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Abstract

Offshore wind turbines intend to take a rapidly growing share in the electric mix. The design, installation, and
exploitation of these industrial assets are regulated by international standards, providing generic guidelines.
Constantly, new projects reach unexploited wind resources, pushing back installation limits. Therefore, turbines
are increasingly subject to uncertain environmental conditions, making long-term investment decisions riskier (at the
design or end-of-life stage). Fortunately, numerical models of wind turbines enable to perform accurate multi-physics
simulations of such systems when interacting with their environment. The challenge is then to propagate the input
environmental uncertainties through thesemodels and to analyze the distribution of output variables of interest. Since
each call of such a numerical model can be costly, the estimation of statistical output quantities of interest (e.g., the
mean value, the variance) has to be done with a restricted number of simulations. To do so, the present paper uses the
kernel herding method as a sampling technique to perform Bayesian quadrature and estimate the fatigue damage. It is
known from the literature that this method guarantees fast and accurate convergence together with providing relevant
properties regarding subsampling and parallelization. Here, one numerically strengthens this fact by applying it to a
real use case of an offshore wind turbine operating in Teesside, UK. Numerical comparison with crude and quasi-
Monte Carlo sampling demonstrates the benefits one can expect from such a method. Finally, a new Python package
has been developed and documented to provide quick open access to this uncertainty propagation method.

Impact Statement

Wind energy companies constantly deploy cutting-edge wind turbines to reach unexploited wind resources. In
these highly uncertain environments, numerical models simulating such systems can be used to assess the
performance and reliability of wind turbines. This numerical procedure is often computationally expensive.
However, promising new kernel-based techniques aim at simplifying such a computational burden. This paper
demonstrates the use of a fast sampling technique on the numerical model simulating a real offshore wind turbine
operating in Teesside, UK. This sampling method conveniently extracts from ameasured dataset a small number
of relevant input points (i.e., environmental conditions) in order to use them as simulation inputs. Finally, this
method is compatible with the intensive use of high-performance computer facilities.
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1. Introduction

As a sustainable and renewable energy source, offshore wind turbines (OWT) are likely to take a
growing share of the global electric mix. However, to be more cost-effective, wind farm projects tend
to move further from the coast, exploiting stronger and steadier wind resources. Going further
offshore, wind turbines are subject to more severe and uncertain environmental conditions
(i.e., wind and waves). In such conditions, their structural integrity should be certified. To do so,
numerical simulation and probabilistic tools have to be used. In fact, according to Graf et al. (2016),
for new environmental conditions or new turbine models, international standards such as IEC (2019)
from the International Electrotechnical Commission and DNV-GL (2016b) from Det Norske Veritas
recommend performing over 2× 105 simulations distributed over a grid. However, numerical simula-
tions are computed by a costly hydro-servo-aero-elastic wind turbine model, making the design
process time-consuming. In the following, the simulated output cyclic loads studied are aggregated
over the simulation period to assess the mechanical fatigue damage at hot spots of the structure. To
compute the risks associated with wind turbines throughout their lifespan, one can follow the steps of
the universal framework for the treatment of uncertainties (de Rocquigny et al., 2008) presented in
Figure 1. After specifying the problem (Step A), one can quantify the uncertainties related to site-
specific environmental conditions represented by the random vector X∈DX ⊂ℝp, p∈ℕ∗ (Step B).
Then, one can propagate them through the OWT simulation model (Step C) denoted by
g :DX !ℝ, X↦Y ¼ g Xð Þ, and estimate a relevant quantity of interest ψ Yð Þ¼ψ g Xð Þð Þ (e.g., a mean,
a quantile, a failure probability). An accurate estimation of the quantity of interest ψ Yð Þ relies on both
a relevant quantification of the input uncertainty and an efficient sampling method.

Regarding Step B, when dealing with uncertain environmental conditions, a specific difficulty often
arises from the complex dependence structure such variables may exhibit. Here, two cases may occur:
either measured data are directly available (i.e., the “given-data” context) or a theoretical parametric form
for the joint input probability distribution can be postulated. Such existing parametric joint distributions
often rely on prior data fitting combined with expert knowledge. For example, several parametric
approaches have been proposed in the literature to derive such formulations, ranging from fitting
conditional distributions (Vanem et al., 2023) to using vine copulas (Li and Zhang, 2020). However,
when a considerable amount of environmental data is available, nonparametric approachesmay be useful,
even if fitting a joint probability distribution with a complex dependence structure may be a challenging
task. In this case, the idea is to directly use the data as an empirical representation of input uncertainties in
order to avoid a parametric fit that might be too restrictive in terms of dependence structure.

Figure 1. General framework for uncertainty quantification (scheme adapted from the one proposed by
Ajenjo, 2023, originally introduced in de Rocquigny et al., 2008).
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Step C usually focuses on propagating the input uncertainties in order to estimate the quantity of
interest. Depending on the nature of ψ Yð Þ, one often distinguishes between two types of uncertainty
propagation: a central tendency estimation (e.g., focusing on the output mean value or the variance) and a
tail estimation (e.g., focusing on a high-order quantile or a failure probability). When uncertainty
propagation aims at central tendency estimation, the usual methods can be split into two groups. First,
those relying on sampling, that is, mainly Monte Carlo sampling (Graf et al., 2016), quasi-Monte Carlo
sampling (Müller and Cheng, 2018), geometrical subsampling (Kanner et al., 2018), or deterministic
quadrature rules (Van den Bos, 2020). All these methods estimate the quantity directly on the numerical
simulator’s outputs. Second, those that rely on the use of surrogate models (or metamodels, see Figure 1)
to emulate the costly numerical model by a statistical model. Among a large panel of surrogates, one can
mention, regarding wind energy applications, the use of polynomial chaos expansions (Dimitrov et al.,
2018; Murcia et al., 2018), Gaussian process (GP) regression (Huchet, 2018; Teixeira et al., 2019a; Slot
et al., 2020; Wilkie and Galasso, 2021), or artificial neural networks (Bai et al., 2023). When uncertainty
propagation aims at studying the tail of the output distribution such as in risk or reliability assessment, one
usually desires to estimate a quantile or a failure probability. In the wind energy literature, failure
probability estimation has been largely studied, for example, in time-independent reliability assessment
(Zwick and Muskulus, 2015; Slot et al., 2020; Wilkie and Galasso, 2021) or regarding time-dependent
problems (Abdallah et al., 2019; Lataniotis, 2019).

During the overall process described in Figure 1, modelers and analysts often need to determine
whether inputs are influential or not in order to prioritize their effort (in terms of experimental data
collecting, simulation budget, or expert elicitation). Sometimes, they want to get a better understanding of
the OWT numerical models’ behavior or to enhance the input uncertainty modeling. All these questions
are intimately related to the topic of sensitivity analysis (Saltelli et al., 2008; DaVeiga et al., 2021) and can
be seen as an “inverse analysis” denoted by Step C0 in Figure 1. In the wind energy literature, one can
mention, among others, some works related to Spearman’s rank correlation analysis and the use of the
Morris method in Velarde et al. (2019) and Petrovska (2022). Going to variance-based analysis, the direct
calculation of Sobol’ indices after fitting a polynomial chaos surrogate model has been proposed in many
works (e.g., in Murcia et al., 2018) while the use of distributional indices (e.g., based on the Kullback–
Leibler divergence) has been investigated by Teixeira et al. (2019b).

