR(x0, x0 + r)PR(x0 + r) dr= 0, (3.59)

with the probability distribution for the renormalization spheres PR = n, one obtains

V′p =
∫

r
uR(x0, x1)[Pp(x0 + r|x0)− n] dr. (3.60)
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Equation (3.60) is the renormalized result for V′p corresponding to (2.21) for spheres.
Comparing (3.60) and (2.21), one sees that in both cases an integral over all space

that is not convergent has been reduced to a convergent integral over a finite region.
However, in (2.21) the difference P(x0+ r|x0)− n is either equal to −n for r 6 2a or
zero for r> 2a. By contrast, in (3.60) there are three regions, as is evident in figure 1.
The orientation-averaged conditional probability Pp depends only on the distance r
from the test particle, and

Pp − n=

−n r< b,
g(r) b 6 r 6 2a,
0 r> 2a.

(3.61)

The function g(r) must be found numerically, and can be integrated to obtain the
second virial coefficient, as discussed below (3.5).

Incorporating (3.61) into (3.60) yields a more detailed result for V′p:

V′p = −
4
3
πb3nUR +UR

∫
b<r<bR

[Pp(x0 + r|x0)− n] dr

+

∫
bR<r<2a

uR(x0, x1)[Pp(x0 + r|x0)− n] dr. (3.62)

Equation (3.62) reflects the fact that, inside the renormalization spheres where r< bR,
the velocity is UR. The orientation-averaged conditional probability Pp is zero in the
region r< b, but is equal to a function of the radial distance r from the test particle
(cf. figure 1) in the region b< r< bR. Finally, in the region outside the radius of the
renormalization sphere, bR < r< 2a, the velocity uR is given by (2.13) (or 2.14) with
a replaced by bR, and the orientation-averaged probability is finite. Outside the region
where the particles could overlap, i.e. where r> 2a, the integrand is zero because the
number densities of the renormalization spheres and prolate spheroidal particles are
the same.

Recognizing that the angular integration of uR is given by∫
Ω

uR dΩ = 4πUR

(
bR

r

)
, (3.63)

the contribution V′p in (3.62) can be simplified to

V′p =−φUR

[
1
λ
+ 3λ2I1 + 3λ2b̂RI2

]
, (3.64)

where

I1 =

∫
1/λ<r̂<b̂R

[1− g(r̂)]r̂2 dr̂ (3.65)

and

I2 =

∫
b̂R<r̂<2

[1− g(r̂)]r̂ dr̂. (3.66)
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λ b̂R I1 I2

1 1 0 1.5
1.25 0.872 0.050 1.115
1.5 0.793 0.068 0.875
1.75 0.742 0.074 0.711
2.0 0.707 0.076 0.593
2.25 0.682 0.076 0.504
2.5 0.663 0.076 0.434
2.75 0.649 0.075 0.377
3.0 0.638 0.074 0.331
3.25 0.630 0.073 0.292
3.5 0.623 0.072 0.261

TABLE 3. Values of I1 and I2 from (3.65) and (3.66).

Here, the radial function g(r̂) is Pp/n, the dimensionless radial position r̂= r/a, and
the dimensionless radius of the renormalization spheres is b̂R=bR/a. Numerical results
for I1 and I2 are given in table 3.

We now turn to the evaluation of V′′p. The mean divergence of the deviatoric stress
must be zero in the renormalization suspension of sedimenting spheres, just as it is
in an actual suspension of sedimenting spheres. We therefore have

b2
R

6η
〈∇ · τR〉 =−

φR

2
UR +

b2
R

6η

∫
r>bR

∇ · τR(x0 + r)PR(x0 + r) dr= 0, (3.67)

where again PR(x0 + r) = n and φR = 4πnb3
R/3. We note that the evaluation of the

first term on the right side of (3.67) follows from the surface stress n · τR in exactly
the same way as in Batchelor’s original work (Batchelor 1972), except that in the
renormalization suspension the sphere radius is bR as given by (3.21), and the isolated-
sphere settling velocity UR must be calculated using the radius bR rather than a.

