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Abstract

It is shown that, over any ring R, the direct sum M = ffi,e/M; of uniform right R-modules A/, with
local endomorphism rings is a CS-module if and only if every uniform submodule of M is essential in a
direct summand of M and there does not exist an infinite sequence of non-isomorphic monomorphisms

M,! -4- Mj2 ->•••—»• Miri - > • • • , with distinct in e / . As a consequence, any CS-module which is a
direct sum of submodules with local endomorphism rings has the exchange property.

1991 Mathematics subject classification (Amer. Math. Soc): primary 16D70; secondary 16D50, 16L60.

1. Introduction

A module M is called a CS-module (or extending module) if every submodule of M
is essential in a direct summand of M. CS-modules have been studied extensively
in recent years (see for example [2, 3, 5, 7, 8, 12, 14, 15, 17, 18]), and it appears
that several classical theorems on injective modules have natural generalizations for
CS-modules. However, in some sense, the CS property is quite far from injectivity
and several questions on CS-modules still remain unsolved. An interesting open
question is to find necessary and sufficient conditions for a CS-module to have an
indecomposable decomposition (see [14, Open problem 8, p. 106]). A very closely
related question is to determine when a direct sum of indecomposable modules is a
CS-module. The purpose of this paper is to settle this latter question in the case when
each indecomposable summand has a local endomorphism ring.

More precisely, we prove that, over any ring R, the direct sum M = ©,e/M, of
uniform right R-modules M, with local endomorphism rings is a CS-module if and
only if every uniform submodule of M is essential in a direct summand of M and
there does not exist an infinite sequence Mit ->• M,2 —>•••-> Min —> • • • of non-
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isomorphic monomorphisms /„, with distinct /„ e / . As a consequence, we deduce
that if M is a CS-module which has an indecomposable decomposition M = ©,€/M,,
where each M, has a local endomorphism ring, then this decomposition complements
direct summands and M has the exchange property. A special case of this corollary
was essentially observed earlier in Kamal and Miiller [12, Theorem 12], where the
ring was assumed to be right Noetherian.

There is another motivation for the paper. A well-known open problem asks
whether a (left and right) perfect right self-injective ring R must be quasi-Frobenius,
or briefly QF (if R is also left self-injective, the answer is "yes" by Kato [13] and
Osofsky [16]). To prove that such R is QF is equivalent to showing that each projective
right R-module is injective, that is any infinite direct sums of indecomposable injective
projective right ^-modules are also injective. This was the approach in Clark and
Huynh [4] where it was proved that a semiperfect right self-injective ring R is QF if
and only if every uniform submodule of any projective right R-module is contained in
a finitely generated submodule. We will show that this characterization of QF-rings
can be deduced as an immediate consequence of our results on CS-modules, but our
method of proof is quite different.

2. Definitions and preliminaries

Throughout this paper, all rings are associative with identity and all modules are
unitary right modules.

A submodule Nofa module M is said to be essential in M if N D K ^ 0 for every
nonzero submodule K of M. A nonzero module M is called uniform if every nonzero
submodule of M is essential in M. A submodule C of M is called a complement
submodule in M provided C has no proper essential extensions in M.

Following [3], a module M is called a CS-module if every complement submodule
of M is a direct summand of M, or equivalently, every submodule of M is essential
in a direct summand of M. It is obvious that an indecomposable module is CS if and
only if it is uniform.

A non-empty family {A, \ i e /} of submodules of a module M is called a local
direct summand of M if 5Z,-6/ A,- is direct and 5Z,-6F A,- is a direct summand of M for
any finite subset F c / . If, furthermore, £ / e / A,- is a direct summand of M, then we
say that the local direct summand {A, | / e /} is a direct summand of M. A family
of modules {M,• \ i e /} is called locally semi-T-nilpotent if, for any countable set of
non-isomorphisms {/„ : Min —>• M,n+I} with all /„ distinct in / , and for any x € Af,-,,
there exists k (depending on x) such that fk- • • /j (x) — 0.

A module M is said to have the exchange property (Crawley and Jonsson [6])
if fot any index set I, whenever M © N = ©i6i At for modules N and A>, then
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M © N — M © (ffi/e/B,-) for submodules B, c A,-. A decomposition M = ©,£/M,
is said to complement direct summands (Anderson and Fuller [1]) if, for any direct
summand A of M, there exists a subset / c / such that M = A © (®,€;M,).