The present paper focuses on the problem of uncertainty propagation, and more specifically, on the
mean fatigue damage estimation (i.e., ψ Yð Þ¼E g Xð Þ½ �). Such a problem is usually encountered, by
engineers, during the design phase. Most of the time, current standards as well as common engineering
practices make them use regular grids (Huchet, 2018). Altogether, one can describe three alternative
strategies: (i) direct sampling on the numerical model (e.g., using Monte Carlo), (ii) sampling on a static
surrogate model (e.g., using GP regression), or (iii) using an “active learning” strategy (i.e., progressively
adding evaluations of the numerical model to enhance the surrogate model fitting process). In practice,
fitting a surrogate model in the context of OWT fatigue damage can be challenging due to the nonlinearity
of the code. Moreover, the surrogate model validation procedure complexifies the process. Finally, active
learning strategies restrict the potential number of parallel simulations, which limits the use of HPC
facilities. Thus, the main contribution of this paper is to explore different ways to propagate uncertainties
by directly evaluating the numerical model (i.e., without any surrogate model) with a relevant tradeoff
between computational cost and accuracy. In the specific context of wind turbine fatigue damage, this
work shows how to propagate uncertainties arising from a complex input distribution through a costly
wind turbine simulator. The proposed work consists of evaluating the advantages and limits of kernel
herding (KH) as a tool for given-data, fast, and fully distributable uncertainty propagation in OWT
simulators. Additionally, this sampling method is highly flexible, allowing one to complete an existing
design of experiments. Such a property can be crucial in practicewhen the analyst is asked to include some
specific points to the design (e.g., characteristic points describing the system’s behavior required by
experts or by standards, see Huchet, 2018).

The paper is organized as follows. Section 2 presents the industrial use case related to a wind farm
operating in Teesside, UK. Then, Section 3 introduces the various kernel-based methods for central
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tendency estimation. Section 4 analyzes the results of numerical experiments obtained on both analytical
and industrial cases. Finally, the last section presents some discussions and draws some conclusions.

2. Treatment of uncertainties on the Teesside wind farm

An OWT is a complex system interacting with its environment. To simulate the response of this system
against a set of environmental solicitations, multi-physics numerical models are developed. In the present
paper, the considered use case consists of a chain of three numerical codes executed sequentially. As
illustrated in Figure 2, a simulation over a time period is the sequence of, first, a turbulent wind speed field
generation, then a wind turbine simulation (computing various outputs including mechanical stress), and
finally, a post-processing phase to assess the fatigue damage of the structure.

2.1. Numerical simulation model

This subsection describes more precisely the modeling hypotheses considered in the industrial use case.
The first block of the chain consists of a turbulent wind field simulator called “TurbSim” (developed by
Jonkman (2009) from the National Renewable Energy Laboratory, USA) that uses, as a turbulencemodel,
a Kaimal spectrum (Kaimal et al., 1972) (as recommended by the IEC, 2019).Moreover, to extrapolate the
wind speed vertically, the shear is modeled by a power law. Since thewind field generation shows inherent
stochasticity, each 10-min long simulation is repeated with different pseudorandom seeds and one
averages the estimated damage over these repetitions. This question has been widely studied by some
authors, (e.g., Slot et al., 2020), who concluded that the six repetitions recommended by the IEC (2019)
may be insufficient to properly average this stochasticity. Thus, in the following, the simulations are
repeated 11 times (picking an odd number also directly provides the empirical median value over the
repetitions). This number of repetitions was chosen to suit the maximum number of simulations and the
storage capacity of the generated simulations.

As a second block, one finds the “DIEGO” software (for “Dynamique Intégrée des Éoliennes et
Génératrices Offshore1”) which is developed by EDF R&D (Kim et al., 2022) to simulate the aero-hydro-
servo-elastic behavior of OWTs. It takes the turbulent wind speed field generated by TurbSim as input and
computes the dynamical behavior of the system (including the multiaxial mechanical stress at different
nodes of the structure). For the application of interest here, the control system is modeled by the open-
source DTU controller (Hansen and Henriksen, 2013), and no misalignment between the wind and the
OWT is assumed. As for the waves, they are modeled in DIEGO using a JONSWAP spectrum (named
after the 1975 Joint North SeaWave Project). The considered use case here consists of a DIEGOmodel of
a Siemens SWT 2.3 MW bottom-fixed turbine on a monopile foundation (see the datasheet in Table 1),
currently operating in Teesside, UK (see the wind farm layout and wind turbine diagram in Figure 3).
Although wind farms are subject to the wake effect, affecting the behavior and performance of some
turbines in the farm, this phenomenon is not considered in this paper. To avoid numerical perturbations
and reach the stability of the dynamical system, our simulation period is extended to 1000 s and the first
400 s are cropped in the post-processing step. This chained OWT numerical simulation model has been

Figure 2. Diagram of the chained OWT simulation model.

1 In English, “Integrated Dynamics of Wind Turbines and Offshore Generators.”

e5-4 Elias Fekhari et al.

https://doi.org/10.1017/dce.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2023.27


deployed on an EDF R&D HPC facility to benefit from parallel computing speed up (a single simulation
on one CPU takes around 20 min).

2.2. Measured environmental data

During the lifespan of a wind farm project, environmental data are collected at different phases. In order to
decide on the construction of awind farm,meteorological masts, andwave buoys are usually installed on a
potential site for a few years. After its construction, each wind turbine is equipped with monitoring
instruments (e.g., cup anemometers). In total, 5 years of wind data have been collected on the turbines
which are not affected by the wake on this site. Their acquisition system (usually called “Supervisory
Control And Data Acquisition”) has a sampling period of 10 min. The wave data arise from a buoy placed
in the middle of the farm. These data describe the physical features listed in Table 2. A limitation of the
present study is that it controller-induced uncertainty (like wind misalignment) is not considered.

The Teesside farm is located close to the coast, making the environmental conditions very different
depending on the direction (see the wind farm layout in Figure 3). Since measures are also subject to
uncertainties, a few checks were made to ensure that the data were physically consistent. Truncation
boundswere applied since this study is focused on central tendency estimation (i.e., mean behavior) rather
than extreme values. In practice, this truncation only removes extreme data points (associated with storm
events). In addition, a simple trigonometric transform is applied to each directional feature to take into

Table 1. Teesside OWT datasheet

Siemens SWT-2.3–93

Rated power 2.3 MW
Rotor diameter 93 m
Hub height 83 m
Cut-in, cut-out wind speed 4 m/s, 25 m/s

Figure 3. Teesside wind farm layout (left) and monopile offshore wind turbines (OWT) diagram from
Chen et al. (2018) (right).
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account their cyclic structure. Finally, the remaining features are rescaled (i.e., using a min-max
normalization).

Thematrix plot of the transformed data presented in Figure 4 is (to the best of the authors’ knowledge) a
new kind of plot named copulogram. A copulogram is a graphical tool that enables the analysis of the

Table 2. Description of the environmental data

Variable Notation Unit Description

Mean wind speed U ms�1 10-min. average horizontal wind speed
Wind turbulence σU ms�1 10-min. wind speed standard deviation
Wind direction2 θwind ° 10-min. average wind direction
Significant wave height Hs m Significant wave height
Peak wave period Tp s Peak 1-h spectral wave period
Wave direction θwave ° 10-min. average wave direction

Figure 4. Copulogram of the Teesside measured data (N ¼ 104 in gray) and kernel herding subsample
(n¼ 500 in orange). Marginals are represented by univariate kernel density estimation plots (diagonal)
and the dependence structure with scatterplots in the rank space (upper triangle). Scatterplots on the

bottom triangle are set in the physical space.

2 Note that the two directional variables could be replaced by a wind-wave misalignment variable for a bottom-fixed technology;
however, our framework can be directly transposed to floating models.
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probabilistic data structure into two parts: the marginal distributions (in the diagonal, in a similar fashion
as a usual matrix plot) and the dependence structure between features. To do so, it represents themarginals
with univariate kernel density estimation plots (in the diagonal), and the dependence structure with
scatterplots in the rank space (in the upper triangle). Looking at data in the rank space instead of the initial
space allows one to observe the ordinal associations between variables. The common practice is to
normalize the ranks of each marginal between zero and one. Two independent variables will present a
uniformly distributed scatterplot in the rank space. In the lower triangular matrix, the scatterplots are set in
the physical space, merging the effects of themarginals and the dependencies (as in the usual visualization
offered by the matrix plot). Since the dependence structure is theoretically modeled by an underlying
copula, this plot is called copulogram, generalizing the well-known “correlogram” to nonlinear depend-
encies. It gives a synthetic and empirical decomposition of the dataset that was implemented in a new
open-source Python package named copulogram3.