Doing the integrations over orientation in (3.58), and renormalizing by subtracting
(3.67), yields

V′′p =
φR

2
UR +

∫
b<r<bR

b2
R

6
∇

2uR(x, x0 + r)|x=x0Pp(x0 + r|x0) dr

+

∫
r>bR

b2
R

6
∇

2uR(x, x0 + r)|x=x0(Pp(x0 + r|x0)− n) dr. (3.68)

Equation (3.68) is the renormalized expression for V′′p, corresponding to the result
in (2.22) for spherical particles. Note that dr represents an integration over three-
dimensional space, and is equivalent to r2 dΩ dr, where Ω represents a solid angle
and dΩ = sin θ dθ dφ in the usual spherical coordinate system. As was also true in
Batchelor’s development (Batchelor 1972), the integral of ∇2uR over dΩ yields zero.
Since the orientation-averaged conditional probability Pp(x0 + r|x0) depends only on
radial position and not on orientation, for both of the integrals on the right side of
(3.68), the integration over Ω can be done without specifying Pp, and both integrals
yield zero. Consequently

V′′p =
φR

2
UR, (3.69)
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where the volume fraction φR of the renormalizing spheres is related to the actual
volume fraction φ of spheroidal particles by

φR =
φ

λ

[
1+

1
3
(λ2
− 1)

]3/2

. (3.70)

The result for V′′p for the spheroidal particles has the same form as that for a
suspension of spheres in (2.24), except that the radius bR of the spheres must be
found from (3.21).

4. Numerical calculation of two-particle interactions

Although far-field interactions and asymptotic results are sufficient to define a
renormalization scheme, to obtain quantitative results it is necessary to evaluate Wp

in (3.55). Hence, near-field interactions are required, and we calculate them by using
a numerical version of the singularity method of Chwang & Wu (1975, 1976). As
first proposed by Dabros (1985), we place point-force singularities inside the solid,
spheroidal particles, and calculate their strengths by imposing the no-slip condition
at points on their surfaces. A number of variations of this approach have been
proposed for different problems governed by linear and even nonlinear equations. In
the paragraphs below, we first describe our implementation of the singularity method,
and then how the results are used to perform the integrations needed to obtain Wp.

4.1. Singularity method
In our implementation, we place Ns point-force singularities in each particle, arranged
in circles centred on the axis of symmetry of the spheroidal particle. The singularities
are a distance δ from the surface, in the direction of an inward pointing normal
vector, as shown in figure 3. The circles are evenly spaced axially, except that
one extra circle of singularities is located near the end of each particle, midway
between the last regularly spaced circle and the particle tip, to more accurately
capture the surface curvature there. The strengths Fs of the point-force singularities
are determined by imposing no-slip conditions at Ns points on the particle surfaces.
Most calculations were done with 884 singularities in each particle (i.e. 21 circles
of 42 singularities, with an additional singularity at the two ends). For λ = 2.0 and
λ= 3.0, additional calculations were done with 580 singularities per particle, to verify
numerical convergence.

In past work, it has been common to monitor the least-squares error in order to
modify the magnitudes and placement of the singularities (Gotz 2005; Dabros 1985;
Zhou & Pozrikidis 1995). However, particularly for far-field interactions between
widely separated particles, adding singularities does not uniformly improve the
accuracy of the method if optimized in this manner (Gotz 2005). In the current
application, accurate calculation of far-field interactions is particularly important
because, during integration, they are weighted by r2. Even an error of 10−3 can
therefore become significant if, say, r = 6. In the far-field limit for our sedimenting
particles, the largest, slowest decaying interaction that remains after renormalization is
the stresslet interaction described by (3.51). We found matching results to this result
to be the most effective way to obtain the optimal separation distance δ between the
singularities and the nearest point on the particle surface. In all cases, the separation
was such that 0.045b 6 δ 6 0.23b.
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F1

F2

∂

r

d0

d1

x y

z

Ï

Œ

FIGURE 3. Schematic diagram of the two spheroidal particles with orientations d0 and
d1, respectively. The force applied to both particles is either F1 or F2. The vector r, at
angles Θ and Φ from d0, which is aligned with the z-axis, goes from the centre of the
test particle to Particle 1. Point-force singularities are a distance δ from the surface, and
are located in both particles, although only shown in Particle 2 for clarity.

