ON INDECOMPOSABLE DECOMPOSITIONS OF CS-MODULES

NGUYEN V. DUNG

(Received 26 April 1994; revised 14 November 1994)

Communicated by P. Schultz

Abstract

It is shown that, over any ring R, the direct sum $M = \bigoplus_{i \in I} M_i$ of uniform right R-modules M_i with local endomorphism rings is a CS-module if and only if every uniform submodule of M is essential in a direct summand of M and there does not exist an infinite sequence of non-isomorphic monomorphisms $M_{i_1} \stackrel{f_1}{\to} M_{i_2} \stackrel{f_2}{\to} \cdots \to M_{i_n} \stackrel{f_n}{\to} \cdots$, with distinct $i_n \in I$. As a consequence, any CS-module which is a direct sum of submodules with local endomorphism rings has the exchange property.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 16D70; secondary 16D50, 16L60.

1. Introduction

A module *M* is called a CS-module (or extending module) if every submodule of *M* is essential in a direct summand of *M*. CS-modules have been studied extensively in recent years (see for example [2, 3, 5, 7, 8, 12, 14, 15, 17, 18]), and it appears that several classical theorems on injective modules have natural generalizations for CS-modules. However, in some sense, the CS property is quite far from injectivity and several questions on CS-modules still remain unsolved. An interesting open question is to find necessary and sufficient conditions for a CS-module to have an indecomposable decomposition (see [14, Open problem 8, p. 106]). A very closely related question is to determine when a direct sum of indecomposable modules is a CS-module. The purpose of this paper is to settle this latter question in the case when each indecomposable summand has a local endomorphism ring.

More precisely, we prove that, over any ring R, the direct sum $M = \bigoplus_{i \in I} M_i$ of uniform right R-modules M_i with local endomorphism rings is a CS-module if and only if every uniform submodule of M is essential in a direct summand of M and there does not exist an infinite sequence $M_{i_1} \stackrel{f_1}{\to} M_{i_2} \stackrel{f_2}{\to} \cdots \to M_{i_n} \stackrel{f_n}{\to} \cdots$ of non-

^{© 1996} Australian Mathematical Society 0263-6115/96 \$A2.00 + 0.00

isomorphic monomorphisms f_n , with distinct $i_n \in I$. As a consequence, we deduce that if M is a CS-module which has an indecomposable decomposition $M = \bigoplus_{i \in I} M_i$, where each M_i has a local endomorphism ring, then this decomposition complements direct summands and M has the exchange property. A special case of this corollary was essentially observed earlier in Kamal and Müller [12, Theorem 12], where the ring was assumed to be right Noetherian.

There is another motivation for the paper. A well-known open problem asks whether a (left and right) perfect right self-injective ring R must be quasi-Frobenius, or briefly QF (if R is also left self-injective, the answer is "yes" by Kato [13] and Osofsky [16]). To prove that such R is QF is equivalent to showing that each projective right R-module is injective, that is any infinite direct sums of indecomposable injective projective right R-modules are also injective. This was the approach in Clark and Huynh [4] where it was proved that a semiperfect right self-injective ring R is QF if and only if every uniform submodule of any projective right R-module is contained in a finitely generated submodule. We will show that this characterization of QF-rings can be deduced as an immediate consequence of our results on CS-modules, but our method of proof is quite different.

2. Definitions and preliminaries

Throughout this paper, all rings are associative with identity and all modules are unitary right modules.

A submodule N of a module M is said to be *essential* in M if $N \cap K \neq 0$ for every nonzero submodule K of M. A nonzero module M is called *uniform* if every nonzero submodule of M is essential in M. A submodule C of M is called a *complement submodule* in M provided C has no proper essential extensions in M.

Following [3], a module M is called a CS-module if every complement submodule of M is a direct summand of M, or equivalently, every submodule of M is essential in a direct summand of M. It is obvious that an indecomposable module is CS if and only if it is uniform.

A non-empty family $\{A_i \mid i \in I\}$ of submodules of a module M is called a *local direct summand* of M if $\sum_{i \in I} A_i$ is direct and $\sum_{i \in F} A_i$ is a direct summand of M for any finite subset $F \subseteq I$. If, furthermore, $\sum_{i \in I} A_i$ is a direct summand of M, then we say that the local direct summand $\{A_i \mid i \in I\}$ is a *direct summand* of M. A family of modules $\{M_i \mid i \in I\}$ is called *locally semi-T-nilpotent* if, for any countable set of non-isomorphisms $\{f_n : M_{i_n} \to M_{i_{n+1}}\}$ with all i_n distinct in I, and for any $x \in M_{i_1}$, there exists k (depending on x) such that $f_k \cdots f_1(x) = 0$.