In Figure 4, a large sampleS ⊂DX (with sizeN ¼ 104) is randomly drawn from the entire Teesside data
(with sizeNTeesside ¼ 2× 105) and plotted in gray. In the same figure, the orangematrix plot is a subsample
of the sample S, selected by KH, a method minimizing some discrepancy measure with the sample S that
will be presented in Section 3). For this example, generating the KH subsample takes less than 1 min,
which is negligible compared with the simulation time of OWT models. Visually, this orange subsample
seems to be representative of the original sample both in terms of marginal distributions and dependence
structure. In the following study, the large samples S will be considered as an empirical representation of
the distribution of the random vector X∈DX, with probability density function f X, and called
candidate set. KH allows direct subsampling from this large and representative dataset, instead of fitting
a joint distribution and generating samples from it. Indeed, fitting a joint distribution would introduce an
additional source of error in the uncertainty propagation process. Note that a proper parametric model fit
would be challenging for complex dependence structures such as the one plotted in Figure 4. As examples
of works that followed this path, one canmention thework of Li and Zhang (2020), who built a parametric
model of a similar multivariate distribution using vine copulas.

For a similar purpose and to avoid some limits imposed by the parametric framework, a nonparametric
approach coupling empirical Bernstein copula (EBC) fitting with kernel density estimation of the
marginals is proposed in Section 2.3.

2.3. Nonparametric fit with EBC

Instead of directly subsampling from a dataset such as the one from Figure 4, one could first infer a
multivariate distribution and generate a sample from it. However, accurately fitting such complex
multivariate distributions is challenging. The amount of available data is large enough to make nonpara-
metric inference a viable option.

The Sklar theorem (Joe, 1997) states that the multivariate distribution of any random vector
X∈ℝp, p∈ℕ∗ can be broken down into two objects:

1. A set of univariate marginal distributions to describe the behavior of the individual variables.
2. A function describing the dependence structure between all variables, called a copula.

This theorem states that considering a random vector X∈ℝp, with its cumulative distribution function F
and its marginals Fif gpi¼1, there exists a copula C : 0,1½ �p ! 0,1½ �, such that:

F x1,…,xp
� �¼C F1 x1ð Þ,…,Fp xp

� �� �
: (1)

It allows us to divide the problem of fitting a joint distribution into two independent problems: fitting the
marginals and fitting the copula. Note that, when the joint distribution is continuous, this copula is unique.
Copulas are continuous and bounded functions defined on a compact set (the unit hypercube). Bernstein
polynomials allow uniform approximation as closely as desired any continuous and real-valued function

3 https://github.com/efekhari27/copulogram.

Data-Centric Engineering e5-7

https://doi.org/10.1017/dce.2023.27 Published online by Cambridge University Press

https://github.com/efekhari27/copulogram
https://doi.org/10.1017/dce.2023.27


defined on a compact set (Weierstrass approximation theorem). Therefore, they are good candidates to
approximate unknown copulas. This concept was introduced as EBC by Sancetta and Satchell (2004) for
applications in economics and risk management. Later on, Segers et al. (2017) offered further asymptotic
studies. Formally, the multivariate Bernstein polynomial for a function C : 0,1½ �p !ℝ on a grid over the

unit hypercube G≔ 0
h1
,…, h1h1

n o
×…× 0

hp
,…, hphp

n o
,h¼ h1,…,hp

� �
∈ℕp, is written as follows:

Bh Cð Þ uð Þ≔
Xh1
t1¼0

…
Xhp
tp¼0

C
t1
h1
,…,

tp
hp

� �Yp
j¼1

bhj ,tj uj
� �

, (2)

with u¼ u1,…,up
� �

∈ 0,1½ �p, and the Bernstein polynomial bh,t uð Þ≔ t!
h! t�hð Þ!u

h 1�uð Þt�h. When C is a
copula, then Bh Cð Þ is called “Bernstein copula.” Therefore, the EBC is an application of the Bernstein
polynomial in Eq. (2) to the so-called “empirical copula.” In practice, considering a sample Xn ¼
x 1ð Þ,…,x nð Þ� �

∈ℝnp and the associated ranked sampleRn ¼ r 1ð Þ,…,r nð Þ� �
, the corresponding empirical

copula is written:

Cn uð Þ≔ 1
n

Xn
i¼0

Yp
j¼1

r ið Þ
j

n
≤ uj

( )
,u¼ u1,…,up

� �
∈ 0,1½ �p: (3)

Provided a large enough learning setXn (over 5 years in the present case), the EBC combined with kernel
density estimation for the marginals enable to fit well the environmental joint distribution related to the
dataset in Figure 4. Moreover, the densities of the EBC are available in an explicit form, making Monte
Carlo or quasi-Monte Carlo generation easy. Nevertheless, this method is sensitive to the chosen
polynomial orders hj

� �p
j¼1 and the learning set size. For a thorough presentation of this method, practical

recommendations and theoretical results regarding EBC tuning, see the manuscript of Lasserre (2022).
Further discussions and numerical experiments on the estimation of nonparametric copula models are
presented in Nagler et al. (2017).

2.4. Fatigue assessment

As described in Figure 2, a typical DIEGO simulation returns a 10-minmultiaxial stress time series at each
node i∈ℕ of the one-dimensional (1D) meshed structure. Since classical fatigue laws are established for
uniaxial stresses, the first step is to compute one equivalent Von Mises stress time series at each
structural node.

The foundation and the tower of an OWTare a succession of tubes with various sections connected by
bolted or welded joints. Our work focuses on the welded joints at the mudline level, identified as a critical
area for the structure. This hypothesis is confirmed in the literature by different contributions, see, for
example, the results ofMüller and Cheng (2018) in Figure 12, or Katsikogiannis et al. (2021). At the top of
the turbine, the fatigue is commonly studied at the blade root, whichwas not studied here since the blades in
composite material have different properties (see, e.g., Dimitrov, 2013). Note that the OWT simulations
provide outputs allowing us to similarly study any node along the structure (without any additional
computational effort).

To compute fatigue in awelded joint, the external circle of thewelding ring is discretized for a few azimuth
angles θ∈ℝþ (see the red points in the monopile cross section on the right in Figure 5). The equivalent Von
Mises stress time series is then reported on the external welding ring for an azimuth θ. According to Li and
Zhang (2020) and our own experience, the most critical azimuth angles are roughly aligned with the main
wind and wave directions (whose distributions are illustrated in Figure 5). Looking at these illustrations, the
wind and wave conditions have a very dominant orientation, which is explained by the closeness of the wind
farm to the shore. Then, it is assumed that azimuth angles in these directions will bemore solicited, leading to
higher fatigue damage. To assess fatigue damage, rainflow counting (Dowling, 1972) first identifies the stress
cycles and their respective amplitudes (using the implementation of the ASTM E1049-85 rainflow cycle
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counting algorithm from the Python package rainflow4). For each identified stress cycle of amplitude s∈ℝþ,
the so-called “Stress versus Number of cycles” curve (also called the “SN curve” or “Wöhler curve”) allows
one to estimate the numberNc of similar stress cycles necessary to reach fatigue ruin. The SN curve, denoted
byW �ð Þ is an affine function in the log–log scale with slope �m and y-intercept a:

Nc ≔W sð Þ¼ as�m, a∈ℝþ, m∈ℝþ: (4)

Finally, a usual approach to compute the damage is to aggregate the fatigue contribution of each stress
cycle identified using Miner’s rule. Damage occurring during a 10-min operating time is simulated and
then scaled up to theOWT lifetime.More details regarding damage assessment and theWöhler curve used
are available in Section 2.4.6 from (DNV-GL, 2016a). For the realization x∈DX of environmental
conditions, at a structural node i, an azimuth angle θ; k∈ℕ stress cycles of respective amplitude

s jð Þ
i,θ xð Þ

n ok

j¼1
are identified. Then, Miner’s rule (Fatemi and Yang, 1998) defines the damage function

gi,θ xð Þ :DX !ℝþ by:

gi,θ xð Þ¼
Xk
j¼1

1

N jð Þ
c

¼
Xk
j¼1

1

W s jð Þ
i,θ xð Þ

� 	 : (5)

As defined by theDNV standards for OWT fatigue design (DNV-GL, 2016a), the quantity of interest in
the present paper is the “mean damage” di,θ (also called “expected damage”), computed at a node i, for an
azimuth angle θ:

di,θ ¼E gi,θ Xð Þ
 �¼ Z
DX

gi,θ xð Þf X xð Þdx: (6)

To get a preview of the distribution of this output random variable gi,θ Xð Þ, a histogram of a largeMonte
Carlo simulation (N ref ¼ 2000) is represented in Figure 6 (with a log scale). In this case, the log-damage
histogram presents a little asymmetry but it is frequently modeled by a normal distribution (see, e.g.,
Teixeira et al., 2019b).
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Figure 5. Angular distribution of the wind and waves with a horizontal cross section of the offshore wind
turbines (OWT) structure and the mudline. Red crosses represent the discretized azimuths for which the

fatigue is computed.