To calculate sedimentation velocities, one must solve a ‘mobility problem’, in which
the forces on the particles are specified and the particle velocities determined. In our
singularity method, we therefore leave the particle translational velocities U0 and U1
and rotational velocities Ω0 and Ω1 as unknown variables. The extra equations that are
required come from the known, imposed force F, equal for both particles, and the fact
that the net torque on each particle is zero. Using the Oseen tensor from (2.15), the
mathematical equations to be solved are

2Ns∑
i=1

1
8πη

J(xj − xs,i) ·Fs,i −Up −Ωp × (xs,i − xp)= 0, (4.1)

with

Ns∑
i=1

Fs,i =F (4.2)

and

Ns∑
i=1

(xs,i − xp)×Fs,i = 0. (4.3)

Equation (4.1) is applied at Ns surface points xj on each particle, and (4.2) and
(4.3) provide the twelve (i.e. when applied to each particle) additional equations for
the unknown particle translational and rotational velocities, Up and Ωp, respectively.
Equations (4.1)–(4.3) are written for both particles. Hence, although for simplicity
it is not reflected in the notation, there are two values of the particle velocities Up,
rotational velocities Ωp, and particle centres xp. Both particles are subject to the
same force F in (4.2), and there is no applied torque acting on either particle, so that
the right side of (4.3) is zero. Equations (4.1)–(4.3) form a set of linear equations

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

99
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.998


Gradient diffusion of hard spheroidal particles 887 A1-25

1.0
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∞
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(b)
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2 4 6
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1.0
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1.4
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¬ = 3

¬ = 2

¬ = 2

¬ = 1.0001

¬ = 1.0001

FIGURE 4. Normalized sedimentation velocity Uz of two particles subjected to a force
−Fez in (a) axisymmetric (i.e. x1 − x0 = sez, d0 = d1 = ez) and (b) side by side (i.e.
x1 − x0 = sex, d0 = d1 = ey) configurations. Solid dots are from the singularity method,
× symbols (blue) are two-sphere results (Stimson & Jeffery 1926; Goldman et al. 1966;
Batchelor 1972), + symbols are collocation results (Gluckman et al. 1971) and solid
curves (red) are first-reflection results (Kim 1985).

that were solved by standard methods (Press et al. 1989) to obtain the singularity
strengths Fs, particle velocities Up and rotational velocities Ωp.

Results for particle velocities calculated from (4.1)–(4.3) are shown in figure 4(a,b).
Two different two-particle configurations are considered. In figure 4(a), the axis of
symmetry of each particle (i.e. the direction of d0 and d1) is in the z direction,
the two particles are separated by a distance sez, and the applied force is Fez. The
problem is therefore axisymmetric. Results from the singularity method used here
agree quantitatively both with the exact two-sphere results of Stimson & Jeffery
(1926) when λ= 1.0001, and with the collocation results of Gluckman et al. (1971)
when λ= 2.

In figure 4(b), the applied force is unchanged but the particles are separated in
the x-direction and d0 and d1 point in the y-direction. The singularity calculation
again shows quantitative agreement with exact two-sphere results (Goldman et al.
1966), except when s < 2.0049a, when lubrication interactions between the rotating
particles cause a slight, 1.6 % decrease in the sedimentation velocity (see e.g. table 1
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in Batchelor (1972)) that is not reproduced numerically. However, the range of that
interaction is so small that it has a negligible effect on the final result for the
sedimentation velocity. In both figures 4(a) and 4(b), far-field or ‘first-reflection’
results are shown as derived by Kim (1985), and they are in quantitative agreement
with our numerical calculations as the particle separation increases.