A module M is said to have the exchange property (Crawley and Jónsson [6]) if for any index set I, whenever $M \oplus N = \bigoplus_{i \in I} A_i$ for modules N and A_i , then

 $M \oplus N = M \oplus (\bigoplus_{i \in I} B_i)$ for submodules $B_i \subseteq A_i$. A decomposition $M = \bigoplus_{i \in I} M_i$ is said to *complement direct summands* (Anderson and Fuller [1]) if, for any direct summand A of M, there exists a subset $J \subseteq I$ such that $M = A \oplus (\bigoplus_{i \in I} M_i)$.

For the reader's convenience, we list now a number of known results which will be used in the next section,

LEMMA 2.1. An indecomposable module M has the exchange property if and only if End M is local.

PROOF. See Warfield [19, Proposition 1].

LEMMA 2.2. Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of modules with local endomorphism rings. Then the following are equivalent:

- (a) S = End M is a semi-regular ring, that is S/J(S) is von Neumann regular and the idempotents in S/J(S) can be lifted over J(S), where J(S) is the Jacobson radical of S;
- (b) Every local direct summand of M is a direct summand;
- (c) The decomposition $M = \bigoplus_{i \in I} M_i$ complements direct summands;
- (d) The family $\{M_i \mid i \in I\}$ is locally semi-T-nilpotent;
- (e) M has the exchange property;

PROOF. The equivalence of (a), (b), (c) and (d) is due to Harada [11]. The equivalence of (d) and (e) is due to Zimmermann-Huisgen and Zimmermann [22].

Let R be a ring and M a right R-module. For each subset X of M, we denote the annihilator of X in R by

$$r_R(X) = \{r \in R \mid xr = 0 \text{ for all } x \in X\}.$$

When there is no ambiguity, we write r(X) instead of $r_R(X)$.

The chain condition in the next lemma appeared as the condition (A_2) in Mohamed and Müller [14, p.4].

LEMMA 2.3. Let $\{M_i \mid i \in I\}$ be right R-modules. Then $\bigoplus_{i \in I} M_i$ is quasi-injective if and only if M_i is M_j -injective for all $i, j \in I$ and for every choice of $x_n \in M_{i_n}$, with distinct $i_n \in I$, such that $\bigcap_{n=1}^{\infty} r_R(x_n) \supseteq r_R(y)$ for some $y \in M_j$ $(j \in I)$, the ascending sequence $\bigcap_{k=n}^{\infty} r_R(x_k)$ $(n \in \mathbb{N})$ becomes stationary.

PROOF. See Mohamed and Müller [14, Proposition 1.18]

3. CS-modules which are direct sums of modules with local endomorphism rings

Our primary aim in this section is to establish necessary and sufficient conditions for a direct sum of modules with local endomorphism rings to be a CS-module. Since each indecomposable summand of a CS-module is uniform, it is enough to consider the direct sums of uniform modules with local endomorphism rings. The proof of our main theorem will be based on a number of preparatory lemmas.

LEMMA 3.1. Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of uniform modules with local endomorphism rings such that every uniform submodule of M is essential in a direct summand of M. Let j be an index in I, A a nonzero submodule of M_j and f: $A \to \bigoplus_{i \in I \setminus j} M_i$ a non-monomorphic homomorphism. Then f can be extended to a homomorphism $f^*: M_j \to \bigoplus_{i \in I \setminus j} M_i$.

PROOF. Define $A^* = \{a - f(a) \mid a \in A\}$. Then A^* is a submodule of M and clearly $A^* \cap (\bigoplus_{i \in I \setminus j} M_i) = 0$. Also, since $A^* \approx A$, A^* is uniform and so by hypothesis A^* is essential in a direct summand D of M. Then D is also uniform and, by [1, Theorem 12.6], D is isomorphic to some M_k ($k \in I$). Hence D has a local endomorphism ring, and it follows by Lemma 2.1 that D has the exchange property. There are submodules N_i of M_i such that $D \oplus (\bigoplus_{i \in I} N_i) = M$. Then, for each i, N_i is a direct summand of M_i , and since M_i is uniform, we get $N_i = M_i$ or $N_i = 0$. Hence it follows easily that there exists an index $t \in I$ such that $D \oplus (\bigoplus_{i \in I \setminus i} M_i) = \bigoplus_{i \in I} M_i$. Suppose that $t \neq j$. Then we have $M = D \oplus M_j \oplus (\bigoplus_{I \setminus i \cup j} M_i)$. So, in particular, we have $D \cap M_j = 0$. This implies that $A^* \cap M_j = 0$, and since M_j is uniform, $A^* \cap A = 0$. This means that $f(a) \neq 0$ for each nonzero $a \in A$, that is f is a monomorphism, a contradiction. Thus we have t = j, hence $M = D \oplus (\bigoplus_{i \in I \setminus j} M_i)$. Let p be the projection $D \oplus (\bigoplus_{i \in I \setminus j} M_i) \to \bigoplus_{i \in I \setminus j} M_i$, and we denote by f^* the restriction of p to M_j . Then clearly f^* extends $f: A \to \bigoplus_{i \in I \setminus j} M_i$ which proves the lemma.