4 https://github.com/iamlikeme/rainflow.
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3. Numerical integration procedures for mean damage estimation

The present section explores differentmethods aiming at approximating the integral of a function against a
probabilitymeasure. In the case of OWTmean damage estimation, thesemethods can be used for defining
efficient design load cases. This problem is equivalent to the central tendency estimation ofY¼ g Xð Þ, the
image of the environmental random variableX by the damage function g �ð Þ :DX !ℝ (see, e.g., Eq. (6)).
Considering a measurable space DX ⊂ℝp, p∈ℕ∗, associated with a known probability measure μ, this
section studies the approximation of integrals of the form

R
DX
g xð Þdμ xð Þ.

3.1. Quadrature rules and quasi-Monte Carlo methods

Numerical integration authors may call this generic problem probabilistic integration (Briol et al., 2019).
In practice, this quantity of interest is estimated on an n-sized set of damage realizations yn ¼
g x 1ð Þ� �

,…,g x nð Þ� �� �
of an input sample Xn ¼ x 1ð Þ,…,x nð Þ� �

. A weighted arithmetic mean of the

realizations g x 1ð Þ� �
,…,g x nð Þ� �� �

is called a quadrature rule with a set of unconstrained weights
wn ¼ w1,…,wnf g∈ℝn:

Iμ gð Þ≔
Z
DX

g xð Þdμ xð Þ≈
Xn
i¼1

wig x ið Þ
� 	

: (7)

Our numerical experiment framework often implies that the function g is costly to evaluate, making the
realization number limited. For a given sample size n, our goal is to find a set of tuples x ið Þ,wi

� �n
i¼1

(i.e., quadrature rule), giving the best approximation of our quantity. In the literature, a large panel of
numerical integration methods has been proposed to tackle this problem. For example, Van den Bos
(2020) recently developed a quadrature rule based on arbitrary sample sets which was applied to a similar
industrial OWT use case.

Alternatively, samplingmethods rely on generating a set of pointsXn drawn from the input distribution to
compute the arithmetic mean of their realizations (i.e., uniform weights wi ¼ 1

n

� �n
i¼1). Among them, low-

discrepancy sequences, also called “quasi-Monte Carlo” sampling (e.g., Sobol’, Halton, Faure sequences)
are known to improve the standard Monte Carlo convergence rate and will be used as a deterministic
reference method in the following numerical experiments (Leobacher and Pillichshammer, 2014).

3.2. Kernel discrepancy

Quasi-Monte Carlo sampling methods widely rely on a uniformity metric, called discrepancy. This
section first presents the link between discrepancy and numerical integration. Then, it introduces a kernel-
based discrepancy, generalizing the concept to nonuniformmeasures. This tool is eventually used to build
a sequential quadrature rule by subsampling from a finite dataset.

Global damage (log-scale)
0.00

0.05

0.10

0.15
D

en
si

ty Monte Carlo (Nref = 2000)

Arithmetic mean

Normal fitted

Figure 6. Histogram of the log-damage, at mudline, azimuth 45° (Monte Carlo reference sample).
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3.2.1. Quantization of probability measures and quadrature
When dealing with probabilistic integration such as Eq. (7), a quadrature rule is a finite representation of a
continuous measure μ by a discrete measure ζ n ¼

Pn
i¼1wiδ x ið Þ� �

(weighted sum of Dirac distributions at
the design pointsXn). In the literature, this procedure is also called quantization of a continuous measure
μ. Overall, numerical integration is a particular case of probabilistic integration against a uniform input
measure. For uniformmeasures, the Koksma–Hlawka inequality (Morokoff and Caflisch, 1995) provides
a useful upper bound on the absolute error of a quadrature rule:Z

0,1½ �p
g xð Þdx�1

n

Xn
i¼1

g x ið Þ
� 	�����

�����≤V gð ÞD∗
n Xnð Þ: (8)

As presented in Oates (2021), V gð Þ¼Pu⊆ 1,…,pf g
R
0,1½ �u

∂
ug
∂xu

xu,1ð Þ
��� ���dx quantifies the complexity of the

integrand, while D∗
n Xnð Þ evaluates the discrepancy to uniformity of the design Xn. Therefore, the

Koksma–Hlawka inequality shows that the quadrature rule’s accuracy relies on the good quantization
of μ by Xn. For a uniform measure μ, the star discrepancy D∗

n Xnð Þ is a metric assessing how far from
uniformity a sample Xn is. When generalizing to a nonuniform measure, a good quantization of μ should
also lead to a good approximation of the quantity.

3.2.2. Reproducing kernel Hilbert space and kernel mean embedding
To generalize the Koksma–Hlawka inequality to any probability measure, let us assume that the integrand
g lives in a specific function spaceℋ kð Þ.ℋ kð Þ is a reproducing kernel Hilbert space (RKHS), which is an
inner product space of functions g :DX !ℝ. Considering a symmetric and positive definite function
k :DX ×DX !ℝ, later called a “reproducing kernel” or simply a “kernel,” an RKHS verifies the
following axioms:

• The “feature map” ϕ :DX !ℋ kð Þ;ϕ xð Þ¼ k �,xð Þ belongs to the RKHS: k �,xð Þ∈ℋ kð Þ,∀x∈DX.
• The “reproducing property”: 〈g,k �,xð Þ〉ℋ kð Þ ¼ g xð Þ, ∀x∈DX,∀g∈ℋ kð Þ.

Note that it can be shown that every positive semi-definite kernel defines a unique RKHS (and vice versa)
with a feature map ϕ, such that k x,x0ð Þ ¼ 〈ϕ xð Þ,ϕ x0ð Þ〉ℋ kð Þ. This framework allows us to embed a

continuous or discrete probability measure in an RKHS, as illustrated in Figure 7. For any measure μ,
let us define its kernel mean embedding (Sejdinovic et al., 2013), also called “potential”Pμ xð Þ in Pronzato
and Zhigljavsky (2020), associated with the kernel k as:

Pμ xð Þ≔
Z
DX

k x,x0ð Þdμ x0ð Þ: (9)

Figure 7. Kernel mean embedding of a continuous and discrete probability distribution.
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Respectively, the potential Pζ n xð Þ of a discrete distribution ζ n ¼
Pn

i¼1wiδ x ið Þ� �
,wi ∈ℝþ associated

with the kernel k can be written as:

Pζ n xð Þ¼
Z
DX

k x,x0ð Þdζ n x0ð Þ ¼
Xn
i¼1

wik x,x ið Þ
� 	

: (10)

The potential Pμ xð Þ of the targeted measure μ will be referred to as “target potential” and the potential
Pζ n xð Þ associated with the discrete distribution ζ n called “current potential”when its support is the current
design Xn. When Pζ n xð Þ is close to Pμ xð Þ, it can be interpreted as ζ n being an adequate quantization or
representation of μ (which leads to a good estimation of a quantity such as Iμ gð Þ from Eq. (7)). Potentials
can be computed in closed forms for specific pairs of distribution and associated kernel. Summary tables
of some of these cases are detailed in Briol (2019) (Section 3.4), Pronzato and Zhigljavsky (2020)
(Section 4), and extended in Fekhari et al. (2023). However, in most cases, the target potentials must be
estimated on a large and representative sample, typically a large quasi-Monte Carlo sample of μ.

