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Abstract. Estimates of the region of Nekhoroshev stability of Jupiter’s Trojan asteroids are
obtained by a direct (i.e. without use of the normal form) construction of formal integrals near
the Lagrangian elliptic equilibrium points. Formal integrals are constructed in the Hamiltonian
model of the planar circular restricted three body problem (PCRTBP), and in a mapping model
(Sándor et al. 2002) of the same problem for small orbital eccentricities of the asteroids. The
analytical estimates are based on the calculation of the size of the remainder of the formal series
by a computer program. An analysis is made of the accumulation of small divisors in the series.
The most important divisors introduce competing Fourier terms with sizes growing at similar
rates as the order of truncation increases. This makes impossible to improve the estimates
by considering nearly resonant forms of the formal integrals for particular near-resonances.
Improved estimates were obtained in a mapping model of the PCRTBP. The main source of
improvement is the use of better variables (Delaunay). Our best estimate represents a maximum
libration amplitude Dp = 10.60. This is a quite realistic value which demonstrates the usefulness
of Nekhoroshev theory.
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1. Introduction
Stability estimates in nonlinear Hamiltonian dynamical systems are obtained by ap-

plications of either the KAM theorem (Kolmogorov 1954, Arnold 1963a,b, Moser 1962),
or the Nekhoroshev theorem (Nekhoroshev 1977, Benettin et al. 1985, , Lochak 1992,
Pöschel 1993). A connection between the two theorems is provided by the theorem of
superexponential stability (Morbidelli and Giorgilli 1995a,b).

The question of obtaining analytical stability estimates for the orbits in specific sub-
systems of the solar system has raised considerable interest in recent years. In the case
of KAM stability, the goal is to prove theoretically the existence of a KAM torus with
fixed frequencies. Stability is guaranteed for all times for orbits with initial conditions on
the torus. In the case of two degrees of freedom systems, KAM stability implies also the
stability of all the orbits with initial conditions in an open domain inside the last KAM
librational torus. This is no longer true for systems of three or more degrees of freedom,
because of the a priori possibility of chaotic orbits to exhibit Arnold diffusion. Estimates
of KAM stability refer to upper bounds with respect to either a) the distance from a local
equilibrium solution, or b) the size of the effective perturbation (e.g. the mass parameter
or the eccentricity) for which the existence of a torus is guaranteed. Examples of this
approach, in Celestial Mechanics, were given by Robutel (1995), Celletti and Chierchia
(1997, 1998), Locatelli (1998), and Locatelli and Giorgilli (2000).

Nekhoroshev stability, on the other hand, is applicable to all the orbits in open domains
of initial conditions, independently of whether a particular orbit is regular, i.e., lies on a
KAM torus, or chaotic. The Nekhoroshev formula predicts a finite time of stability for

195

https://doi.org/10.1017/S1743921304008658 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921304008658


196 C. Efthymiopoulos

both types of orbits, regular or chaotic. This time is a lower limit, i.e., an underestimate
of the real time of stability.

Nekhoroshev estimates applied to solar system dynamics refer to a) analytical up-
per bounds of the perturbation parameter so that the conditions for the application of
Nekhoroshev theorem are fulfilled (e.g. Benettin et al. 1998), b) numerical verifications
that there are open sets of the Arnold web being in a ‘Nekhoroshev regime’, i.e., where
resonances do not overlap (Guzzo and Morbidelli 1997, Guzzo et al. 2000), and, finally
c) estimates of the size of the stability region for times equal to the age of the solar
system. A particular example of the latter approach are the estimates of the stability
region of the Trojan asteroids in the neighborhood of Jupiter’s triangular points given by
Simó (1989), Celletti and Giorgilli (1991), Giorgilli and Skokos (1997) and Skokos and
Dokoumentzidis (2001).

The present paper reports Nekhoroshev stability estimates for the Trojan asteroids
obtained by calculating formal integrals in the neighborhood of the triangular points
with a direct method due to Whittaker (1916), Cherry (1924) and Contopoulos (1960).
The Hamiltonian model is the planar circular restricted three body problem. Then the
discrete analog of the direct method is used to construct formal integrals in a mapping
model (Sándor et al. 2002) which describes the dynamics of the PCRTBP for low or-
bital eccentricities of the asteroids. Nekhoroshev estimates are obtained for this mapping
model which are expressed in terms of the proper elements of the orbits. Our best result
corresponds to a libration amplitude Dp = 10.6o which is quite realistic (most asteroids
have Dp < 35o).