LEMMA 3.2. Let R be any ring and $M = \bigoplus_{i \in I} M_i$ a direct sum of uniform right R-modules with local endomorphism rings. Assume further that every uniform submodule of M is essential in a direct summand of M. Then for any choice of elements $x_n \in M_{i_n}$, with distinct $i_n \in I$, such that $\bigcap_{n=1}^{\infty} r_R(x_n) \supseteq r_R(y)$ for some $y \in M_j$, $j \in I$, the ascending sequence $\bigcap_{n=m}^{\infty} r_R(x_n)$, $m = 1, 2, 3, \ldots$ becomes stationary.

PROOF. Without loss of generality, we may assume for simplicity that $I = \{0, 1, 2, ...\}$ and $M = \bigoplus_{i=0}^{\infty} M_i$. We shall write r(x) instead of $r_R(x)$, for $x \in M$. Choose any $x_i \in M_i$, i = 0, 1, 2, ..., such that $r(x_0) \subseteq r(x_i)$ for all i = 1, 2, We have to show that the sequence $K_n = \bigcap_{i=n}^{\infty} r(x_i)$, n = 1, 2, ..., becomes stationary.

Let m be the first natural number such that $r(x_0) \neq K_m = \bigcap_{i=m}^{\infty} r(x_i)$. Then we have

$$r(x_0) = \bigcap_{i=1}^{\infty} r(x_i) = \cdots = \bigcap_{i=m-1}^{\infty} r(x_i) \subsetneq \bigcap_{i=m}^{\infty} r(x_i) \subseteq \cdots.$$

Then, instead of x_0, x_1, x_2, \ldots , we shall consider the subsequence $x_0, x_m, x_{m+1}, \ldots$ Thus, without loss of generality, we may assume that m = 1, that is $r(x_0) \neq \bigcap_{i=1}^{\infty} r(x_i)$. We define a homomorphism

$$\varphi: x_0R \longrightarrow \prod_{i=1}^{\infty} M_i$$

by the following rule: for $t \in R$, $\varphi(x_0t) = (x_1t, x_2t, ...)$. If $x_0t = x_0t'$, then $x_it = x_it'$ for all $i \ge 1$, hence φ is a well-defined homomorphism.

Let $I = \bigcup_{n=1}^{\infty} K_n = \bigcup_{n=1}^{\infty} (\bigcap_{i=n}^{\infty} r(x_i))$; then I is a right ideal of R and x_0I is a submodule of x_0R . Let $\bar{\varphi}$ be the restriction of φ to x_0I . Take any $t \in I$; then $t \in K_n$ for some $n \ge 1$, hence $x_it = 0$ for each $i \ge n$. Thus

$$\bar{\varphi}(x_0t) = (x_1t, \dots, x_{n-1}t, 0, 0, 0, \dots) \in \bigoplus_{i=1}^{\infty} M_i,$$

so $\bar{\varphi}$ is a homomorphism from x_0I to $\bigoplus_{i=1}^{\infty}M_i$. Since $r(x_0) \neq \bigcap_{i=1}^{\infty}r(x_i)$ there exists a nonzero element $t' \in R$ such that $t' \in \bigcap_{i=1}^{\infty}r(x_i)$ but $t' \notin r(x_0)$. It follows that $x_0t' \neq 0$ but $\bar{\varphi}(t') = 0$, hence $\bar{\varphi}$ is not a monomorphism. By Lemma 3.1, $\bar{\varphi}$ can be extended to a homomorphism $\psi : M_0 \longrightarrow \bigoplus_{i=1}^{\infty}M_i$. Let $\bar{\psi}$ be the restriction of ψ to x_0R , we have

$$\varphi(x_0)I = \bar{\varphi}(x_0I) = \bar{\psi}(x_0I) \subseteq \bar{\psi}(x_0R) = \bar{\psi}(x_0)R \subseteq \bigoplus_{i=1}^m M_i$$

for some $m \ge 1$. But $\varphi(x_0)I = (x_1, \dots, x_n, \dots)I$, so it follows that $x_{m+1}I = x_{m+2}I = \dots = 0$. This means that $I \subseteq r(x_{m+1}) \cap r(x_{m+2}) \cap \dots = K_{m+1}$. Therefore $I = K_{m+1}$ which completes the proof.