The energy of a measure μ is defined as the integral of the potential Pμ against the measure μ, which
leads to the following scalar quantity:

εμ ≔
Z
DX

Pμ xð Þdμ xð Þ¼
ðð

D2
X

k x,x0ð Þdμ xð Þdμ x0ð Þ: (11)

Finally, using the reproducing property and writing the Cauchy–Schwarz inequality on the absolute
quadrature error leads to the following inequality, similar to the Koksma–Hlawka inequality Eq. (8) (see
Briol et al., 2019):Xn

i¼1

wig x ið Þ
� 	

�
Z
DX

g xð Þdμ xð Þ
�����

�����¼ 〈g,Pζ n xð Þ〉ℋ kð Þ � 〈g,Pμ xð Þ〉ℋ kð Þ
��� ��� (12a)

¼ 〈g, Pζ n xð Þ�Pμ xð Þ� �
〉ℋ kð Þ

��� ��� (12b)

≤∥g∥ℋ kð Þ Pμ xð Þ�Pζ n xð Þ

 


ℋ kð Þ: (12c)

3.2.3. Maximum mean discrepancy
Ametric of discrepancy and quadrature error is offered by themaximum mean discrepancy (MMD). This
distance between two probability distributions μ and ζ is given by the worst-case error for any function
within a unit ball of the Hilbert space ℋ kð Þ, associated with the kernel k:

MMDk μ,ζð Þ≔ sup
∥g∥ℋ kð Þ ≤ 1

Z
DX

g xð Þdμ xð Þ�
Z
DX

g xð Þdζ xð Þ
����

����: (13)

According to the inequality in Eq. (12c), MMDk μ,ζð Þ¼ Pμ�Pζ



 


ℋ kð Þ, meaning that the MMD fully

relies on the difference of potentials. Moreover, Sriperumbudur et al. (2010) define a kernel as “charac-
teristic kernel” when the following equivalence is true: MMDk μ,ζð Þ¼ 0 ⇔ μ¼ ζ . This property makes
the MMD a metric on DX. The squared MMD has been used for other purposes than numerical
integration: for example, statistical testing (Gretton et al., 2006), global sensitivity analysis (Da Veiga,
2015), or clustering distributions (Lovera et al., 2023). It can be developed as follows:

MMDk μ,ζð Þ2 ¼ Pμ xð Þ�Pζ xð Þ

 

2
ℋ kð Þ (14a)

¼ 〈 Pμ xð Þ�Pζ xð Þ� �
, Pμ xð Þ�Pζ xð Þ� �

〉ℋ kð Þ (14b)
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¼ 〈Pμ xð Þ,Pμ xð Þ〉ℋ kð Þ �2〈Pμ xð Þ,Pζ xð Þ〉ℋ kð Þ þ 〈Pζ xð Þ,Pζ xð Þ〉ℋ kð Þ (14c)

¼
ðð

D2
X

k x,x0ð Þdμ xð Þdμ x0ð Þ�2
ðð

D2
X

k x,x0ð Þdμ xð Þdζ x0ð Þþ
ðð

D2
X

k x,x0ð Þdζ xð Þdζ x0ð Þ: (14d)

Taking a discrete distribution with uniform weights ζ n ¼ 1
n

Pn
i¼1δ x ið Þ� �

, the squared MMD reduces to:

MMDk μ,ζ nð Þ2 ¼ εμ�2
n

Xn
i¼1

Pμ x ið Þ
� 	

þ 1
n2
Xn
i, j¼1

k x ið Þ,x jð Þ
� 	

: (15)

3.3. KH sampling

Herein, the MMD is used to quantize the known target measure μ by a design sample Xn. For practical
reasons, the design construction is done sequentially. Sequential strategies have also been used to learn
and validate regression models for statistical learning (see Fekhari et al., 2023). Moreover, since each
realization is supposed to be obtained at the same unitary cost, the quadrature weights are first fixed as
uniform during the construction of the design Xn.

KH, proposed byChen et al. (2010), is a samplingmethod that offers a quantization of themeasure μ by
minimizing a squared MMD when adding points iteratively. With a current design Xn and its corres-
ponding discrete distribution with uniform weights ζ n ¼ 1

n

Pn
i¼1δ x ið Þ� �

, a KH iteration is as an optimiza-

tion of the following criterion, selecting the point x nþ1ð Þ ∈DX:

x nþ1ð Þ ∈ argmin
x∈DX

MMDk μ,
1

nþ1
δ xð Þþ

Xn
i¼1

δ x ið Þ
� 	 ! !2

8<
:

9=
;: (16)

In the literature, two formulations of this optimization problem can be found. The first one uses the
Frank–Wolfe algorithm (or “conditional gradient algorithm”) to compute a linearization of the problem
under the convexity hypothesis (see Lacoste-Julien et al. (2015) and Briol et al. (2015) for more details).
The second one is a straightforward greedy optimization. Due to the combinatorial complexity, the greedy
formulation is tractable for sequential construction only. Let us develop theMMD criterion from Eq. (15):

MMDk μ,
1

nþ1
δ xð Þþ

Xn
i¼1

δ x ið Þ
� 	 ! !2

¼ εμ� 2
nþ1

Xnþ1

i¼1

Pμ x ið Þ
� 	

þ 1

nþ1ð Þ2
Xnþ1

i, j¼1

k x ið Þ,x jð Þ
� 	

(17a)

¼ εμ� 2
nþ1

Pμ xð Þþ
Xn
i¼1

Pμ x ið Þ
� 	 !

(17b)

þ 1

nþ1ð Þ2
Xn
i, j¼1

k x ið Þ,x jð Þ
� 	

þ2
Xn
i¼1

k x ið Þ,x
� 	

� k x,xð Þ
 !

:

(17c)

In the previously developed expression, only a few terms actually depend on the next optimal point x nþ1ð Þ

since the target energy, denoted by εμ, and k x,xð Þ¼ σ2 are constant (by taking a stationary kernel).
Therefore, the greedy minimization of the MMD can be equivalently written as:

x nþ1ð Þ ∈ argmin
x∈DX

1
nþ1

Xn
i¼1

k x ið Þ,x
� 	

�Pμ xð Þ
( )

¼ argmin
x∈DX

n
nþ1

Pζ n xð Þ�Pμ xð Þ
� �

: (18)

Remark 1. For the sequential and uniformly weighted case, the formulation in Eq. (18) is almost similar to
the Frank–Wolfe formulation. Our numerical experiments showed that these two versions generate very
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close designs, especially as n becomes large. Pronzato and Rendas (2021) express the Frank–Wolfe
formulation in the sequential and uniformly weighted case as follows:

x nþ1ð Þ ∈ argmin
x∈DX

Pζ n xð Þ�Pμ xð Þ� �
: (19)

Remark 2. In practice, the optimization problem is solved by a brute-force approach on a fairly dense finite
subset S ⊆ DX of candidate points with size N≫ n that emulates the target distribution, also called the
“candidate set.” This sample is also used to estimate the target potential Pμ xð Þ≈ 1

N

PN
i¼1k x ið Þ,x

� �
.

The diagram illustrated in Figure 8 summarizes the main steps of a KH sampling algorithm. One can
notice that the initialization can either be done using a median point (maximizing the target potential) or
from any existing design of experiments. This second configuration showed to be practical when the
analyst must include some characteristic points in the design (e.g., points with a physical interpretation).

As explained previously, choosing the kernel defines the function space on which the worst-case
function is found (see Eq. (13)). Therefore, this sampling method is sensitive to the kernel’s choice.
A kernel is defined by both the choice of its parametric family (e.g., Matérn, squared exponential) and the
choice of its tuning. The so-called “support points” method developed by Mak and Joseph (2018) is a
special case of KH that uses the characteristic and parameter-free “energy-distance” kernel (introduced by
Székely and Rizzo, 2013). In the following numerical experiments, the energy-distance kernel will be
compared with an isotropic tensor product of a Matérn kernel (with regularity parameter ν¼ 5=2 and
correlation lengths θi), or a squared exponential kernel (with correlation lengths θi) defined in Table 3.
Since the Matérn and squared exponential kernels are widely used for GP regression (Rasmussen and
Williams, 2006), they were naturally picked to challenge the energy-distance kernel. The correlation
lengths for the squared exponential and Matérn kernels are set using the heuristic given in Fekhari et al.
(2023), θi ¼ n�1=p, i∈ 1,…,pf g.