For the reader's convenience, we list now a number of known results which will
be used in the next section.

LEMMA 2.1. An indecomposable module M has the exchange property if and only
if End M is local.

PROOF. See Warfield [19, Proposition 1].

LEMMA 2.2. Let M = ©,e/ M, be a direct sum of modules with local endomorphism
rings. Then the following are equivalent:

(a) S — End M is a semi-regular ring, that is S/J(S) is von Neumann regular and
the idempotents in S/J(S) can be lifted over J(S), where J(S) is the Jacobson
radical of S;

(b) Every local direct summand of M is a direct summand;
(c) The decomposition M = ffi,e/M, complements direct summands;
(d) The family {M,•. \ i e /} is locally semi-T-nilpotent;
(e) M has the exchange property;

PROOF. The equivalence of (a), (b), (c) and (d) is due to Harada [11]. The equival-
ence of (d) and (e) is due to Zimmermann-Huisgen and Zimmermann [22].

Let R be a ring and M a right ^-module. For each subset X of M, we denote the
annihilator of X in R by

rR(X) = {r e R | xr = 0 for all x € X}.

When there is no ambiguity, we write r (X) instead of rR(X).
The chain condition in the next lemma appeared as the condition (A2) in Mohamed

and Miiller [14, p.4].

LEMMA 2.3. Let {M, \ i e 1} be right R-modules. Then ©,e/M, is quasi-injective
if and only if Mj is Mj-injectivefor all i, j € / and for every choice ofxn e Min, with
distinct in G /, such that <~\™=lrR(xn) 2 rR(y) for some y £ Mj (j € / ) , the ascending
sequence <^^LnrR(xk)(n € N) becomes stationary.

PROOF. See Mohamed and Miiller [14, Proposition 1.18]
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3. CS-modules which are direct sums of modules with local endomorphism
rings

Our primary aim in this section is to establish necessary and sufficient conditions
for a direct sum of modules with local endomorphism rings to be a CS-module. Since
each indecomposable summand of a CS-module is uniform, it is enough to consider
the direct sums of uniform modules with local endomorphism rings. The proof of our
main theorem will be based on a number of preparatory lemmas.

LEMMA 3.1. Let M = ©,e/M, be a direct sum of uniform modules with local
endomorphism rings such that every uniform submodule of M is essential in a direct
summand of M. Let j be an index in I, A a nonzero submodule of Mj and f :
A -> (Biei\jMj a non-monomorphic homomorphism. Then f can be extended to a
homomorphism f* : M, -> ©(-6/\y-M,-.

PROOF. Define A* = [a — f(a) | a e A}. Then A* is a submodule of M and clearly
A* fl (®,e/\;M,) = 0. Also, since A* « A, A* is uniform and so by hypothesis A* is
essential in a direct summand D of M. Then D is also uniform and, by [1, Theorem
12.6], D is isomorphic to some Mk (k e I). Hence D has a local endomorphism ring,
and it follows by Lemma 2.1 that D has the exchange property. There are submodules
Nt of Mi such that D © (©,6/N,) = M. Then, for each i, TV, is a direct summand
of Mt, and since Mt is uniform, we get Af, = M, or N, = 0. Hence it follows
easily that there exists an index t e I such that D © (ffi,e/\,M,) = ©,e/M,. Suppose
that t ^ j . Then we have M = D © Mj © (ffi/\,uyM,). So, in particular, we have
D f) Mj = 0. This implies that A* n Mj = 0, and since Mj is uniform, A* n A = 0.
This means that f(a) ^ 0 for each nonzero a € A, that is / is a monomorphism,
a contradiction. Thus we have t = j , hence M = D © (©jg/^M,). Let p be the
projection D © (©,£/\yM,) —»• ffi,€/\;M,, and we denote by / * the restriction of p to
Mj. Then clearly / * extends / : A —> ©,e/\yAf, which proves the lemma.

LEMMA 3.2. Lef /? fee any ring and M = ©,6/M, a direct sum of uniform right
R-modules with local endomorphism rings. Assume further that every uniform sub-
module of M is essential in a direct summand of M. Then for any choice of elements
xn e Min, with distinct in e / , such that r\™=jrR(xn) 2 rR{y)for some y e Mj, j e / ,
the ascending sequence P^LmrR(xn), m = 1, 2, 3 , . . . becomes stationary.

