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On the role of the laminar/turbulent interface in
energy transfer between scales in bypass
transition
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We investigate the role of the laminar/turbulent interface in the interscale energy
transfer in a boundary layer undergoing bypass transition with the aid of the
Kármán–Howarth–Monin–Hill (KHMH) equation. A local binary indicator function is
used to detect the interface and employed subsequently to define two-point intermittencies.
These are used to decompose the standard-averaged interscale and interspace energy
fluxes into conditionally averaged components. We find that the inverse cascade in the
streamwise direction reported in an earlier work arises due to events across the downstream
or upstream interfaces of a turbulent spot. However, the three-dimensional energy
flux maps reveal significant differences between these two regions: in the downstream
interface, inverse cascade is stronger and dominant over a larger range of streamwise
and spanwise separations. We explain this finding by considering a propagating spot of
simplified shape as it crosses a fixed streamwise location. We derive also the conditionally
averaged KHMH equation, thus generalising similar equations for single-point statistics
to two-point statistics. We compare the three-dimensional maps of the conditionally
averaged production and total energy flux within turbulent spots against the maps
of standard-averaged quantities within the fully turbulent region. The results indicate
remarkable dynamical similarities between turbulent spots and the fully turbulent region
for two-point statistics. This has been known only for single-point quantities, and we
demonstrate here that the similarity extends to two-point quantities as well.
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1. Introduction

1.1. Bypass transition
Transition to turbulence that does not involve linear instability paths, such as
Tollmien–Schlichting waves, is called bypass transition (Morkovin 1969). This type of
transition can be triggered by high levels of free-stream turbulence, surface roughness,
etc. In the case of free-stream turbulence, which is the triggering mechanism considered
in this paper, bypass transition comprises three stages. In the first stage, low-frequency
fluctuations from the free stream penetrate inside the boundary layer, forming high- and
low-speed streaks, while high-frequency fluctuations remain in the free stream due to
shear sheltering (Hunt & Durbin 1999; Leib, Wundrow & Goldstein 1999; Zaki & Saha
2009). In the second stage, the streaks break down to intermittent turbulent patches (or
spots) due to secondary instability (Andersson et al. 2001; Vaughan & Zaki 2011), while
in the final stage the spots propagate and merge, forming a fully turbulent region. More
details can be found in the review papers of Durbin & Wu (2007), Zaki (2013) and Durbin
(2017).

Most previous investigations of the structural details of turbulent spots, such as shape,
propagation speed, growth rate, etc., have employed analysis of single-point statistics (see
Emmons 1951; Wygnanski, Sokolov & Friedman 1976; Cantwell, Coles & Dimotakis
1978; Perry, Lim & Teh 1981; Singer 1996; Nolan & Zaki 2013; more recently Wang
et al. 2021, 2022). This type of analysis, however, cannot capture the underlying physical
mechanisms that explain the spot growth and the amalgamation process of smaller spots to
form larger turbulent patches as transition progresses. In order to study this process in more
detail, an analysis of two-point statistics is required. The second-order structure function
at point Xi is defined as the second moment of the fluctuating velocity difference at points
x±

i = Xi ± 1
2 ri, i.e. dq2(Xi, ri) = (u′+

i − u′−
i )2, where the overbar denotes time averaging.

The volume integral of dq2 over a sphere of radius r = |ri| (divided by the volume of the
sphere) represents physically the energy of eddies located at Xi that have size (or scale)
less than r; this is also known as scale energy (for details, see Davidson (2015)). This is
the appropriate quantity to study in order to better understand the process of spot growth
and merging.

The transport equation of dq2(Xi, ri) is known as the Kármán–Howarth–Monin–Hill
(KHMH) equation. It contains all the physical mechanisms that determine the energy
contained within eddies of scale less than r, such as transfer of energy in scale space
(i.e. from smaller or larger scales), transfer of energy in physical space, production
(due to mean shear), dissipation (due to viscosity), etc. It was first derived by Kármán
& Howarth (1938) for homogeneous isotropic turbulence using the two-point velocity

correlation tensor, u′+
i u′−

j , and later reformulated in terms of structure function dq2(ri)

by Kolmogorov (1941). The equation was used to prove the famous −4/5 law, which links
the interscale energy flux, the separation between the two points and the dissipation rate.
For homogeneous isotropic turbulence the interscale flux is always negative, i.e. energy is
transferred from large to small scales; this is known as forward cascade. The most general
form of the KHMH equation, applicable to inhomogeneous and anisotropic flows, was
derived directly from Navier–Stokes equations by Hill (2002). The equation was applied
recently to transitional boundary layers and demonstrated strong inverse cascade in the
transition region, especially in the streamwise direction (see Yao, Mollicone & Papadakis
2022). Analysis of instantaneous velocity fields and flux vectors revealed that the inverse
cascade was related to the growth of turbulent spots.
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Laminar/turbulent interface and interscale energy transfer

