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A novel class of polysulfone ionomers have recently been synthesized and proposed as candidate
electrolyte membrane materials for fuel cells.[1] These materials show superior proton conductivity and
thermal stability due to their unique backbone structures consisting of sulfonated aromatic rings and
sulfone units (-SO,-). The local hydration and proton conductivity are closely related to the degree of
backbone sulfonation and the spacing of the sulfone units. Electron energy-loss spectroscopy (EELS)
has been undertaken to understand the conformational changes in the backbone of various
perfluorosulfonic acid (PFSA) ionomers.[2] The combination of spectroscopy and simulation has
successfully revealed the conformational dependence of the EEL spectra for PFSA ionomers. In the
present work, the specific features in the low-loss and core-loss spectra of light elements (e.g., C and S)
were investigated to understand the backbone chemistry of polysulfone ionomers.

We have performed EELS with a 200 kV Zeiss Libra 200 TEM/STEM equipped with a monochromator
to investigate the spectral characteristics of three types of sulfur-containing aromatic polymers: poly-
(1,4-phenylene ether-ether-sulfone) (PEES); poly-(phenylene sulfide) (PPS) and sulfonated poly-
(phenylene sulfone) (sPS0O,), as seen in Fig.1. Both low-loss EEL spectra and the energy-loss near-edge
structure (ELNES) have been acquired with a high energy resolution of 0.15 eV. The thin sections of the
samples were prepared by cryo-microtome and examined in the cryo environment to minimize sample
damage due to electron beam exposure.

The spectral dependence of the different aromatic backbone structures were investigated by low-loss
spectra, C K-edges and S-L, 3 edges as shown in Fig. 2. The spectra show distinct features in the low-
loss region and the onset of the C K-edges for PEES, PPS, and sPSO,. The addition of sulfonic acid
groups (-SOzH) or ether linkages (-O-) in backbones can both alter the intensities and shapes of n peaks
in C K-edges and near edge structures. A strong singlet peak in the S-L,3 ELNES was observed in
sPSO, ionomers, which can be used to characterize the sulfonate groups directly attached to the aromatic
backbones. The fine structures of the S-L, 3 ELNES of PPS and PEES were also identified and possessed
features similar to the previously reported X-ray absorption spectra of sodium sulfate.[3]
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Figure 1. Chemical structures of repeat units of poly-(1,4-phenylene ether-ether-sulfone) (PEES); poly-
(phenylene sulfide) (PPS) and sulfonated poly-(phenylene sulfone) (sPSO5,).
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Figure 2. Measured EEL spectra of PEES, PPS, and sPSO;: (a) low-loss (0-40 eV) after the removal of
zero-loss (logarithmic function) and plural scattering (Fourier-log deconvolution); (b) C-K ELNES
(280-310 eV) and (c) S-L, 3 ELNES (160-210 eV) after background subtractions (power-law function)
and single scattered removal (Fourier-ratio deconvolution).
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