LEMMA 3.3. Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of uniform modules with local endomorphism rings, and assume that every uniform submodule of M is essential in a direct summand of M. Then for any infinite sequence of non-monomorphisms f_n

$$M_{i_1} \stackrel{f_1}{\rightarrow} M_{i_2} \stackrel{f_2}{\rightarrow} \cdots \rightarrow M_{i_n} \stackrel{f_n}{\rightarrow} \cdots$$

with distinct $i_n \in I$, and for any nonzero element $x_1 \in M_{i_1}$, there exists $m \ge 1$ such that $f_m f_{m-1} \cdots f_1(x_1) = 0$.

PROOF. Take any nonzero element $x_1 \in M_{i_1}$ and put $x_n = f_{n-1} \cdots f_1(x_1)$, for $n \geq 2$. Then $x_n \in M_{i_n}$ and clearly $r(x_1) \subseteq r(x_2) \subseteq \cdots \subseteq r(x_n) \subseteq \cdots$. Since

 $r(x_n) = \bigcap_{i=n}^{\infty} r(x_i)$, it follows by Lemma 3.2 that this ascending sequence must become stationary. Thus there exists $m \ge 1$ such that $r(x_m) = r(x_{m+1})$, that is $r(x_m) = r(f_m(x_m))$. This means that $x_m t = 0$ for $t \in R$ if and only if $f_m(x_m t) = 0$. Let \bar{f}_m be the restriction of f_m to $x_m R$; then \bar{f}_m is a monomorphism. Suppose that $x_m R \ne 0$. Then because M_m is uniform, it follows that f_m is also a monomorphism, a contradiction to the hypothesis. Therefore we have $x_m R = 0$, that is $x_m = f_{m-1} \cdots f_1(x_1) = 0$.

We are now ready to give necessary and sufficient conditions for a direct sum of modules with local endomorphism rings to be a CS-module.

THEOREM 3.4. Let R be any ring and $M = \bigoplus M_i$ a direct sum of uniform right R-modules M_i with local endomorphism rings. Then the following conditions are equivalent:

(a) Every uniform submodule of M is essential in a direct summand of M, and there does not exist an infinite sequence of non-isomorphic monomorphisms f_n :

$$M_{i_1} \stackrel{f_1}{\rightarrow} M_{i_2} \stackrel{f_2}{\rightarrow} \cdots \rightarrow M_{i_n} \stackrel{f_n}{\rightarrow} \cdots$$

with all in distinct in I;

(b) M is a CS-module;

PROOF. (a) implies (b). Suppose that (a) holds. First we show that the family $\{M_i \mid i \in I\}$ is locally semi-T-nilpotent. Take any countable sequence i_1, i_2, i_3, \ldots of pairwise different elements of I and a sequence of non-isomorphisms f_n :

$$M_{i_1} \stackrel{f_1}{\rightarrow} M_{i_2} \stackrel{f_2}{\rightarrow} \cdots \rightarrow M_{i_n} \stackrel{f_n}{\rightarrow} \cdots$$

By hypothesis, there exist infinitely many f_n 's which are non-monomorphisms, say $f_{n(1)}, f_{n(2)}, \ldots, f_{n(k)}, \ldots$ with $n(1) < n(2) < \cdots < n(k) < \cdots$. Then we get an infinite sequence of non-monomorphisms $f_{n(k+1)-1} \cdots f_{n(k)} : M_{i_{n(k)}} \to M_{i_{n(k+1)}}$. Thus, by applying Lemma 3.3, we get easily that for any nonzero element $x \in M_{i_1}$, there exists $m \ge 1$ such that $f_m \cdots f_1(x_1) = 0$. Therefore, the family $\{M_i \mid i \in I\}$ is locally semi-T-nilpotent. By Lemma 2.2, every local direct summand of M is also a direct summand.