2. Nekhoroshev estimates in the Hamiltonian model
Following Giorgilli and Skokos (1997), the Hamiltonian of the planar, circular restricted

three-body problem is written in heliocentric polar canonical coordinates (ρ, θ, pρ, pθ) as:

H =
1
2

(
p2

ρ +
p2

θ

ρ2

)
− pθ − µρ cos θ − 1 − µ

ρ
− µ√

ρ2 + 1 + 2ρ cos θ
(2.1)

The coordinates of L4 are ρ = 1, θ = 2π/3, pρ = 0, pθ = 1, and the mass parameter
µ = 0.00095387536.

Following the canonical change of variables:

ρ = 1 + 1.00599x1 + 0.329451x2 (2.2)

θ =
2π

3
+ 0.00125186x1 + 0.0473548x2 + 2.01417y1 − 6.15034y2

pρ = 1.00273y1 − 0.0265079y2

pθ = 1 + 1.00599x1 + 0.329451x2 (2.3)

the Hamiltonian (2.1) can be expanded as

H(x1, x2, y1, y2) = H2 + H3 + . . . (2.4)

where the quadratic part H2 is given by

H2 =
ω1

2
(x2

1 + y2
1) +

ω2

2
(x2

2 + y2
2) (2.5)

i.e., it is diagonal in the canonically conjugate pairs (xi, yi), i = 1, 2. The frequencies are
ω1 = 0.99675752552 and ω2 = −0.080463875837. The time unit is equal to TJ/2π, with
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TJ = 11.84yr. The period T1 = 2π/ω1 corresponds to the period of oscillation of the
quantity ω −M ′ in the linearized approximation around L4, where ω is the argument of
the perihelion of the asteroid and M ′ is the mean anomaly of Jupiter. Since the precession
of the perihelion is very slow, the frequency ω1 is very close to 1, i.e., to the mean motion
of Jupiter. On the other hand, the frequency ω2 corresponds to the frequency of oscillation
of the major semi-axis of the asteroid in the linearized approximation around L4, which
is about twelve times smaller than the frequency ω1.

A second formal integral Φ = Φ2 +Φ3 + . . . of the hamiltonian (2.4) can be constructed
by solving recursively the equations:

DωΦs = −{Φs−1,H3}, Dω· = {·,H2} (2.6)

where {·, ·} denotes Poisson brackets and the linear differential operator Dω is defined as

Dω = {·,H2} (2.7)

The construction of a formal integral starts with a particular choice for the second order
term, i.e., Φi,2 = 1

2 (y2
i + x2

i ), where i = 1 or i = 2. Then, Eq. (2.6) can be solved order
by order and it ensures that the quantity Φi = Φi,2 + Φi,3 + . . . has zero Poisson bracket
with the Hamiltonian, i.e. it is a formal integral of motion. This ’direct’ method of calcu-
lating the integrals step by step via Eq.(2.6) (Whittaker 1916, Cherry 1924, Contopoulos
1960) is as old as the Birkhoff - Gustavson method (Birkhoff 1927, Gustavson 1966) of
determining the formal integrals via normal forms. Its extension to deal with resonance
cases was given by Contopoulos (1963).

The series Φ is, in general, divergent (Siegel 1941). However, a proper truncation of
it, say at order N , gives a polynomial function Φ(N) which represents an approximate
integral of the Hamiltonian H. The time derivative of the truncated series is given by

dΦ(N)

dt
= R(N) =

∞∑
j=N+1

Uj (2.8)

where

Ur =
N∑

k=2

{Φk,Hr−k}, r > N (2.9)

It can be shown that the series R(N), called the remainder of the integral, is convergent
(Giorgilli 1988). The size of the remainder can be bounded from above by a quantity
(Giorgilli 1988)

||R(N)|| � AN !∏N
s=2 as

(2.10)

where the norm || · || is defined as the sum of the moduli of the polynomial coefficients, A
is a positive constant, depending essentially on the size of the Hamiltonian perturbation
H3+ . . ., and the sequence as, s = 2, 3, . . . refers to the smallest divisors that may appear
in the formal series at order s. These are given by

as = min {|k · ω|, k ≡ (k1, k2), ω ≡ (ω1, ω2), |k1| + |k2|� s, (|k1| + |k2|)mod2 = smod2}
(2.11)

where the modulo 2 restriction comes from the fact that the order |k1| + |k2| of any
Fourier mode exp(ik · φ) in the formal series at order s has the same parity as s.