4.2. Numerical integration

To compute Wp in (3.55) using the two-particle solution, we must integrate over all
orientations of both particles, as well as the particle–particle separation r. However,
because of the linearity of the governing equations, the velocity of the test particle
at any orientation Ω0, after averaging over positions and orientations of the second
particle, can be expressed a superposition of motion along the particle axis d0 and
perpendicular to it. We therefore obtain Wp as an orientation average over two
problems. In the first, the imposed force (F1 in figure 3) on both particles is parallel
to d0, and all possible orientations and positions of the second particle are integrated
explicitly. This geometry is axisymmetric about the axis of the test particle, so that
the integration over Φ in figure 3 is trivial. In the second problem, the imposed force
(F2 in figure 3) on both particles is perpendicular to d0, and integration over Φ must
be done explicitly.

The complete, orientation-averaged mobility of the test particle is obtained using
results from these two directions. Just as in (3.12), one third of the complete result is
contributed by the axisymmetric problem in which the imposed force is F1, and two
thirds from the problem in which the imposed force is F2. If we use angle brackets
to describe the average effect of the second particle (Particle 1) on the motion of the
test particle, before averaging over orientation of the test particle, with subscripts i= 1
or i= 2 to indicate the case where the imposed force is F1 or F2, then

〈Wp,i〉 =

∫
r

∫
Ω1

Wp,i(x0, Ω0, x0 + r, Ω1)Pp(x0 + r, Ω1|x0, Ω0) dΩ1 dr (4.4)

and

Wp =
〈Wp,1〉

3
+

2〈Wp,2〉

3
. (4.5)

The integrals in (4.4) must be calculated separately for the axisymmetric and
non-axisymmetric cases. There are at most five integrations required. The particle
orientation Ω1 may be specified by two angles (θ1, φ1), and the integration over r
requires integration over the separation distance r, as well as the two angles (Θ, Φ)
that are defined by the relative positions of the particle centres at x0 and x1 (cf.
figure 3). For the axisymmetric problem, the integration over Φ is trivial, as stated
above.

We integrate over orientations Ω1 or, equivalently, (θ1, φ1) by using Lebedev
quadrature (Levedev & Laikov 1999; Gross & Atzberger 2018). Lebedev quadrature
is comparable to Gauss quadrature in two dimensions, but is more efficient over
the surface of a unit sphere because it avoids a congregation of Gauss points at the
poles (cf. figure 2 in Gross & Atzberger (2018)). Lebedev quadrature is described
by Abramowitz & Stegun (1972), although they do not use that name, and rather
group it with other Gauss quadrature schemes. Our integration was done with 26
and 38 orientations, with the larger value used to verify convergence. However, in
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practice only half of the orientations over a unit sphere need to be considered. For
our symmetric, spheroidal particles, a 26 point Lebedev quadrature requires only 13
orientations, because a particle with orientation d1 is indistinguishable from a particle
with orientation −d1.

For each orientation (θ1, φ1) and separation direction (Θ, Φ), the minimum
separation r = |r| at contact, rlim(θ1, φ1, Θ, Φ), was found by locating the point
of particle contact along the line between particle centres defined by (Θ, Φ). Then
the numerical integration over possible centre positions r was done over rlim 6 r 6 6a,
0 6 Θ 6 π and, when required, 0 6 Φ 6 2π. The integration over r was done in
sections, from rlim 6 r < 3a, 3a 6 r 6 4a, 4a 6 r 6 5a and 5a 6 r 6 6a, by 10
point Gauss quadrature in each section. The integrations over Θ and Φ (where
required) were done by Gauss quadrature with NΘ = NΦ = 10 points, respectively.
Convergence was verified assessed in all cases by increasing the number of Gauss
points from 10 to 20. Integration from r=6a to r→∞ was done using the asymptotic,
orientation-averaged second-reflection interaction given in (3.50). Transitioning to the
asymptotic result at a separation of 6a rather than the 8a used by Batchelor (1972)
was sufficient because the interactions decay faster for spheroidal particles than for
spheres (see e.g. figure 4).