Now let A be any nonzero complement submodule of M. Any cyclic submodule of M has finite uniform dimension, so in particular A contains a nonzero uniform submodule U. Let U' be a maximal essential extension of U in A, then U' is uniform and a complement submodule of A. It follows by [3, Proposition 2.2] that U' is also a complement submodule of M. By Zorn's lemma, there exists a maximal local direct summand $\{V_{\alpha} \mid \alpha \in \Omega\}$ in A, where each V_{α} is an uniform summand of M. As we have shown above, $V = \bigoplus_{\alpha \in \Omega} V_{\alpha}$ is also a direct summand of M. Let $M = V \oplus M'$

for some submodule M', then $A = V \oplus (M' \cap A)$. If $M' \cap A \neq 0$, then since $M' \cap A$ is also a complement submodule of M by [3, Proposition 2.2], $M' \cap A$ contains a nonzero uniform summand of M which contradicts the maximality of the local direct summand $V = \bigoplus_{\alpha \in \Omega} V_{\alpha}$. Hence $M' \cap A = 0$, that is A = V is a direct summand of M. This proves that M is a CS-module.

(b) implies (a). Suppose that M is a CS-module. That every uniform submodule of M is essential in a direct summand is obvious by the definition of CS-modules. The latter part of (a) was already proved in Baba-Harada [2, Proposition 3], by using the factor categories technique (cf. [10, 11]). We include here a direct module-theoretic proof using an idea due to R. Wisbauer. Suppose that there exists an infinite sequence of non-isomorphic monomorphisms f_n :

$$M_{i_1} \stackrel{f_1}{\rightarrow} M_{i_2} \stackrel{f_2}{\rightarrow} \cdots \rightarrow M_{i_n} \stackrel{f_n}{\rightarrow} \cdots$$

with distinct i_n . For simplicity we may assume that $I = \{1, 2, 3, ...\}$ and write $i_n = n$. Define $M_n^* = \{x_n - f_n(x_n) \mid x_n \in M_n\}$. Then it is easy to check that $\sum_{i=1}^{\infty} M_i^*$ is direct and $(\bigoplus_{i=1}^n M_i^*) \oplus M_{n+1} = \bigoplus_{i=1}^{n+1} M_i$ for each n. Hence $M^* = \bigoplus_{i=1}^{\infty} M_i^*$ is a local direct summand of M. Since M is a CS-module, M^* is essential in a direct summand N of M and we have $M = N \oplus L$. Assume that $L \neq 0$. By [1, Theorem 12.6 (1)], L contains a nonzero indecomposable direct summand X. Let $L = Y \oplus X$, then $M = N \oplus Y \oplus X$. Since $N \oplus Y$ is a maximal direct summand in the sence of [1], by [1, Theorem 12.6 (2)] we have $M = N \oplus Y \oplus M_k$ for some M_k . This implies that $M_k \oplus M_k^*$ is a direct summand of M. However, it is obvious that $M_k \oplus M_k^*$ is essential in $M_k \oplus M_{k+1}$. Thus $M_k \oplus M_k^* = M_k \oplus M_{k+1}$ implying that f_k is epimorphic, hence an isomorphism, a contradiction. Therefore L = 0, that is M^* is essential in M. In particular, we have $M^* \cap M_1 \neq 0$. Take any nonzero element $x_1 \in M_1 \cap M^*$. Then

$$x_1 = y_1 - f_1(y_1) + y_2 - f_2(y_2) + \dots + y_n - f_n(y_n),$$

where $y_i \in M_i$, $1 \le i \le n$. It follows that $y_1 = x_1$, $y_i = f_{i-1}(y_{i-1})$ for $2 \le i \le n$ and $f_n(y_n) = 0$. Hence $f_n f_{n-1} \cdots f_1(x_1) = 0$ which is a contradiction because all f_1, \ldots, f_n are monomorphisms.

COROLLARY 3.5. Let R be any ring and $M = \bigoplus_{i \in I} M_i$ a direct sum of right R-modules M_i with local endomorphism rings. Assume that M is a CS-module. Then this decomposition complements direct summands and M has the exchange property. Moreover, in this case S = End M is a semi-regular ring.

PROOF. By the proof of Theorem 3.4 ((a) implies (b)), we have that if the CS-module M has the decomposition $M = \bigoplus_{i \in I} M_i$, where each M_i has a local endomorphism ring, then the family $\{M_i \mid i \in I\}$ is locally semi-T-nilpotent. Now the result follows from Lemma 2.2.

The result below is an easy consequence of Lemma 3.2.

COROLLARY 3.6. Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of indecomposable quasiinjective modules M_i . Then the following conditions are equivalent:

- (a) M is quasi-injective.
- (b) M_i is M_j -injective for all $i \neq j$ in I, and every uniform submodule of M is essential in a direct summand of M.

PROOF. (a) implies (b). This is immediate by the well-known facts that if A and B are modules with $A \oplus B$ quasi-injective, then A is B-injective and B is A-injective (see for example [14, Proposition 1.17]), and that each quasi-injective module is CS.