PROOF. Without loss of generality, we may assume for simplicity that / = {0, 1, 2,
. . . } and M = ©°^0M,. We shall write r(x) instead of rR(x), for x e M. Choose any
JC,- e Mi, i = 0, 1, 2 , . . . , such that r(xQ) c r(xt) for all i = 1, 2, We have to
show that the sequence Kn — n~ n r (^ , ) , n = 1, 2 , . . . , becomes stationary.
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Let m be the first natural number such that r(x0) ^ Km = H~mr(x,). Then we
have

r(x0) = n~,/-(*/) = • • • = n~m_,r(x,) c n~m/-(x,) c . . . .

Then, instead of x0, xu x2,..., we shall consider the subsequence x0, xm,xm+i,...
Thus, without loss of generality, we may assume that m — 1, that is r (x0) ^ n°^,r (*,).

We define a homomorphism

00

fp : x0R — • ]~[ M,

by the following rule: for t e R, <p(xot) = {xxt,x2t,...). If x0? = xot', then
x,r = x,f' for all / > 1, hence <p is a well-defined homomorphism.

Let / = LP^/sT,, = I C C n ^ r ( * , - ) ) ; then / is a right ideal of R and xol is a
submodule of x0R. Let <p be the restriction of (p to x0 / . Take any r e / ; then ? e Kn

for some « > 1, hence xtt = 0 for each i > n. Thus

= (jTif, . . . , *„_!*, 0, 0, 0, . . . ) € 0~,M,,

so ip is a homomorphism from x0/ to ©°^M,-. Since r(jc0) ^ n~jr(x,) there exists a
nonzero element t' e R such that t' e n^ j r t e ) but?' £ r(x0). It follows that xot' ^ 0
but ip{t') = 0, hence ^ is not a monomorphism. By Lemma 3.1, ip can be extended to
a homomorphism ^ : Mo —> i ^M, - . Let \{r be the restriction of TJT to J:0^ ' w e

p(jcb)/ = ^(x0/) = jr(xol) c f1

forsomew > 1. But^(x0)/ = (xu ... ,xn,...)/, so it follows that xm+1/ = xm+2l =
• • • = 0. This means that / c r(xm+l) D r(xm+2) n • • • = Jfm+1. Therefore / = Km+1

which completes the proof.

LEMMA 3.3. Let M = ©,£/M, be a direct sum of uniform modules with local
endomorphism rings, and assume that every uniform submodule of M is essential in
a direct summand of M. Then for any infinite sequence of non-monomorphisms /„

M /l , . h , . fn

,-, - » Mh - > • • • - > Min ->• • • •
with distinct in e 1, and for any nonzero element xt e A/,-,, there exists m > 1 5MC/I

that fmfm_x--- fx{x\) = 0.

PROOF. Take any nonzero element Xi e M,, and put xn = /„_! • • • / i (xi) , for
n > 2. Then xn e M,n and clearly r(xx) c r(x2) c ••• c r(xn) c •••. Since
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r{xn) = C\°^nr(Xj), it follows by Lemma 3.2 that this ascending sequence must
become stationary. Thus there exists m > 1 such that r(xm) = r(*m+1),thatisr(;cm) =
r(fm(xm)). This means that xmt = 0 for t e R if and only if fm(xmt) = 0. Let fm be
the restriction of fm to xmR; then fm is a monomorphism. Suppose that xm i? ^ 0. Then
because Mm is uniform, it follows that fm is also a monomorphism, a contradiction to
the hypothesis. Therefore we have xmR = 0, that is jcm = /m_i • • • /i(xj) = 0.

We are now ready to give necessary and sufficient conditions for a direct sum of
modules with local endomorphism rings to be a CS-module.

THEOREM 3.4. Let R be any ring and M = ©M, a direct sum of uniform right
R-modules M, with local endomorphism rings. Then the following conditions are
equivalent:

(a) Every uniform submodule of M is essential in a direct summand ofM, and there
does not exist an infinite sequence of non-isomorphic monomorphisms /„.-

M / i A Mh A • • • -* Min A • • •

with all in distinct in I;
(b) M is a CS-module;

PROOF, (a) implies (b). Suppose that (a) holds. First we show that the family
{Mt \ i e 1} is locally semi-T-nilpotent. Take any countable sequence /1( i2,13,. •.
of pairwise different elements of / and a sequence of non-isomorphisms /„:

I 1 f< I 1 f2 1 M f"
Mi{ —>• M , - 2 —*••••—>• Min —>• • • •

By hypothesis, there exist infinitely many /„ 's which are non-monomorphisms, say
/»(», fnQ), • • • - /»(*), • • • with «(1) < «(2) < < n(k) < •••. Then we get an
infinite sequence of non-monomorphisms fn(k+l)-i • • • fn(k) : Miri(t) —> M,n(t+1). Thus,
by applying Lemma 3.3, we get easily that for any nonzero element x e Mil, there
exists m > 1 such that fm • • • fx{xx) — 0. Therefore, the family {M, | / e /} is locally
semi-T-nilpotent. By Lemma 2.2, every local direct summand of M is also a direct
summand.