The KHMH equation has been applied to several other flow settings, such as
homogeneous shear flow (Casciola et al. 2003), channel flow (Marati, Casciola & Piva
2004; Cimarelli, De Angelis & Casciola 2013; Cimarelli et al. 2015b, 2016), von Kármán
flow (Dubrulle 2019; Knutsen et al. 2020), temporal planar jets (Cimarelli et al. 2021) and
wake behind a square cylinder (Alves Portela, Papadakis & Vassilicos 2017, 2020), and
has revealed convoluted paths of interscale energy fluxes with a mixture of forward and
inverse cascade. In all these investigations, the points x±

i used to define dq2 are immersed
within a turbulent flow. This is not the case, however, in transitional flows, where for a
fixed streamwise location Xi and separation ri, the two points will experience different
flow conditions as a spot propagates; for example, x±

i may be within the laminar region,
straddle the laminar/turbulent interface or be within a turbulent patch. It is therefore
difficult to explain the origin of the inverse cascade found in Yao et al. (2022). For
example, does it arise from the turbulent conditions within the spot? What is the role of
the laminar/turbulent interface? Is there competition between the different flow conditions,
i.e. do some lead to forward and others to inverse cascade?

To answer these questions in the present paper we perform conditional averaging
of the interscale energy fluxes based on the state of the two points, i.e. whether they
experience laminar or turbulent flow conditions. This process clearly elucidates the effect
of different flow states and the role of the laminar/turbulent interface. As seen later, it even
characterises the separate roles of the downstream and upstream interfaces of the spot.
We also examine the production term of the KHMH equation conditioned on turbulent
events within a turbulent patch, and compare it with the production term when the two
points are located within the fully turbulent region. Similar comparisons have been made
for single-point quantities, such as turbulent kinetic energy (see Marxen & Zaki 2019). We
derive also the conditionally averaged form of the KHMH equation, which is analogous to
the conditionally averaged turbulent kinetic energy equation.

A few studies in the literature have similarities to, but also differences from, the present
work. Cimarelli et al. (2015a) employed the spectral enstrophy budget equation to study
the enstrophy transfer between scales close to the interface between decaying shear-free
turbulence and quiescent fluid. They found anisotropic cascade, where large-scale
structures exhibit only a cascade process normal to the interface, thus reducing their
thickness while retaining their lengths parallel to the interface. Zhou & Vassilicos (2020)
studied the energy cascade across the turbulent/non-turbulent interface (TNTI) at one axial
position of an axisymmetric turbulent wake. They found that the interscale energy transfer
at the vicinity of the interface is from small to large scales (inverse cascade) in directions
close to the interface’s tangent plane where motions are predominantly stretching, but
from large to small scales (forward cascade) in the other directions where motions are
predominantly compressive. This reflects the fundamental mechanism that sustains the
TNTI, i.e. fluid is entrained from the irrotational region and the wake grows due to
turbulent diffusion (see schematic 3(d) in Zhou & Vassilicos (2020)). Cimarelli et al.
(2021) studied the interscale energy transfer process in a temporal planar jet using the
KHMH equation. They also found reverse energy cascade that is responsible for the
generation of long and wide structures in the interface region. All the aforementioned
works have focused on the interscale energy transfer mechanism that sustains the TNTI.
This mechanism, however, is different compared with the one that determines the growth
of spots in a transitional boundary layer. Conditional analysis was not performed either.