(b) implies (a). Suppose that (b) holds. Note that each M_i is uniform with a local endomorphism ring. By Lemma 3.2, for any choice of elements $x_n \in M_{i_n}$, $n = 1, 2, \ldots$, with distinct $i_n \in I$, such that $\bigcap_{n=1}^{\infty} r(x_n) \supseteq r(y)$ for some $y \in M_j$, $j \in I$, the ascending sequence $\bigcap_{n=m}^{\infty} r(x_n)$, $m = 1, 2, 3, \ldots$, becomes stationary. Now it follows by Lemma 2.3 that M is quasi-injective.

The next corollary generalizes the Clark-Huynh result in [4] which was mentioned in the Introduction.

COROLLARY 3.7. Let R be a semiperfect right self-injective ring. Then R is QF if and only if every uniform submodule of the free right R-module $R^{(\mathbb{N})}$ is contained in a finitely generated submodule of $R^{(\mathbb{N})}$.

PROOF. If R is QF then $R^{(\mathbb{N})}$ is injective, and so every uniform submodule U of $R^{(\mathbb{N})}$ is contained in an injective envelope A of U in $R^{(\mathbb{N})}$. Since A is indecomposable projective, A must be cyclic by [1, Proposition 27.10]. Conversely, suppose that R is semiperfect right self-injective, and consider the free right R-module $R^{(\mathbb{N})}$. Then $R^{(\mathbb{N})}$ can be decomposed as $R^{(\mathbb{N})} = \bigoplus_{i \in I} A_i$, where each A_i is an indecomposable injective right R-module. Let U be any uniform submodule of $R^{(\mathbb{N})}$, then by hypothesis, there is a finite subset $F \subset I$ such that $U \subseteq \bigoplus_{i \in F} A_i$. But $\bigoplus_{i \in F} A_i$ is injective, hence U is essential in a direct summand of $\bigoplus_{i \in F} A_i$, thus of $R^{(\mathbb{N})}$. By Corollary 3.6, we have that $R^{(\mathbb{N})}$ is quasi-injective, so $R^{(\mathbb{N})}$ is (R-) injective. Therefore R is a QF-ring (see for example [1, Theorems 25.1 and 31.9]).

As a further application of Theorem 3.4, we next give a criterion of when a ring R is right Σ -CS, that is any direct sum of copies of R_R is a CS-module. Right nonsingular right Σ -CS rings are precisely the right nonsingular rings over which nonsingular right modules are projective (see Goodearl [9, Chapter 5]). Right Σ -CS-rings in the general case were studied extensively by Oshiro (for example [15]) under the name

right co-H-rings (in honor of Harada). Fore more recent results on Σ -CS rings and modules we refer to Clark and Wisbauer [5], Dung and Smith [7].

A module M is called *continuous* if M is a CS-module and every submodule of M which is isomorphic to a direct summand of M is also a direct summand of M (see [14]).

COROLLARY 3.8. Let R be a ring with a finite set of orthogonal primitive idempotents e_1, \ldots, e_n . Then the following conditions are equivalent:

- (a) Each $e_i R$ $(1 \le i \le n)$ is a continuous right R-module, and every uniform submodule of $R_R^{(\mathbb{N})}$ is essential in a direct summand of $R_R^{(\mathbb{N})}$;
- (b) R is right Σ -CS;

PROOF. (a) implies (b). Assume (a). Note that each e_iR is uniform and has a local endomorphism ring (see [14, Proposition 3.5]). Consider the free module $R_R^{(N)}$ which can be decomposed as $R_R^{(N)} = \bigoplus_{j \in J} M_j$, where each M_j is isomorphic to some e_iR , $(1 \le i \le n)$. Suppose that there exists an infinite sequence of non-isomorphic monomorphisms f_R

$$M_{j_1} \stackrel{f_1}{\rightarrow} M_{j_2} \stackrel{f_2}{\rightarrow} \cdots \rightarrow M_{j_n} \stackrel{f_n}{\rightarrow} \cdots$$

Since among $\{M_j \mid j \in J\}$ there is only a finite number of non-isomorphic members, there are k and ℓ with $k < \ell$ such that $M_{j_k} \approx M_{j_\ell}$. Since M_{j_k} is indecomposable continuous, $f_{\ell-1} \dots f_k$ is a monomorphism $M_{j_k} \to M_{j_\ell}$, it follows that $f_{\ell-1} \dots f_k$ is an isomorphism, and this clearly implies that all $f_{\ell-1}, \dots, f_k$ are isomorphisms, a contradiction. Thus there does not exist an infinite sequence of non-isomorphic monomorphisms

$$M_{j_1} \stackrel{f_1}{\rightarrow} M_{j_2} \stackrel{f_2}{\rightarrow} \cdots \rightarrow M_{j_n} \stackrel{f_n}{\rightarrow} \cdots$$

By Theorem 3.4, we have that $R_R^{(\mathbb{N})}$ is a CS-module. Now the result follows from the fact that if the ring R is semiperfect and $R_R^{(\mathbb{N})}$ is CS, then R is right Σ -CS (see Clark and Wisbauer [5] or Vanaja [18]).