Now let A be any nonzero complement submodule of M. Any cyclic submodule
of M has finite uniform dimension, so in particular A contains a nonzero uniform
submodule U. Let U' be a maximal essential extension of U in A, then U' is uniform
and a complement submodule of A. It follows by [3, Proposition 2.2] that U' is also a
complement submodule of M. By Zorn's lemma, there exists a maximal local direct
summand [Va | a e £2} in A, where each Va is an uniform summand of M. As we
have shown above, V = ®BeQV,, is also a direct summand of M. Let M = V © M'
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for some submodule M', then A = V © (M' (1 A). If M' D A ^ 0, then since M' D A
is also a complement submodule of M by [3, Proposition 2.2], M' (~) A contains a
nonzero uniform summand of M which contradicts the maximality of the local direct
summand V = (Ba<=n Va. Hence M' D A = 0, that is A — V is a direct summand of
M. This proves that M is a CS-module.

(b) implies (a). Suppose that M is a CS-module. That every uniform submodule of
M is essential in a direct summand is obvious by the definition of CS-modules. The
latter part of (a) was already proved in Baba-Harada [2, Proposition 3], by using the
factor categories technique (cf. [10, 11]). We include here a direct module-theoretic
proof using an idea due to R. Wisbauer. Suppose that there exists an infinite sequence
of non-isomorphic monomorphisms /„:

Mh -4 M,2 4 • Mim h • • •

with distinct /„. For simplicity we may assume that / = {1, 2, 3,. . .} and write
/„ = n. Define M* — [xn — fn(xn) | xn e Mn}. Then it is easy to check that J^^M*
is direct and {&i=lM*) © Mn+l = ©"+/M, for each n. Hence M* = ©~,M; is a
local direct summand of M. Since M is a CS-module, M* is essential in a direct
summand N of M and we have M = Af © L. Assume that L ^ 0. By [1, Theorem
12.6 (1)], L contains a nonzero indecomposable direct summand X. Let L = Y © X,
then M = N © y © X. Since N © Y is a maximal direct summand in the sence of [1],
by [1, Theorem 12.6 (2)] we have M = N © Y © Mk for some Af*. This implies that
Mk © M£ is a direct summand of M. However, it is obvious that Mk © Ml is essential
in Mk © Mt+1. Thus Mk © A/A* = M* © Mk+1 implying that fk is epimorphic, hence
an isomorphism, a contradiction. Therefore L = 0, that is M* is essential in M. In
particular, we have M* n M, / 0. Take any nonzero element X\ € Mx D M*. Then

*1 = yi - / l ( j l ) + J2 - /2<j2) H + Vn - /„()>„),

where v,- e A/,, 1 < / < «. It follows that vi = ^i, v,- = fj-i(yi-i) for 2 < / < «
and /„(%) = 0. Hence /„/„_! • • • fi{xx) = 0 which is a contradiction because all
/i , . . . , / „ are monomorphisms.

COROLLARY 3.5. Let R be any ring and M = ffi,6/M, a direct sum of right R-
modules M, with local endomorphism rings. Assume that M is a CS-module. Then
this decomposition complements direct summands and M has the exchange property.
Moreover, in this case S — End M is a semi-regular ring.

PROOF. By the proof of Theorem 3.4 ((a) implies (b)), we have that if the CS-module
M has the decomposition M = ©,€/M, , where each M, has a local endomorphism
ring, then the family {M, | / e /} is locally semi-T-nilpotent. Now the result follows
from Lemma 2.2.
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The result below is an easy consequence of Lemma 3.2.

COROLLARY 3.6. Let M = ©ie/M, be a direct sum of indecomposable quasi-
injective modules M,. Then the following conditions are equivalent:

(a) M is quasi-injective.
(b) Mt is Mj-injective for all i ^ j in I, and every uniform submodule of M is

essential in a direct summand of M.