Figure 9 represents the covariance structure of the three kernels. One can notice that the squared
exponential and Matérn ν¼ 5=2 kernels are closer to one another than they are to the energy distance. In
fact, as ν tends to infinity, the Matérn kernel tends toward the squared exponential kernel (which has
infinitely differentiable sample paths, see Rasmussen and Williams, 2006). For these two stationary
kernels, the correlation length controls how fast the correlation between two points decreases as their
distance from one another increases.

Meanwhile, the energy distance is not stationary (but still positive and semi-definite). Therefore, its
value does not only depend on the distance between two points but also on the norm of each of the points.
Interestingly, the energy-distance kernel is almost similar to the kernel used byHickernell (1998) to define
a widely used space-filling metric called the centered L2-discrepancy. A presentation of these kernel-
based discrepancies from the design of experiment point of view is also provided in Chapter 2 from Fang
et al. (2018).

To illustrate the KH sampling of a complex distribution, Figure 10 shows three nested samples (orange
crosses for different sizes n∈ 10,20,40f g) of a mixture of Gaussian distributions with complex nonlinear
dependencies (with density represented by the black isoprobability contours). In this example, themethod

Figure 8. Greedy kernel herding algorithm.
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seems to build a parsimonious design between each mode of the distribution (by subsampling directly
without any transformation). The candidate set (in light gray) was generated by a large quasi-Monte
sample of the underlyingGaussianmixture. In this two-dimensional case, this candidate set is sufficient to
estimate the target potential Pμ. However, the main bottleneck of KH is the estimation of the potentials,
which becomes costly in high dimensions.

Other approaches take advantage of the progressive knowledge acquired sequentially from the outputs
to select the following points in the design. These methods are sometimes called “active learning” or
“adaptive strategies” (Fuhg et al., 2021). Many of them rely on a sequentially updated GP (or Kriging)
metamodel. To solve a probabilistic integration problem, the concept of Bayesian quadrature (BQ) is
introduced in the following.

Table 3. Kernels considered in the following numerical experiments

Energy
distance

kE x,x0ð Þ ¼ 1
2 ∥x∥þ∥x0∥�∥x�x0∥ð Þ

Squared
exponential

kG x,x0ð Þ ¼Qp
i¼1kθi xi� x0i

� �
kθ x� x0ð Þ ¼ exp � x�x0ð Þ2

2θ2

� 	
Matérn

ν¼ 5=2ð Þ
kM x,x0ð Þ ¼Qp

i¼1k5=2,θi xi� x0i
� �

k5=2,θ x� x0ð Þ ¼ 1þ
ffiffiffi
5

p

θ
∣x� x0∣ þ 5

3θ2
x� x0ð Þ2

� �

exp �
ffiffiffi
5

p

θ
jx� x0j

� �

Figure 9. Kernel illustrations (left to right: energy-distance, squared exponential, and Matérn 5=2).
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Figure 10. Sequential kernel herding for increasing design sizes (n∈ 10,20,40f g) built on a candidate set
of N¼ 8196 points drawn from a complex Gaussian mixture μ.

Data-Centric Engineering e5-15

https://doi.org/10.1017/dce.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2023.27


3.4. Bayesian quadrature

3.4.1. GPs for BQ
Kernel methods and GPs present a lot of connections and equivalences, thoroughly reviewed by
Kanagawa et al. (2018). In numerical integration, GPs have been used to build quadrature rules in the
seminal paper of O’Hagan (1991), introducing the concept of BQ. Let us recall the probabilistic
integration problem Iμ gð Þ¼ RDX

g xð Þdμ xð Þ (stated in Eq. (7)). From a general point of view, this quantity
could be generalized by composing gwith another functionψ (e.g., other moments, quantiles, exceedance
probabilities). The quantity of interest then becomes, Iμ ψ gð Þð Þ, for example, when ψ is a monomial, it
gives a moment of the output distribution.

Let us assume, adopting a Bayesian point of view, that ξ is a stochastic process describing the
uncertainty affecting the knowledge about the true function g. Let ξ be a GP prior with a zero trend
(denoted by 0) to ease the calculation, and a stationary covariance kernel (denoted by k �, �ð Þ). The
conditional posterior ξn ≔ ξjynð Þ�GP ηn,s

2
n

� �
has been conditioned on the function observations yn ¼

g x 1ð Þ� �
,…,g x nð Þ� �
 �Τ

computed from the input design Xn and is fully defined by the well-known
“Kriging equations” (see, e.g., Rasmussen and Williams, 2006):

ηn xð Þ ≔ kΤ
n xð ÞK�1

n yn
s2n xð Þ ≔ kn x,xð Þ�kΤ

n xð ÞK�1
n kn xð Þ

(
(20)

where kn xð Þ is the column vector of the covariance kernel evaluations kn x,x 1ð Þ� �
,…,kn x,x nð Þ� �
 �

andKn

is the n× nð Þ variance–covariance matrix such that the i, jð Þ-element is Knf gi,j ¼ kn x ið Þ,x jð Þ� �
.

In BQ, themain object is the randomvariable Iμ ξnð Þ. According toBriol et al. (2019), its distribution on
ℝ is the pushforward of ξn through the integration operator Iμ �ð Þ, sometimes called posterior distribution:

Iμ ξnð Þ¼
Z
DX

ξ xð Þjynð Þdμ xð Þ¼
Z
DX

ξn xð Þdμ xð Þ: (21)

Figure 11 provides a 1D illustration of the BQ of an unknown function (dashed black curve) against a
given input measure μ (with corresponding gray distribution at the bottom). For an arbitrary design, one
can fit a GP model, interpolating the function observations (black crosses). Then, multiple trajectories of
this conditioned GP ξn are drawn (orange curves) while its mean function, also called “predictor,” is
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Figure 11. Bayesian quadrature on a one-dimensional case.
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represented by the red curve. Therefore, the input measure μ is propagated through the conditioned GP to
obtain the random variable Iμ ξnð Þ, with distribution represented on the right plot (brown curve). Again on
the right plot, remark how the mean of this posterior distribution (brown line) is closer to the reference
output expected value (dashed black line) than the arithmetic mean of the observations (black line). This
plot was inspired by the paper of Huszár and Duvenaud (2012).

3.4.2. Optimal weights computed by BQ
Taking the random process ξn as Gaussian conveniently implies that its posterior distribution aμ ξnð Þ is
also Gaussian. This comes from the linearity of the infinite sum of realizations of a GP. The posterior
distribution is described in a closed form through its mean and variance by applying Fubini’s theorem (see
the supplementary materials from Briol et al. (2019) for the proof regarding the variance):

yBQn ≔E Iμ ξnð Þjyn

 �¼Z

DX

ηn xð Þdμ xð Þ¼
Z
DX

kΤ
n xð Þdμ xð Þ

� �
K�1

n yn ¼Pμ Xnð ÞK�1
n yn (22)

σBQn
� �2 ≔Var Iμ ξnð Þ� �¼ ðð

DX2

kn x,x0ð Þdμ xð Þdμ x’ð Þ¼ εμ�Pμ Xnð ÞK�1
n Pμ Xnð ÞΤ : (23)

where Pμ Xnð Þ is the row vector of potentials
R
kn x,x 1ð Þ� �

dμ xð Þ,…,
R
kn xð ,x nð ÞÞdμ xð Þ
 �

, and εμ is given in
Eq. (11). As in the 1D example presented in Figure 11, the expected value of Iμ ξnð Þ expressed in Eq. (22)
is a direct estimator of the quantity of interest Eq. (7). The so-called “BQ estimator” appears to be a simple
linear combination of the observations by taking the row vector of “optimal weights” as:

wBQ ≔ Pμ Xnð ÞK�1
n : (24)