We say that the frequencies ωi satisfy a diophantine condition, if there are positive
constants γ, τ such that |k · ω| � γ/|k|τ for all k ≡ (k1, k2) with k1, k2 ∈ Z, |k| ≡
|k1| + |k2| �= 0 and τ � n − 1 where n is the number of degrees of freedom. In the
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diophantine case, the sequence as satisfies the estimate as ∼ 1/sτ . This will be called
a ‘diophantine sequence’. The product

∏N
s=2 as in Eq.(2.10) is estimated as ∼ 1/N !τ .

Thus, at distance ρ from the equilibrium point, Eq.(2.10) yields the estimate

||RN ||ρ � BN !τ+1ρN (2.12)

where ||RN ||ρ = ||RN ||ρN measures the size of the remainder terms at the distance ρ,
and B is a positive constant. The optimal estimate is found by finding the optimal order
of truncation N for which the r.h.s. of (2.12) has a minimum with respect to N . This
minimum value is O(exp(−1/ρ

1
τ +1 )). Thus, in view of Eq.(2.8), the time of stability is

exponentially long in the inverse of the distance ρ, i.e.,

T ∼ O(exp(1/ρ
1

τ +1 )) (2.13)

If T is fixed, say the age of the solar system, Eq.(2.13) can be used to estimate the size
of the Nekhoroshev stability region around the equilibrium points.

It should be stressed that the above rigorous estimates are rather pessimistic. A rig-
orous improvement of these estimates was given by Fassò et al. (1998), Guzzo et al.
(1998) and Niederman (1998). On the other hand, a careful analysis of the accumulation
of small divisors in the formal series (Efthymiopoulos et al. 2004) has shown that this
cannot be in the form of products

∏N
s=2 as. Let ds s = 2, . . . N denote the sequence of

divisors appearing in the fastest growing terms of the remainder. Then, at most every
second divisor can satisfy the equality ds = as, i.e., be equal to the minimum divisor at
the same order s. This leads to an improved estimate Ropt ∼ O(exp(−1/ρ

2
τ +1 )) which

is in close agreement with estimates found by computer experiments (Contopoulos et al.
2003, Efthymiopoulos et al. 2004). But even this formula is a simplification, because the
sequence as gives divisors equal to the diophantine limit γ/sτ only at particular orders
s determined by the continued fraction approximation of the frequency ratio ω2/ω1. A
further complication is introduced by the ‘inversion’ and ‘delay’ effects (Efthymiopoulos
et al. 2004).

On the other hand, it is possible to provide Nekhoroshev estimates by calculating
precisely the size of the remainder with a computer program performing the algebraic
manipulations. This allows one to determine the size of the region of stability in terms of
a radius ρ given by ρ = min(ρ1, ρ2), where the radii ρ1 and ρ2 correspond to disks around
the origin in the subspaces (x1, y1) and (x2, y2) respectively defined so that the variations
of the corresponding formal integrals do not exceed an upper limit (Giorgilli and Skokos
1997). The final stability region is defined as the interior of a torus corresponding to the
product of two circles of radius ρ. In the present calculations, the precise values of the
radii ρ1 and ρ2 are specified by the same procedure as in Giorgilli and Skokos (1997).
The radius ρ is given essentially by the formula

ρ ∼
(

1

TCs||R(s)
s+1||

)1/s

(2.14)

where T = 109 (in periods of Jupiter) is the Nekhoroshev time, ||R(s)
s+1|| denotes the size

of the first order of the remainder R(s), and C is a constant equal to the ratio of the total
size of the remainder ||R(s)|| over ||R(s)

s+1||. The radius ρ is, thus, a function of the order
of truncation s. The optimal order of truncation Nopt corresponds to the order s = Nopt

at which ρ, given by (2.14), is maximum.
By calculating the formal integrals as described above we found Nopt = 34 and

ρ = 0.0304. This radius is marginally better than the radius found by computer
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Figure 1. The sequence of small divisors as corresponding to the continued fraction expansion
of the frequency ratio a = ω2/ω1, as a function of the order of truncation s (dashed line). The
solid lines correspond to the sequence of divisors |k ·ω| for which the corresponding Fourier term
exp(ik ·φ) is the leading term of the remainder at order s, for the formal integrals Φ1 (solid line
with stars) and Φ2 (solid line without stars).

implementation of the normal form method (Giorgilli and Skokos 1997). In physical
units, it represents about 1/10 of the distance from L4 to Jupiter.