PROOF, (a) implies (b). This is immediate by the well-known facts that if A and B
are modules with A © B quasi-injective, then A is B-injective and B is A-injective
(see for example [14, Proposition 1.17]), and that each quasi-injective module is CS.

(b) implies (a). Suppose that (b) holds. Note that each Af, is uniform with a local
endomorphism ring. By Lemma 3.2, for any choice of elements xn e M,n, n =
1,2 , . . . , with distinct in € / , such that f^Lxr(xn) 2 r(y) for some y e Mj, j e 7,the
ascending sequence r\™=mr(xn), m = 1 , 2 , 3 , . . . , becomes stationary. Now it follows
by Lemma 2.3 that M is quasi-injective.

The next corollary generalizes the Clark-Huynh result in [4] which was mentioned
in the Introduction.

COROLLARY 3.7. Let R be a semiperfect right self-injective ring. Then R is QF if
and only if every uniform submodule of the free right R-module /?(N) is contained in
a finitely generated submodule <?//?(N).

PROOF. If R is QF then /?(N) is injective, and so every uniform submodule U of
R(N) is contained in an injective envelope A of U in /?(N>. Since A is indecomposable
projective, A must be cyclic by [1, Proposition 27.10]. Conversely, suppose that R is
semiperfect right self-injective, and consider the free right R-module RiN). Then R(M)

can be decomposed as /?<N) = ©,€/A,, where each A, is an indecomposable injective
right R-module. Let U be any uniform submodule of /?(N), then by hypothesis, there
is a finite subset F C / such that U c ©,-€FA,-. But ©,-eFA,- is injective, hence U is
essential in a direct summand of ®ieF A,:, thus of /?(N). By Corollary 3.6, we have that
fl(N) is quasi-injective, so /?(N) is (/?—) injective. Therefore R is a QF-ring (see for
example [1, Theorems 25.1 and 31.9]).

As a further application of Theorem 3.4, we next give a criterion of when a ring R is
right E-CS, that is any direct sum of copies of RR is a CS-module. Right nonsingular
right S-CS rings are precisely the right nonsingular rings over which nonsingular
right modules are projective (see Goodearl [9, Chapter 5]). Right E-CS-rings in the
general case were studied extensively by Oshiro (for example [15]) under the name
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right co-//-rings (in honor of Harada). Fore more recent results on S-CS rings and
modules we refer to Clark and Wisbauer [5], Dung and Smith [7].

A module M is called continuous if M is a CS-module and every submodule of M
which is isomorphic to a direct summand of M is also a direct summand of M (see
[14]).

COROLLARY 3.8. Let R be a ring with a finite set of orthogonal primitive idem-
potents ex,... ,en. Then the following conditions are equivalent:

(a) Each etR (1 < i < n) is a continuous right R-module, and every uniform
submodule of R^ is essential in a direct summand ofR^;

(b) R is right E-CS;

PROOF, (a) implies (b). Assume (a). Note that each etR is uniform and has a
local endomorphism ring (see [14, Proposition 3.5]). Consider the free module /?^N)

which can be decomposed as /?^N) = ®J€JMJ, where each Mj is isomorphic to some
etR, (1 < / < n). Suppose that there exists an infinite sequence of non-isomorphic
monomorphisms /„

h - * Mh ~* • Mi» " • • • • •

Since among {Mj \ j e /} there is only a finite number of non-isomorphic members,

there are k and I with k < I such that MJt RS MJr Since Mjk is indecomposable

continuous, fe-i... /* is a monomorphism Mjt -*• Mje, it follows that / { _ i . . . fk

is an isomorphism, and this clearly implies that all ft-U ..., fk are isomorphisms,

a contradiction. Thus there does not exist an infinite sequence of non-isomorphic

monomorphisms

j, -+ Mh-+ • Mjn - • • • • .

By Theorem 3.4, we have that R^ is a CS-module. Now the result follows from the
fact that if the ring R is semiperfect and /?^N> is CS, then R is right H-CS (see Clark
and Wisbauer [5] or Vanaja [18]).

(b) implies (a). This follows from Oshiro [15, Lemma 3.7] (cf. Clark and Wisbauer
[5, Theorem 2.6] for an alternative proof).