For any given sample, an optimal set of weights can be computed, leading to the mean of the posterior
distribution. Remark here that this enhancement depends on the evaluation of the inverse variance–
covariance matrix K�1

n , which can present numerical difficulties, typically when design points are too
close, making the conditioning bad.Moreover, a prediction interval on the BQ estimator can be computed
since the posterior distribution is Gaussian, with a variance expressed in closed-form in Eq. (23). The
expressions in Eq. (22) and Eq. (23) were extended to GPs in the case of constant and linear trends in
Pronzato and Zhigljavsky (2020). In the following numerical experiments, the expression with a

hypothesis of constant trend β¼ β1,…,βp
� �Τ

is used, which leads to:

yBQn ¼ βþPμ Xnð ÞK�1
n yn�β1nð Þ: (25)

Then, an a posteriori 95% prediction interval around the mean Bayesian estimator is directly given by:

yBQn �2σBQn ,yBQn þ2σBQn

 �

: (26)

3.4.3. Variance-based BQ rule
The link between the posterior variance and the squared MMD has been first made by Huszár and
Duvenaud (2012) in their Proposition 1: the expected variance in the BQ Var Iμ ξnð Þ� �

is the MMD

between the target distribution μ and ζ n ¼
Pn

i¼1w
ið Þ
BQδ x ið Þ� �

. The proof is reproduced below (as well as in

Proposition 6.1 from Kanagawa et al., 2018):

Var Iμ ξnð Þ� �¼E Iμ ξnð Þ� Iζ n ξnð Þ� �2h i
(27a)

¼E 〈ξn,Pμ〉ℋ kð Þ � 〈ξn,Pζ n〉ℋ kð Þ
� 	2� �

(27b)
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¼E 〈ξn,Pμ�Pζ n〉
2
ℋ kð Þ

h i
(27c)

¼ ∥Pμ�Pζ n∥
2
ℋ kð Þ (27d)

¼MMDk μ,ζ nð Þ2: (27e)

Note that the transition from equation (27c) to (27d) relies on the property stating that if ξ is a GPwith null

trend and covariance kernel k, then ∀g∈ℋ kð Þ : 〈ξ,g〉ℋ kð Þ �N 0,∥g∥2ℋ kð Þ
� 	

. The method that sequen-

tially builds a quadrature rule byminimizing this variance is called by the authors “sequential BQ” (SBQ).
According to the previous proof, this criterion can be seen as an optimally weighted version of the KH
criterion, as stated in the title of the paper from Huszár and Duvenaud (2012). Later, Briol et al. (2015)
proved the weak convergence of Iμ ξnð Þ toward the target integral.

Closer to wind turbine applications, Huchet (2018) and Huchet et al. (2019) introduced the “Adaptive
Kriging Damage Assessment”method: a Kriging-based method for mean damage estimation that is very
close to SBQ. However, this type of method inherits the limits from both KH and BQ since it searches for
optimal design points among a candidate set and computes an inverse variance–covariance matrix. These
numerical operations cannot easily scale up to high dimensions.

Remark 3. Every quadrature method introduced in this section has been built without any observation
of the possibly costly function g. Therefore, they cannot be categorized as active learning approaches.
Contrarily, Kanagawa and Hennig (2019) present a set of methods for BQ with transformations
(i.e., adding a positivity constraint on the function g), which are truly active learning methods.

4. Numerical experiments

This section presents numerical results computed on two different analytical toy cases, respectively, in
dimension 2 (toy case #1) and dimension 10 (toy case #2), with easy-to-evaluate functions g �ð Þ and
associated input distributions μ (see Table 4). Therefore, reference values can easily be computed with
great precision. For each toy case, a large reference Monte Carlo sample (Nref ¼ 108) is taken. This first
benchmark compares the mean estimation of toy cases given by a quasi-Monte Carlo technique
(abbreviated by QMC in the next figures) which consists herein using a Sobol’ sequence, and KH with
the three kernels defined in Table 3. Notice that the quasi-Monte Carlo designs are first generated on the
unit hypercube and then, transformed using the generalized Nataf transformation to follow the target
distribution (Lebrun and Dutfoy, 2009). Additionally, the performances of KH for both uniform and
optimally weighted Eq. (25) estimators are compared.

All the following results and methods (i.e., the kernel-based sampling and BQ methods) have been
implemented in a new open-source Python package named otkerneldesign5. This development mostly
relies on the open source software OpenTURNS6 (“Open source initiative for the Treatment of Uncer-
tainties, Risks’N Statistics”) devoted to uncertainty quantification and statistical learning (Baudin et al.,
2017). Finally, note that the numerical experiments for the toy cases are available in the Git repository
named ctbenchmark7 for reproducibility purposes.

4.1. Illustration through analytical toy cases

The toy cases were chosen to cover a large panel of complex probabilistic integration problems,
completing the ones from Fekhari et al. (2021). To assess the complexity of numerical integration
problems, Owen (2003) introduced the concept of the “effective dimension” of an integrand function

5 https://efekhari27.github.io/otkerneldesign/master/index.html.
6 https://openturns.github.io/www/.
7 https://github.com/efekhari27/ctbenchmark.
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(number of the variables that actually impact the integral). The author showed that functions built on sums
yield a low effective dimension (unlike functions built on products). In the same vein, Kucherenko et al.
(2011) build three classes of integrand sorted by difficulty depending on their effective dimension:

• class A: problem with a few dominant variables.
• class B: problem without unimportant variables, and important low-order interaction terms.
• class C: problems without unimportant variables, and important high-order interaction terms.

The 10-dimensional “GSobol function” (toy case #2) with a set of coefficient ai ¼ 2f g10i¼1 has an effective
dimension equal to 10 and belongs to the hardest class C fromKucherenko et al. (2011). In the case of the
two-dimensional Gaussian mixture problem, the complexity is carried by the mixture of Gaussian
distributions with highly nonlinear dependencies. Probabilistic integration results are presented in
Figure 12 (toy case #1) and Figure 13 (toy case #2). KH samples using the energy-distance kernel are
in red, while quasi-Monte Carlo samples built from Sobol’ sequences are in gray. To ease the reading, the
results from the other kernels defined in Table 3 are moved to Appendix A, in Figures 17 and 18.
Convergences of the arithmetic means are plotted on the left and MMDs on the right. The respective BQ
estimators of the means are plotted in dashed lines.

Remark 4. Different kernels are used in these numerical experiments. First, the generation kernel, used
by theKH algorithm to generate designs (with the heuristic tuning defined in Section 3.3). Second, the BQ
kernel allows computation of the optimal weights (arbitrarily set up as a Matérn 5=2 with the heuristic
tuning). Third, the evaluation kernel, which must be common to allow a fair comparison of the computed
MMD results (same as the BQ kernel).

Results analysis for toy case #1. Convergence plots are provided in Figure 12. KH consistently
converges faster than quasi-Monte Carlo in this case, especially for small sizes in terms of MMD. BQ
weights tend to reduce the fluctuations in the mean convergence, which ensures better performance for
any size. Overall, applying the weights enhances the convergence rate.

Results analysis for toy case #2. Convergence plots are provided in Figure 13. Although quasi-Monte
Carlo is known to suffer the “curse of dimensionality,” KH does not outperform it drastically in this
example. In fact, KH with uniform weights performs worse than quasi-Monte Carlo while optimally

Table 4. Analytical toy cases

toy case #1 dim¼ 2 g1 xð Þ¼ x1þ x2 Gaussian mixture from Figure 10
toy case #2 dim¼ 10 g2 xð Þ¼Q10

i¼1
∣4xi�2∣þai

1þai
, ai ¼ 2f g10i¼1

Gaussian N 0:5,I10ð Þ

101 102 103 101 102 103

n (log scale)
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Figure 12. Analytical benchmark results on the toy case #1.
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weighted KH does slightly better. Moreover, the results confirm that MMDBQ <MMDunif for all our
experiments. The application of optimal weights to the quasi-Monte Carlo sample slightly improves the
estimation in this case. Note that the prediction interval around the BQ estimator is not plotted for the sake
of readability.

In these two toy cases, the MMD is shown to quantify numerical integration convergence well, which
illustrates the validity of the inequality given in Eq. (12c), similar to the Koksma–Hlawka inequality
(as recalled in Eq. (8)).