If the right side of (4.4) is expressed in dimensionless form, the contributions 〈Wp,i〉

may be expressed as

〈Wp,i〉 =
Fi

6πµa
φλ2 3

4π
Ûc,i, (4.6)

where

Ûc,i =

∫
r̂

∫
Ω1

Ŵp,iP̂p dΩ1 dr̂. (4.7)

In (4.7),

Ŵp,i = |Wp,i|
6πηa
|F|

(4.8)

and P̂p has been normalized by the number density n. Consistent with (4.5), we define
Ûc as

Ûc = ÛN
c + Û∞c , (4.9)

where

ÛN
c =

ÛN
c,1

3
+

2ÛN
c,2

3
, (4.10)

the superscript ‘N’ indicates a near-field, numerical result for separations rlim 6 r 6 6a,
and the superscript ∞ denotes the contribution from r> 6a. In (4.6), (3.7) has been
used to convert the number density n to volume fraction φ. Numerical results for ÛN

c
are given in table 4.

To derive a complete result for the particle flux caused by the thermodynamic force
in (2.1), we combine the O(φ) contributions from (3.64), (3.69), (4.6)–(4.9), the single-
spheroid result from (3.12), and use (3.22) and (3.23). Defining a mobility factor ξm
for the spheroidal particles as

ξm =
1
3

[
1

XA
+

2
YA

]
, (4.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

99
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.998


887 A1-28 R. J. Phillips

λ −ÛN
c −Û∞c −Ûc

1 3.87 2.62 6.49
1.25 3.21 1.68 4.89
1.5 2.64 1.18 3.82
2.0 2.08 0.68 2.76
2.5 1.78 0.45 2.23
3.0 1.57 0.32 1.89
3.5 1.46 0.25 1.71

TABLE 4. Values of Ûc.

we then find for the volume flux Uφ:

Uφ = −ξmD0(1+ 2B2φ)

×

{
1−

φ

b̂Rξm

[
1
λ
+ 3λ2I1 + 3λ2b̂RI2

]
+ φ
λ2b̂2

R

2ξm
+

3λ2φ

4πξm
Ûc

}
∇φ. (4.12)

Here, D0 is the result given in (2.7), except that the dimension a is the half-length of
the long axis of the particle rather than a sphere radius. The product ξmD0, where
ξm > 1, is the Stokes–Einstein diffusivity with the mobility changed to reflect the
spheroidal nature of the particle, which has a higher mobility than a sphere with
radius a.

4.3. The diffusivity to O(φ)
The term on the right side of (4.12) is the concentration-dependent diffusion
coefficient D(φ, λ) multiplied by −∇φ. To O(φ), then,

D(φ, λ)= ξmD0(1+D1φ), (4.13)
D1 = 2B2 −Kf (4.14)

and

Kf =
1

b̂Rξm

[
1
λ
+ 3λ2I1 + 3λ2b̂RI2

]
−
λ2b̂2

R

2ξm
−

3λ2

4πξm
Ûc. (4.15)

For spherical particles, ξm = 1, λ = 1, b̂R = 1, I1 = 0, I2 = 3/2, B2 = 4 and
3Ûc/4π=−1.55, so that to O(φ) the gradient diffusion coefficient is D0(1+ 1.45φ).
Values of D1 for 1 6 λ6 3.5 are given in table 5.

Dogic et al. (2000) and Peterson (1964) have calculated sedimentation rates for
long rods, for which λ � 1. Dogic et al. (2000), in particular, use Batchelor’s
renormalization method, and obtain the result that to O(1/λ)

Kf ,rod =
6.4+ (2/9)λ
2 ln λ+ 0.63

λ. (4.16)

At λ = 3 and λ = 3.5, (4.16) yields Kf ,rod = 7.5 and Kf ,rod = 8.0, respectively.
Considering that the results derived here are for spheroidal particles, not long rods,
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λ Kf D1

1 6.55 1.45
1.25 6.62 1.49
1.5 6.71 1.65
2.0 7.07 2.01
2.5 7.51 2.44
3.0 7.93 2.98
3.5 8.41 3.50

TABLE 5. Values of Kf and D1.

these values are in reasonable agreement with those in table 5. With the second virial
coefficient B2, equation (4.16) could be used to predict the value of D1 at higher
aspect ratios than λ= 3.5. However, the two-particle calculation used here is subject
to the constraint that φλ2

� 1, making it unlikely that predictions for D1 at higher
values or λ> 3.5 could be observed in experiments.