REMARK. The proof of Corollary 3.8 yields also Theorem 1 ((a) implies (c)) in
Clark and Huynh [4] which states that a ring R is QF if (and only if) R is semiperfect
right continuous such that R^ is CS for each n > 1 and every uniform submodule
of any projective right R-module is contained in a finitely generated submodule. In
fact, under these hypotheses, the above proof shows that every free right R-module
is CS, that is R is right E-CS. Since R is right continuous, we have J(R) = Z(RR),
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where /(/?) and Z(RR) are the Jacobson radical and the singular right ideal of R,
respectively. By Oshiro [15, Theorem 4.3], we deduce that R is QF.

In view of Corollary 3.8, below we present an example of a semiperfect Noetherian
ring R such that every uniform submodule of any projective right R-module P is
essential in a direct summand of P, but R is not semiprimary, so in particular R is not
right E-CS (see [15, Theorem 3.18]).

EXAMPLE 3.9. Let R be a (left and right) hereditary serial Noetherian semiprime
ring with zero left and right socles. For the existence of such rings R we refer to
Warfield [20, Theorems 5.11 and 5.14]. Clearly R is semiperfect, but not semiprimary.
By [20, Theorem 4.6], every finitely generated nonsingular right R-module is project-
ive. Since R is right nonsingular, this means that every finitely generated projective
right R-module is a CS-module. Now let P be any projective right /?-module and
A a uniform submodule of P. By [1, Theorem 27.11], we have P = ©,•<=/P,-, where
each Pi is isomorphic to an indecomposable direct summand of RR. It is easy to see
that A can be imbedded into a finite direct sum P,, ffi • • • © Pin. Since each Pik is
Noetherian, it follows that A is Noetherian, in particular A is finitely generated. Thus
A is contained in a finite direct sum Ph © • • • © Pjm which is a CS-module. Therefore
A is essential in a direct summand of P;i © • • • © Pjm, and hence of P.

We conclude the paper with a result which shows that, under certain chain condi-
tions on the ring R, there is a rather large class of CS right R -modules which have
decompositions into indecomposable summands with local endomorphism rings. The
proof is inspired by some ideas in Clark and Wisbauer [5]. Recall that a module M is
said to be T,-quasi-injective if any direct sum of copies of M is also quasi-injective,
and it is well known that M is E -quasi-injective if and only if M(N) is quasi-injective.

THEOREM 3.10. Let R be a ring and M a finitely generated right R-module. Sup-
pose that M<N) is a CS-module and R satisfies ACC on rR(X) for finite subsets X of
M. Then M is a finite direct sum of indecomposable E -quasi-injective submodules.

PROOF. Since M can be decomposed as a finite direct sum of uniform submodules
(see for example [14, Theorem 2.17 and Proposition 2.18]), we may assume, without
loss of generality, that M is uniform, and we have to show that M is E -quasi-injective.

Since R satisfies ACC on rR(X) for finite subsets X of M, it follows that R has
ACC on rR(a) for elements a € Mm. Since M(N) is CS, by [14, Proposition 2.18]
we have that every local direct summand of M(N) is also a direct summand. Next we
show that S = End M is local. Let aua2,... ,an,... be any sequence of elements in
S and consider the descending chain of principal left ideals of 5

D 5 a 2 a i D • • • D Sanan-X • • • a , D
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Let M<N> as © ^ M , , with Mn as Af for each n > 1. We may consider an as a
homomorphism from Mn to Mn+l. Define M* = {xn — an(xn) \ xn € Mn). As in the
proof of Theorem 3.4 ((b) implies (a)), we have that ®™=l M* is a local direct summand
of M(N), hence ffi^i,M* is a direct summand of M(N). Since M is finitely generated,
by Wisbauer [21, 43.3], there exist a positive integer m and an element h e S such
that am_i • • • oi = hamam-\ •• -a\. This implies that 5am_i •• • a, = 5omam_i •••«!. It
follows that S satisfies DCC on principal left ideals, that is 5 is a right perfect ring.
But M is indecomposable, hence S contains no nontrivial idempotents, so 5 is a local
ring.

By hypothesis, M is a CS-module, so by Theorem 3.4 ((b) implies (a)), every
monomorphism g : M —> M is also an isomorphism. Since End M is local and
M © M is CS, the above fact and [8, Lemma 3] show that M is M-injective, that is M
is quasi-injective. By Corollary 3.6, we have that M{H) is quasi-injective, hence M is
S-quasi-injective which completes the proof.
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