4.2. Application to the Teesside wind turbine fatigue estimation

Let us summarize themean damage estimation strategies studied in this paper. The diagram represented in
Figure 14 describes the different workflows computed. The simplest workflow is represented by the gray
horizontal sequence. It directly subsamples a design of experiments from a large and representative
dataset (previously referred to as candidate set). This workflow simply estimates the mean damage by
computing an arithmetic average of the outputs.

Alternatively, one can, respectively, fit a joint distribution and sample from it. In our case, this
distribution is only known empirically via the candidate set. Since its dependence structure is complex
(see Figure 4), a parametric method might fit the distribution poorly (and therefore lead to a poor
estimation of the quantity). Then, a nonparametric fit using the EBC (introduced in Section 2.3) coupled
with a kernel density estimation on each marginal is applied to the candidate set (with the EBC parameter
m¼ 100>mMISE to avoid bias, see Lasserre (2022, p. 117). The sampling on this hybrid joint distribution
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Figure 13. Analytical benchmark results on the toy case #2.

Figure 14. Mean damage estimation workflows for the industrial use case. The orange parts represent
optional alterations to the workflow: the first one is an alternative to input data subsampling where the
underlying distribution is sampled from, and the second one improves mean damage calculation by using

optimal weights over the output data.
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is realized with a quasi-Monte Carlo method. A Sobol’ low-discrepancy sequence generates a uniform
sample in the unit hypercube, which can then be transformed according to a target distribution. Remember
that quasi-Monte Carlo sampling is also sensitive to the choice of a low-discrepancy sequence, each
presenting different properties (e.g., Sobol’, Halton, Faure, etc.). Finally, the estimation by an arithmetic
mean can be replaced by an optimally weighted mean. To do so, optimal weight must be computed using
the formulas introduced in Eq. (24).

The copulogram in Figure 15 illustrates the intensity of the computed damages, proportionally to the
color scale. Note that the numerical values of the damage scale are kept confidential since it models the state
of an operating asset. Before analyzing the performance of theKHon this industrial application, let us notice
that the copulogram Figure 15 seems to be in line with the global sensitivity analysis presented in Murcia
et al. (2018) and Li and Zhang (2020). In particular, the scatterplot of mean wind speed versus turbulence
wind speed is themain factor explaining the variance of the outputY ¼ g Xð Þ. Judging from these references,
the numerical model does not seem to have a highly effective dimension; however, the input dependence
structure is challenging and the damage assessment induces strong nonlinearities (see Eq. (4)).

Figure 15. Copulogram of the kernel herding design of experiments with corresponding outputs in color
(log-scale) on the Teesside case (n¼ 103). The color scale ranges from blue for the lowest values to red for
the largest. Marginals are represented by histograms (diagonal), the dependence structure with scat-
terplots in the ranked space (upper triangle). Scatterplots on the bottom triangle are set in the physical

space.
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The results presented are compared in the following to a large reference Monte Carlo sample (size
2000) with a confidence interval computed by bootstrap (see Figure 16). This reference is represented by a
horizontal line intersecting with the most converged Monte Carlo estimation. Once again, the mean
damage scale is hidden for confidentiality reasons, but all the plots are represented for the same vertical
scale. The performance of the KH is good: it quickly converges toward the confidence interval of the
Monte Carlo obtained with the reference sample. In addition, the BQ estimator also offers a posteriori
prediction interval, which can reassure the user. The BQ prediction intervals are smaller than the ones
obtained by bootstrap on the reference Monte Carlo sample.

To provide more representative results, note that a set of scale parameters is computed with a Kriging
procedure to define the kernel used to compute BQ intervals. Since other methods do not generate
independent samples, bootstrapping them is not legitimate. Contrarily to the other kernels, we observe
that the energy-distance kernel presents a small bias with theMC reference for most of the azimuth angles
computed in this experiment. Meanwhile, combining nonparametric fitting with quasi-Monte Carlo
sampling also delivers good results as long as the fitting step does not introduce a bias. In our case,
any potential bias due to poor fitting would be the result of a poorly tuned EBC. Fortunately, Nagler et al.
(2017) formulated recommendations regarding how to tune EBCs. We follow these recommendations in
the present work.

5. Conclusion

Wind energy assets are subject to highly uncertain environmental conditions. Uncertainty propagation
through numerical models is performed to ensure their structural integrity (and energy production). For

10 200 400 600 800 1000 1200 1400 1600 1800

n

M
ea

n
d
am

ag
e

(l
o
g
-s

ca
le

)

OWT numerical model (mudline 45°)

Monte Carlo

Monte Carlo CI 95%

Matérn 5/ 2

Matérn 5/ 2 weighted

BQ CI 95%

10 200 400 600 800 1000 1200 1400 1600 1800

n

M
ea

n
d
am

ag
e

(l
o
g
-s

ca
le

)

OWT numerical model (mudline 45°)

Monte Carlo

Monte Carlo CI 95%

Energy-distance

Energy-distance weighted

BQ CI 95%

10 200 400 600 800 1000 1200 1400 1600 1800
n

M
ea

n
d
am

ag
e

(l
o
g
-s

ca
le

)

OWT numerical model (mudline 45°)

Monte Carlo

Monte Carlo CI 95%

QMC

QMC weighted

BQ CI 95%

Figure 16. Mean estimation convergence (at the mudline, azimuth θ¼ 45deg:) on the Teesside case.
Monte Carlo confidence intervals are all computed by bootstrap.
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this case, the method recommended by the standards (regular grid sampling) is intractable for even
moderate-fidelity simulators. In practice, such an approach can lead to poor uncertainty propagation,
especially when facing simulation budget constraints.

In the present paper, a real industrial wind turbine fatigue estimation use case is investigated by
considering site-specific data. As a perspective, other sites with different environmental conditions could
be studied. This use case induces two practical constraints: first, usual active learning methods are hard to
set up on such a model (mainly due to the nonlinearity of the variable of interest), and they restrict the use
of high-performance computing facilities; second, the input distribution of the environmental conditions
presents a complex dependence structure which is hard to infer with common parametric approaches.

In this work, the association of KH sampling with BQ for central tendency estimation is explored
theoretically and numerically. This method fits with the practical constraints induced by the industrial use
case. To be more specific, the KH method easily subsamples the relevant points directly from a given
dataset (here, from the measured environmental data). Moreover, the method is fully compatible with
intensive high-performance computer use. Moreover, the present work outlined an upper bound based on
the MMD on numerical integration absolute error. KH and BQ both aim at finding the quadrature rule
minimizing the MMD, and therefore the absolute integration error. The numerical experiments confirm
that theMMD is an appropriate criterion since it leads to results being better or equivalent to quasi-Monte
Carlo sampling. Finally, the proposed numerical benchmark relies on a Python package, called otker-
neldesign, which implements the methods and allows anyone to reproduce the results.

The limits of the proposed method are reached when the input dimension of the problem increases,
requiring a larger candidate set and therefore a larger covariance matrix. Moreover, the numerical
experiments show that the method can be sensitive to the choice of the kernel and its tuning (although
good practices can be derived). From a methodological viewpoint, further interpretation of the impact of
the different kernels could be explored. Besides, extensions of KH sampling for quantile estimation could
be investigated, in a similar fashion as the work on randomized quasi-Monte Carlo for quantiles proposed
by Kaplan et al. (2019). KH could also be used to quantize conditional distributions, using the so-called
“conditional kernel mean embedding” concept reviewed by Klebanov et al. (2020). Finally, regarding the
industrial use case, the next step should be to perform a reliability analysis by considering another group of
random variables (related to the wind turbine) or to explore the possibilities offered by reliability-oriented
sensitivity analysis in the context of kernel-based indices, as studied in Marrel and Chabridon (2021).

Data availability statement. Replication data and code of the analytical benchmark can be found in the GitHub repository: https://
github.com/efekhari27/ctbenchmark.
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A. Complementary results to the analytical benchmark
This section presents complementary results to the two analytical problems using the Matérn and squared-exponential kernels.
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Figure 17. Analytical benchmark results on the toy case #1.
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Figure 18. Analytical benchmark results on the toy case #2.
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