We examine now how do small divisors accumulate in the formal series so as to produce
the observed asymptotic behavior of the series.

In the case of the Trojan problem, the frequency ratio a = |ω2/ω1| = 0.0807256266212
is expressed as a continued fraction expansion a = [12, 2, 1, 1, 2, . . .], with rational trunca-
tions 0/1, 1/12, 2/25, 3/37, 5/62, . . .. As shown in Figure 1, as the order of the expansion
s increases, newborn small divisors |k1ω1 +k2ω2| appear at the orders s = k1 +k2, where
k1/k2 belongs to the sequence of rational truncations of a. Thus, newborn small divisors
appear at the orders 1 = 1 + 0, 13 = 1 + 12, 27 = 2 + 25, 40 = 3 + 37, etc.

Nevertheless, a detailed analysis of the leading Fourier modes in the series shows that
the divisors belonging to the diophantine sequence as are not the most important, in
the sense that they are not the ones producing the terms of maximum size in the series.
The solid lines in Figure 1 represent the sequences of divisors |k ·ω| corresponding to the
dominant Fourier modes exp ik · φ in the remainder (where φ ≡ (φ1, φ2) are canonical
angles), at successive orders of truncation s of the formal integrals Φ1 = (x2

1+y2
1)/2+ . . .,

and Φ2 = (x2
2 + y2

2)/2 + . . .. After a few transient steps, the two lines (for Φ1 and Φ2)
coincide, beyond the order s = 14. This implies that, as s increases, the same Fourier
modes become dominant at successive steps in the two series.

It can be observed that from order s = 14 to s = 33, there is a sequence of divisors with
values of the same order of magnitude ∼ 10−1, namely |ω1+11ω2| = 0.1116, |ω1+10ω2| =
0.1921, |ω1 + 9ω2| = 0.2726, |ω1 + 8ω2| = 0.3505, which produce dominant Fourier terms
in the series, namely the terms exp(i(φ1 + 11φ2)), exp(i(φ1 + 10φ2)), exp(i(φ1 + 9φ2)),
and exp(i(φ1 + 8φ2)) respectively. At all orders s in the interval 14 � s � 33, these
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terms have comparable size in the series. On the other hand, the size of the Fourier term
corresponding to the diophantine divisor a27 = |2ω1 + 25ω2| = 0.01808 is much smaller
than the size of the previous Fourier terms, at least up to order 40 (which is beyond the
optimal order of truncation of the series). This is despite the fact that the divisor a27

is one order of magnitude smaller (∼ 10−2) than the above listed divisors, which are of
order 10−1. This phenomenon is caused by the ‘delay’ mechanism (Efthymiopoulos et al.
2004). Namely, although the Fourier term exp(i(2φ1 +25φ2)) is the fastest growing term
beyond order s = 27, when this term appears for the first time, at order s = 27, it has
size much smaller than the size of other Fourier terms which are temporarily dominant
at s = 27, and many iterations of the recurrent relation (2.6) are required before the size
of the term exp(2φ1 +25φ2) becomes dominant. This phenomenon appears even for good
diophantine frequency ratios, because the intervals of orders s separating the appearance
of successive new small denominators increases exponentially with s.

Another phenomenon observed near the order s = 27 is ‘inversion’. Namely, a Fourier
term with relatively large divisor becomes temporarily dominant while other terms, with
smaller divisors, are temporarily less important. This is shown as two consecutive peaks
of the solid lines at orders s = 32 and s = 34 (Figure 1).

The fact that many Fourier terms, with small divisors of similar size, become succes-
sively dominant in a short interval of values of s, implies that it is not possible to obtain
better Nekhoroshev stability estimates by considering near-resonant forms of the formal
integrals innstead of non-resonant formal integrals. In fact, a near-resonant construction
deals with only one near-resonance at the time, eliminating the effect of the small divisors
associated with this resonance. This can improve the estimates up to a particular order
of truncation s, on the condition that there are no other near-resonances producing terms
of considerable size up to order s. But figure 1 shows that this condition is not fulfilled
in our case.