(b) implies (a). This follows from Oshiro [15, Lemma 3.7] (cf. Clark and Wisbauer [5, Theorem 2.6] for an alternative proof).

REMARK. The proof of Corollary 3.8 yields also Theorem 1 ((a) implies (c)) in Clark and Huynh [4] which states that a ring R is QF if (and only if) R is semiperfect right continuous such that $R_R^{(n)}$ is CS for each $n \ge 1$ and every uniform submodule of any projective right R-module is contained in a finitely generated submodule. In fact, under these hypotheses, the above proof shows that every free right R-module is CS, that is R is right Σ -CS. Since R is right continuous, we have $J(R) = Z(R_R)$,

where J(R) and $Z(R_R)$ are the Jacobson radical and the singular right ideal of R, respectively. By Oshiro [15, Theorem 4.3], we deduce that R is QF.

In view of Corollary 3.8, below we present an example of a semiperfect Noetherian ring R such that every uniform submodule of any projective right R-module P is essential in a direct summand of P, but R is not semiprimary, so in particular R is not right Σ -CS (see [15, Theorem 3.18]).

EXAMPLE 3.9. Let R be a (left and right) hereditary serial Noetherian semiprime ring with zero left and right socles. For the existence of such rings R we refer to Warfield [20, Theorems 5.11 and 5.14]. Clearly R is semiperfect, but not semiprimary. By [20, Theorem 4.6], every finitely generated nonsingular right R-module is projective. Since R is right nonsingular, this means that every finitely generated projective right R-module is a CS-module. Now let P be any projective right R-module and R a uniform submodule of R. By [1, Theorem 27.11], we have $R = \bigoplus_{i \in I} P_i$, where each R is is isomorphic to an indecomposable direct summand of R. It is easy to see that R can be imbedded into a finite direct sum R in particular R is finitely generated. Thus R is contained in a finite direct sum R in particular R is finitely generated. Thus R is essential in a direct summand of R which is a CS-module. Therefore R is essential in a direct summand of R and hence of R.

We conclude the paper with a result which shows that, under certain chain conditions on the ring R, there is a rather large class of CS right R-modules which have decompositions into indecomposable summands with local endomorphism rings. The proof is inspired by some ideas in Clark and Wisbauer [5]. Recall that a module M is said to be Σ -quasi-injective if any direct sum of copies of M is also quasi-injective, and it is well known that M is Σ -quasi-injective if and only if $M^{(N)}$ is quasi-injective.

THEOREM 3.10. Let R be a ring and M a finitely generated right R-module. Suppose that $M^{(\mathbb{N})}$ is a CS-module and R satisfies ACC on $r_R(X)$ for finite subsets X of M. Then M is a finite direct sum of indecomposable Σ -quasi-injective submodules.

PROOF. Since M can be decomposed as a finite direct sum of uniform submodules (see for example [14, Theorem 2.17 and Proposition 2.18]), we may assume, without loss of generality, that M is uniform, and we have to show that M is Σ -quasi-injective.

Since R satisfies ACC on $r_R(X)$ for finite subsets X of M, it follows that R has ACC on $r_R(a)$ for elements $a \in M^{(\mathbb{N})}$. Since $M^{(\mathbb{N})}$ is CS, by [14, Proposition 2.18] we have that every local direct summand of $M^{(\mathbb{N})}$ is also a direct summand. Next we show that $S = \operatorname{End} M$ is local. Let $a_1, a_2, \ldots, a_n, \ldots$ be any sequence of elements in S and consider the descending chain of principal left ideals of S

$$Sa_1 \supset Sa_2a_1 \supset \cdots \supset Sa_na_{n-1}\cdots a_1 \supset \cdots$$
.