The results for D(φ, λ) predicted from table 5 may be conveniently calculated by
means of the correlation

D(φ, λ)= ξmD0[1+ 1.45φ[1+ 0.259(λ− 1)+ 0.126(λ− 1)2]]. (4.17)

Equation (4.17) reproduces the results in table 5 to within 1 %, with the exception
of the result at λ = 1.25. That result falls approximately 4 % below the correlation
prediction, a difference that appears to be caused by the relatively modest increase in
B2 between λ = 1.0 and λ = 1.25, both in our calculations and those of Mulder &
Frenkel (1985), as shown in table 1.

5. Diffusion of bovine serum albumin
Although globular proteins are typically not hard spheres or hard spheroids, and

undergo non-hydrodynamic interactions, there is a long history of making inferences
about the nature of their interactions by comparing diffusion data with theoretical
predictions. As mentioned in the Introduction, bovine serum albumin (BSA) is a
protein that was for many years described as being, approximately, a prolate spheroid
with λ= 3.5 (Squire et al. 1968; Wright & Thompson 1975). For example, Wright &
Thompson (1975) give the dimensions as 2a= 14.1± 0.5 nm and 2b= 4.2± 0.4 nm.
More recently a smaller aspect ratio λ = 1.9 was proposed (Jachimska et al. 2008),
and the prolate shape itself has been questioned (Carter & Ho 1994; Ferrer et al.
2001; Leggio et al. 2008). It is therefore of interest to compare measurements
from static and dynamic light scattering with predictions from virial expansions and
diffusivities for hard, spheroidal particles with different aspect ratios.

To this end we make use of the experimental results of Meechai et al. (1999),
who report light-scattering results for three different BSA solutions at different pH
levels and ionic strengths. The solutions are (i) at the isoelectric point, pH = 4.7
and ionic strength I = 0.1; (ii) at pH = 7.4 and ionic strength I = 1.5; and (iii) at
pH= 7.4 and ionic strength I = 0.15. The corresponding Debye screening lengths for
the two cases where the BSA is charged are 0.25 nm and 0.8 nm for I = 1.5 and
I = 0.15, respectively. In their paper, Meechai et al. (1999) compare reduced light
scattering intensities KCM/Rθ with the prediction from the virial expansion for hard
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FIGURE 5. Reduced light-scattering intensities KCM/Rθ for BSA solutions from Meechai,
Jamieson & Blackwell (1999), plotted versus volume fraction φ. Experimental data in blue
correspond to the isoelectric point pH = 4.7, I = 0.1; in red to the conditions pH = 7.4,
I = 1.5; and in black to the conditions pH= 7.4, I = 0.15. Solid and dashed curves are
predictions from the hard-spheroid virial expansions for λ= 3.5 and λ= 1.9, respectively.

spheres, as given by (2.8), except that Meechai et al. (1999) include contributions
from the third and fourth virial coefficients. In the reduced scattering intensity, K is
an optical constant, C is the BSA concentration expressed as mass per unit volume,
M is the molecular weight of the BSA, and Rθ is the Rayleigh ratio. Values for these
parameters are given in the paper by Meechai et al. (1999).