3. Nekhoroshev estimates with Delaunay variables in a mapping
model

The most relevant variables for the description of the stability region around L4 and
L5 are the Delaunay action-angle variables

x =
√

α

α′ − 1, τ = λ − λ′

x2 =
√

α

α′

(√
1 − e2 − 1

)
,
 (3.1)

where α, e are the semi-major axis and eccentricity of the asteroid, α′ is the semi-
major axis of Jupiter, τ is the critical argument, i.e., the difference between the mean
longitude of the asteroid and of Jupiter, and 
 is the longitude of the pericenter of the
asteroid. These variables have the advantage that the pair of action-angle variables x, τ
are immediately translated in the motion of the asteroid in configuration space. Namely, x
gives the amplitude of librations perpendicularly to the circle of the 1:1 coorbital motion,
while τ − τ0 measures the synodic libration around the equilibrium values τ0 = π/3 (for
L4) or 5π/3 (for L5). If both librations are considered nearly harmonic, then, following
Érdi (1988), the amplitude of librations is measured by the parameter Dp given by

∆α = α − α′ � 2α′x �
√

3µα′Dp sin φ, ∆τ = τ − τ0 � Dp cos φ (3.2)
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Figure 2. (a) The phase portrait of the mapping (3.3). (b) The relation dp versus Dp (see
text for definitions) as found by the invariant curves of the mapping (3.3). (c) The Poincaré
surface of section for the equations of motion under the full Hamiltonian of the planar circular
restricted three-body problem. The section is given by the variables (τ, x) when the surface
� − λ′ = 0 is crossed by an orbit at the positive sense. The Jacobi constant is taken equal
to E = −1.49948, which is very close to the Jacobi constant at L4, EL4 = −1.49952. This
corresponds to eccentricities e < 0.04.

where φ is the phase of a libration, which is defined by the position of the guiding center
of the motion of the asteroid along a tadpole-shaped orbit. According to Eq.(3.2) the
parameter Dp is the amplitude of libration of the critical argument. For most asteroids
the amplitude of libration Dp ranges from a few degrees up to about Dp � 35o (Milani
1993, Érdi 1997, Levison et al. 1997), while in general Dp decreases as the eccentricity
increases.

The usual analytic expansion of the Hamiltonian (2.1) cannot be transformed to an
expansion in the variables (3.1) with analytically calculated coefficients. The most rele-
vant expansion is the semi-analytic expansion of Beaugé and Roig (2001), which gives the
averaged Hamiltonian over fast angles. A way to circumvent this problem is by using the
2D mapping model of Sándor et al. (2002) which accurately reproduces the dynamics at
low orbital eccentricities of the asteroids. At the limit of zero eccentricity, the mapping
reads

xn+1 = xn + 2πµ sin τn

(
1 − 1

(2 − 2 cos τn)3/2

)

τn+1 = τn + 2π

(
1

(1 + xn+1)3
− 1

)
(3.3)
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Figure 2a shows the phase portrait of the mapping (3.3). The invariant KAM curves of
this mapping correspond to librations around L4. Each invariant curve defines approx-
imate proper elements corresponding to the amplitudes of libration Dp = τmax − τmin,
and dp = αmax − αmin, where α is defined in terms of x by Eq.(3.1). Figure 2b shows
Dp as a function of dp, calculated from Figure 2a, by considering ten invariant curves
of Figure 2a with initial conditions x = 0 and τ = π/3 + n∆τ with n = 1, 2, ..., 10 and
∆τ = π/60. Notice that the points of Figure 2b are almost on a straight line with slope
� (1/0.273)(rad/AU). The theoretical value given by Érdi (1988) is (1/0.2783)(rad/AU).

Figure 2c shows the Poincaré surface of section for the exact Hamiltonian model of
the CRTBP, at the Jacobi constant E = −1.49948, which is very close to the value at
L4 EL4 = −1.49952. The maximum eccentricity, at the outer invariant curve is small
(e = 0.04), thus the surface of section can be compared with the mapping phase portrait,
which corresponds to e = 0. The mapping portrait is angularly deformed with respect
to the hamiltonian portrait. This phenomenon is an artifact of the method used to
produce the mapping. However, the extend of the stability region is the same in the two
portraits, and the resonant chains of same multiplicity are at approximately the same
distances from the center. The rotation number of the central point of figure 2c can be
used to compare the sequences of divisors found for the mapping model (3.3) with the
corresponding sequences for the hamiltonian model. The two rotation numbers are found
equal up to three significant figures.