Let $M^{(\mathbb{N})} \approx \bigoplus_{n=1}^{\infty} M_n$ with $M_n \approx M$ for each $n \geq 1$. We may consider a_n as a homomorphism from M_n to M_{n+1} . Define $M_n^* = \{x_n - a_n(x_n) \mid x_n \in M_n\}$. As in the proof of Theorem 3.4 ((b) implies (a)), we have that $\bigoplus_{n=1}^{\infty} M_n^*$ is a local direct summand of $M^{(\mathbb{N})}$, hence $\bigoplus_{n=1}^{\infty} M_n^*$ is a direct summand of $M^{(\mathbb{N})}$. Since M is finitely generated, by Wisbauer [21, 43.3], there exist a positive integer m and an element $h \in S$ such that $a_{m-1} \cdots a_1 = ha_m a_{m-1} \cdots a_1$. This implies that $Sa_{m-1} \cdots a_1 = Sa_m a_{m-1} \cdots a_1$. It follows that S satisfies DCC on principal left ideals, that is S is a right perfect ring. But M is indecomposable, hence S contains no nontrivial idempotents, so S is a local ring.

By hypothesis, M is a CS-module, so by Theorem 3.4 ((b) implies (a)), every monomorphism $g: M \to M$ is also an isomorphism. Since End M is local and $M \oplus M$ is CS, the above fact and [8, Lemma 3] show that M is M-injective, that is M is quasi-injective. By Corollary 3.6, we have that $M^{(\mathbb{N})}$ is quasi-injective, hence M is Σ -quasi-injective which completes the proof.

Acknowledgement

This work was supported by the National Basic Research Programme in Natural Sciences of Vietnam. The author would like to thank the referee for some helpful comments.

References

- [1] F. W. Anderson and K. R. Fuller, *Rings and categories of modules*, second edition, Graduate Texts in Math. 13 (Springer, Berlin, 1992).
- [2] Y. Baba and M. Harada, 'On almost M-projectives and almost M-injectives', Tsukuba J. Math. 14 (1990), 53–69.
- [3] A. W. Chatters and C. R. Hajarnavis, 'Rings in which every complement right ideal is a direct summand', *Quart. J. Math. Oxford Ser.* (2) 28 (1977), 61-80.
- [4] J. Clark and Dinh Van Huynh, 'When is a self-injective semiperfect ring quasi-Frobenius', J. Algebra 165 (1994), 531–542.
- [5] J. Clark and R. Wisbauer, 'Σ-extending modules', J. Pure Appl. Algebra 104 (1995), 19–32.
- [6] P. Crawley and B. Jónsson, 'Refinements for infinite direct decompositions of algebraic systems', Pacific J. Math. 14 (1964), 797–855.
- [7] Nguyen V. Dung and P. F. Smith, 'Σ-CS-modules', Comm. Algebra 22 (1994), 83–93.
- [8] —, 'Rings for which certain modules are CS', J. Pure Appl. Algebra 102 (1995), 273–287.
- [9] K. R. Goodearl, Ring theory (Marcel Dekker, New York, 1976).
- [10] M. Harada, 'On categories of indecomposable modules II', Osaka J. Math. 8 (1971), 309-321.
- [11] ——, Factor categories with applications to direct decomposition of modules, Lecture Notes in Pure and Applied Math. 88 (Marcel Dekker, New York, 1983).
- [12] M. A. Kamal and B. J. Müller, 'The structure of extending modules over Noetherian rings', Osaka J. Math. 25 (1988), 539–551.

- [13] T. Kato, 'Self-injective rings', Tôhoku Math. J. 19 (1967), 485–495.
- [14] S. H. Mohamed and B. J. Müller, Continuous and discrete modules, London Math. Soc. Lecture Note Series 147 (Cambridge University Press, Cambridge, 1990).
- [15] K. Oshiro, 'Lifting modules, extending modules and their applications to QF-rings', Hokkaido Math. J. 13 (1984), 310-338.
- [16] B. L. Osofsky, 'A generalization of quasi-Frobenius rings', J. Algebra 4 (1966), 373–387.
- [17] B. L. Osofsky and P. F. Smith, 'Cyclic modules whose quotients have all complement submodules direct summands', J. Algebra 139 (1991), 342–354.
- [18] N. Vanaja, 'Characterization of rings using extending and lifting modules', in: Ring theory Proceedings of the Denison conference 1992 (eds. S. K. Jain and S. T. Rizvi) (World Scientific, Singapore, 1993) pp. 329–342.
- [19] R. B. Warfield Jr., 'A Krull-Schmidt theorem for infinite sums of modules', *Proc. Amer. Math. Soc.* 22 (1969), 460–465.
- [20] ——, 'Serial rings and finitely presented modules', J. Algebra 37 (1975), 187–222.
- [21] R. Wisbauer, Foundations of module and ring theory (Gordon and Breach, Reading, 1991).
- [22] B. Zimmermann-Huisgen and W. Zimmermann, 'Classes of modules with the exchange property', J. Algebra 88 (1984), 416–434.

Institute of Mathematics P.O. Box 631 Bo Ho Hanoi Vietnam