In figure 5, the reduced scattering intensities for BSA solutions measured by
Meechai et al. (1999) are plotted, with predictions from virial expansions for hard
spheroidal BSA molecules instead of hard spheres. The scattering intensities are
related to the virial expansions by (Selim et al. 1993; Meechai et al. 1999)

KCM
Rθ
=

1
kT

(
∂π

∂n

)
P,T

= 1+ 2B2(λ)φ + 3B3(λ)φ
2
+ · · · (5.1)

The fourth virial coefficients for spheres are included by Meechai et al. (1999), but
are not available for prolate spheroidal solutes. The second and third coefficients for
hard spheroids can be found from table 1 in § 3.2 and by interpolation from table 1
in the paper by Mulder & Frenkel (1985). The dashed curve in figure 5 corresponds
to λ= 1.9 as proposed in Jachimska et al. (2008), and the solid curve corresponds to
λ= 3.5. The values of B2 and B3 are 4.47 and 11.84 for λ= 1.9, and 5.96 and 18.2
for λ= 3.5.

Both virial expansions are well above the measurements for BSA at its isoelectric
point, indicating an attraction between uncharged BSA molecules. The plots for
λ = 1.9 and λ = 3.5 lie close to, but slightly below, the data for BSA solutions at
pH= 7.4 and I = 1.5 and I = 0.15, respectively. It is noteworthy that the contribution
from the fourth virial term is almost certainly not negligible over the range of
volume fraction shown. The fourth virial coefficient for hard spheres is 18, yielding
a contribution of 72φ3. The second and third virial coefficients for spheroids are both
significantly larger than their counterparts for hard spheres, and it seems likely the
same would be true for the fourth coefficient. Including a contribution 4B4φ

3 would
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FIGURE 6. Normalized gradient diffusion coefficients D/D0 for BSA solutions from
Meechai et al. (1999), plotted versus volume fraction φ. Experimental data in blue
correspond to the isoelectric point pH = 4.7, I = 0.1; in red to the conditions pH = 7.4,
I = 1.5; and in black to the conditions pH= 7.4, I = 0.15. Solid and dashed curves are
predictions from (4.17) for λ= 3.5 and λ= 1.9, respectively.

slightly raise the positions of both the solid and dashed curves in figure 5. The virial
expansion for λ= 1.9 may therefore be considered to be in reasonable agreement with
the experimental data corresponding to pH= 7.4 and I = 1.5; the virial expansion for
λ= 3.5 may similarly be considered to be in reasonable agreement with the data for
pH= 7.4 and I = 0.15.

The gradient diffusion coefficients corresponding to the three cases, as reported by
Meechai et al. (1999), are plotted in figure 6, along with the prediction of (4.17). The
experimental data for BSA solutions at the isoelectric point decrease with increasing
concentration, which is consistent with the presence of an attraction, as inferred from
figure 5. Meechai et al. (1999) also conclude a long-range attraction is present at
those conditions. The predictions from (4.17), for both λ = 1.9 and λ = 3.5, are
in proximity to the diffusivities measured at pH = 7.4 and I = 0.15. The higher
ionic strength of I = 1.5, corresponding to a Debye screening length of only 0.25
nm, comparable to the diameter of a water molecule, is apparently insufficient to
counteract the attractive interaction. The fact that the higher aspect ratio of λ = 3.5
yields good agreement between theory and experiment for hard spheroids, both for
the virial expansions and diffusion coefficients, supports the contention that BSA
behaves hydrodynamically as a hard spheroid with the larger aspect ratio, at pH= 7.4
and I = 0.15.

6. Conclusion

The shape of a diffusing colloidal particle modifies the concentration dependence
of its collective, or gradient, diffusion coefficient. Hence, efforts at interpretation
of that concentration dependence without accounting for a non-spherical shape
can be misleading. For hard spheroidal particles, it is shown here that both the
second virial coefficient and sedimentation coefficient increase with the particle
aspect ratio. However, for modest aspect ratios, the increase in the virial coefficient
is greater, leading to an increase in the concentration dependence of the gradient
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diffusion coefficient. When the aspect ratio of the spheroid is increased from 1 to 3.5,
the coefficient D1 describing the concentration dependence increases by a factor of
approximately 2.4. Even when a diffusing macromolecule or colloidal particle is not
a hard spheroid, comparison with these predictions can yield useful information.
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