A formal integral Φ for the mapping (3.3) is calculated by a computer program, by
implementing a direct method for mappings which is the discrete analog of the direct
method for Hamiltonian systems. This method consists of solving recurently the homo-
logical equation (Bazzani and Marmi 1991)

Φ(z′, z′∗) = Φ(z, z∗) (3.4)

where

z′ = eiω[z + F2(z, z∗) + F3(z, z∗) + ...] (3.5)

is the Taylor-expanded mapping (3.3) in complex-conjugate coordinates, after a trivial
normalization which transforms the ellipses of the linearized mapping around the elliptic
equilibrium into circles. Our calculations were extended to the order of expansion N = 60.
Details of the algorithm, as well as an analytical treatment of the Nekhoroshev stability
estimates for mappings are given in Efthymiopoulos (2004). It turns out that the size of
the region of stability is determined by a formula very similar to Eq.(2.14). Precisely, we
have

Is =
(

s − 1
s + 1

) (
2(1 − A)

s+1
2

(s + 1)Bρ∗ ||U
(s)
s+1||T

) 2
s−1

(3.6)

where ||U (s+1)
s+1 || is the size of the first order of the remainder at the order of truncation

s, Bρ∗ is a constant with similar meaning as the constant C in Eq.(2.14), and Is is the
value of the outermost level curve of the integral Φ for which stability is guaranteed for
all times t � T . Thus, the stability estimates are given in terms of a curve which is a
deformed circle, while the stability domain is the interior of this curve. The constant A
measures the degree of deformation of the level curve Φ(z, z∗) = Is from a perfect circle
(see Efthymiopoulos 2004 for details).

The main advantage of this approach is that it allows to express the results directly
in terms of the proper elements Dp or dp. As in the case of formula (2.14), the estimate
(3.6) is optimized with respect to s. We found the optimal order s = Nopt = 38, yielding
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the stability estimates

Dp � 10.6o, dp � 0.0512 AU (3.7)

This result represents an improvement over previously obtained Nekhoroshev estimates
of the region of effective stability (Giorgilli and Skokos 1997, Skokos and Dokoumentzidis
2001). The region of stability where real asteroids are observed extends to Dp � 35o,
meaning that the region given in Eq.(3.7), by analytical methods, has a size equal to
about one third the real size of the observed region of stability. Previous estimates were
giving a size smaller by a factor 10 for most asteroids, and up to a factor 30 in the
worst case (Giorgilli and Skokos 1997). It should be stressed, however, that the mapping
model used here is also a simplification of the Hamiltonian problem, which reproduces
approximately the dynamics only at low proper eccentricities. Thus, in a strict sense, the
two models are not comparable.

Finally, let us note that the planar circular restricted three body model represents
a great simplification of the real problem of stability of the Trojans. In particular, the
border of the stability region is shaped by the overlapping of secular resonances caused
either by the elliptic motion of Jupiter or by the direct or indirect effects of other major
planets (e.g. Tsiganis et al. 2002, Robutel 2004).

Obtaining analytical Nekhoroshev stability estimates by adding more degrees of free-
dom to the problem represents a challenge from many points of view. First, the number
of terms of a formal series up to order s depends on the number of degrees of freedom n
as O(sn+1). In the 4 DOF case, relevant results should involve about 108 terms, which is
at the limit of the present computational capacities. Second, some secular variations of
the orbit of Jupiter can be introduced in the Hamiltonian only as time-dependent terms.
It is unclear how these terms should be treated from the point of view of Nekhoroshev
theory. Finally, Nekhoroshev theory itself is far from giving optimal estimates of the time
(or size of the area) of stability, even in simple Hamiltonian models.

In conclusion, the optimization of the Nekhoroshev stability estimates in the case of the
Trojan asteroids represents a mathematically, computationally and physically interesting
question. However, even the presently obtained Nekhoroshev estimates are realistic, and
demonstrate the usefulness of Nekhoroshev theory.
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