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The process of capture into a mean motion resonance induced by a 
non conservative force has been studied by many authors (Henrard,1982); 
Peale,1986). Capture probabilities have been established through the use 
of an analytical model based on averaged Hamiltonian systems, with an 
adiabatic varying parameter (Henrard, 1982; Lemaitre,1984). For each res-
onance, these probabilities are basically function of the orbital element 
involved (eccentricity and/or orbital inclination) far from the resonance 
and the perturber's mass, there being no dependence on the dissipation 
rate. However when the process is not adiabatic, the dissipation rate has a 
fundamental importance for capture probabilities (Gomes,1995). For these 
processes, an analytical association of orbital elements far from the reso-
nance with capture probabilities is still an open question. Association of 
orbital elements just before resonance with the process of capture is pre-
sented in (Marzari and Vanzani, 1994) and (Lazzaro et al, 1994). In these 
works the eccentricity and longitude of the perihelion are checked for in 
respect with capture into resonance. Here we aim at verifying how the 
trapping process changes with orbital elements just before resonance, but 
not restricting ourselves to the pair eccentricity-perihelion. 

We choose Poynting-Robertson drag (with β = 0.01 unless otherwise 
stated) as the dissipative force and the 2:3 resonance with a circular orbit 
Earth (area = 1.306). The particle is on the Earth's orbital plane. 

Figure 1 shows the result coming from the integration of 60 particles, 
starting with α = 1.31014, e = 0.05 and w — 0. The initial mean longitudes 
are uniformly distributed from 0° to 120°. The figure plots initial mean 
longitudes against semimajor axes after 1200 years. The abrupt increase 
of the semimajor axes for initial longitudes from 64° to 120° and 0° to 4° 
indicates which particles are trapped in the 2:3 resonance with the Earth. 
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Figure 1. 

Initial mean longitudes against semimajor axes after 1200 years numerical 

integration of the orbits of 60 particles subject to Ρ oynting-Robertson drag 

(β = 0.01), started just above the 2:3 resonance with the Earth. Other 

elements are a = 1.31014, e = 0.05 and w = 0°, for all particles. 

We see that near the resonance there is a continuous range of mean longi-
tudes associated to particles that are trapped (this feature is not however 
observed in all cases. Some examples show this longitude region split into 
two). For initial mean longitudes from 120° to 360° this same configuration 
will repeat itself twice, what is expected from the fact that the resonant 
angle φ = 3λ — 2λχ — VJ varies 3 times as fast as λ. 

For our next experiment, we slightly change the initial semimajor axis 
(a = 1.31023), other conditions being the same as those of figure 1. Figure 
2 shows which particles are trapped for this different initial semimajor axis. 
The first conclusion we may draw from this figure is that there is no point 
in taking capture probabilities from the results shown in figure 1, because 
the number of trapped particles varies considerably with the semimajor 
axis. This last result almost unavoidably yields our next experiment, which 
is plotting the number of trapped particles against their initial semimajor 
axes. This is shown in figure 3. Here we notice peaks of relatively high 
number of trapped particles between valleys of relatively low number of 
trapped particles. For an interpretation of this diagram, we first measure 
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the distance between successive peaks. This distance is not constant and it 
is not difficult to verify that it refers to the variation of the semimajor axis 
due to the Poynting-Robertson dissipation in a ^-period. We postpone a 
better explanation of this point after we analyze our next experiment. 

Figures 4a and 4b show the evolution of the resonant angles φ at every 
10 years from an initial uniform distribution through 360°. These figures 
suggest another reason why figure 1 is not suitable to give capture proba-
bilities. In fact, near a resonance, the initial uniform distribution of φ on a 
circle is artificial. After a short time the particles resonant angle accumulate 
near a point, due to the fact that φ has a relative high variation near φ = 0. 
Figure 4a refers to an initial semimajor axis (a = 1.31014) (same as Figure 
1), which generated high number of captured particles, whereas figure 4b 
refers to a = 1.31023 (same as Figure 2) and just one particle is captured. 
These figures suggest that the value of φ where φ = 0 for the first time 
is related to whether the particle is going to be captured or not. So these 
last two conclusions taken from figures 4a and 4b lead us to an explanation 
of figure 3. The fact that the resonant angles get and run together near 
a resonance associated to the fact that these angles will have their time 
derivative vanishing in a region that leads or not to capture gives a good 
explanation for the peaks and valleys of figure 3. 

Like figure 1, for another initial semimajor axis (a = 1.31023^. The number 
of trapped particles is quite different from that of figure 1. 

Figure 2. 
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Figure 3. 

Proportion of trapped particles against initial semimajor axis, all other ini-

tial orbital elements like those of figure 1. 

Our last numerical experiment tries to better understand the association 
of a region of eccentricities and resonant angles where φ = 0 for the first 
time (return points) with capture or non capture. Figure 5 shows (Ρ, φ) 
points, where Ρ = na2(l — y/l — e 2 ) , associated to the time when φ = 0 
for the first time. Larger dots belong to captured particles and the smaller 
ones belong to non captured particles. We start the integrations with sets of 
equal eccentricities and different semimajor axes. These elements vary from 
a minimum value associated to an early separatrix crossing (near 360°) to 
a maximum value associated to a late separatrix crossing (near 0°) , but 
the separatrix crossing occurs always before a complete turn of the angle φ 
(note that the motion is clockwise). For each eccentricity, the return points 
lie in approximate arcs of circles as the semimajor axis varies. Here we use 
several values of β. Smaller β approximate the adiabatic case. We notice 
here that some general ideas given by the theory for the adiabatic case 
are also present in the non adiabatic case. Reminding the analytical model 
(Henrard,1982; Peale,1986), captured particles cross the separatrix early, 
so that they have time to get the lowest possible energy level before they 
start to have their resonant angles running in the opposite way. φ = 0 in the 
lowest levels of energy means φ = 0 for the highest values of φ, as found in 
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Figure 4-

Evolution of the mean longitudes at every 10 years for 60 particles, (a) the 

same conditions as in figure 1. (b) the same conditions as in figure 2. 

every plotting for low and high β. When we get closer to the adiabatic case 

(lower β) the return points are closer to 0° as a whole. This is explained 

by the fact that d ^ H ^ \ where Η is the Hamiltonian associated to the 

evolving orbit and H* is the Hamiltonian associated to the separatrix, is 

proportional to β. Thus, for small /?, the return point belongs to a libration 

curve near the separatrix. These curves have return points near 0°. We 

also see the variation of the number of captured particles with eccentricity, 

which for the adiabatic case is higher as smaller is the eccentricity and for 

faster dissipation there is a peak of highest capture probability away from 

e = 0. This peak is associated to as high e as higher is ßy but the height of 

the peak gets lower itself. These last results confirm (Gomes, 1995). 
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Figure 5. 

(Ρ, φ) points where φ = 0 for the first time, for several initial eccentricities 

and several ß. In each figure the eccentricity varies from 0.02 to 0.09. The 

return points associated to resonance trapping are printed larger. For each 

β and e, the several points located on approximate arcs of circles correspond 

to different initial semimajor axes. All integrations start with φ = Ο (X = 0, 
w = 0 and Χτ = 0). 
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