The paper is organised as follows. In § 2 the bypass transition case is briefly presented,
in § 3 we summarise the derivation of the standard time-averaged form of the KHMH
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equation, while in § 4 we derive the conditionally averaged form; this is followed by
the conditional decomposition of the energy fluxes in § 5. The next two sections present
the results: in § 6 maps of the conditionally averaged nonlinear energy fluxes are shown
(focusing on the flux across the laminar/turbulent interface), while in § 7 we compare the
two-point energy production and total flux (both conditioned on turbulent events) with the
corresponding quantities in the fully turbulent region. We conclude in § 8.

2. Details of the test case examined

We consider the transition of a boundary layer developing on a flat plate due to
free-stream turbulence. At the inlet of the computational domain, a random velocity field is
superimposed on the Blasius velocity profile. In the free stream, the random field follows a
von Kármán spectrum with turbulence intensity 3.4 % and integral length scale L11 = 5L0,
where L0 = √

νX0/U∞ is the Blasius similarity variable, X0 is the distance of the inlet of
the domain from the leading edge of the plate, ν is the kinematic viscosity and U∞ is the
free-stream velocity. The inlet Reynolds number is ReL0 = 160 (or Reθ = 110 based on
momentum thickness).

The size of the computational domain is (3000 × 200 × 150)L0, with the number
of cells 2049 × 192 × 169 in the streamwise (X), wall-normal (Y) and spanwise (Z)
directions. Velocities are denoted as u, v, w in the X, Y, Z directions respectively. This
notation is used interchangeably with the indexed notation Xi and ui (with i = 1, 2, 3);
for example X2 = Y and u2 = v. The spacing is uniform in the streamwise and spanwise
directions, with Δx+

max ≈ 11.78 and Δz+
max ≈ 7.14, where subscript ‘max’ represents the

maximum value (located in the fully turbulent region). In the wall-normal direction, grid
spacing increases gradually; y+ at the centroid of the first cell close to the wall is around
0.24. The generated direct numerical simulation database contains 350 uncorrelated
snapshots. The results have been validated against the T3A experimental data (Roach
& Brierley 1992). More details about the computational method and comparison of
velocity profiles (mean and root mean square) against experiments can be found in Yao,
Alves-Portela & Papadakis (2020).

For future reference, the normalised skin friction coefficient, Cf / max(Cf ), and the
maximum value of the time- and spanwise-averaged intermittency are plotted in figure 1.
For the methodology used to compute the intermittency, the reader is referred to the
aforementioned paper and also to § 4.1. Vertical lines indicate the streamwise locations
in the laminar (LA), transitional (TR1, TR2, TR3) and fully turbulent (TU) regions, where
velocity data are extracted in order to compute the interscale fluxes.

3. Standard time-averaged KHMH equation

In this section, the form of the standard time-averaged KHMH equation is presented. The
basic steps of the derivation are sketched below; more details can be found in Hill (2002).
Similarities to and differences from the conditionally averaged form are presented and
discussed in § 4.

We start with the Navier–Stokes equations at two points x+
i and x−

i (see figure 2):

∂u+
i

∂t
+ u+

j
∂u+

i

∂x+
j

= −∂p+

∂x+
i

+ ν
∂2u+

i

∂x+
j ∂x+

j
, (3.1a)

∂u−
i

∂t
+ u−

j
∂u−

i

∂x−
j

= −∂p−

∂x−
i

+ ν
∂2u−

i

∂x−
j ∂x−

j
, (3.1b)
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Laminar/turbulent interface and interscale energy transfer

2.0

LA TR1 TR2 TR3 TU

1.0

0.5

0 500 1000 1500 2000 2500 3000

(X – X0)/L0

1.5

Cf /max(Cf )

γmax

γ = 1 – exp(–0.412ξ2)

Figure 1. Normalised skin friction coefficient, Cf / max(Cf ) (blue solid line), maximum intermittency γmax
(red solid line) and γ (ξ) from the formula of Narasimha (1985), where ξ = (X − Xs)/(Xγ=0.75 − Xγ=0.25)

and Xs − X0 = 1100L0 is the location where transition starts (black dashed line), plotted against streamwise
distance (X − X0)/L0. The purple vertical lines are located in the laminar (LA = 540L0 + X0), transitional
(TR1, TR2, TR3 = (1215, 1515, 1815)L0 + X0) and fully turbulent (TU = 2415L0 + X0) regions.

xi
+x i

–

X

r

0

Figure 2. Sketch that shows the position vector X = (X1, X2, X3) of the midpoint and the separation vector
r = (r1, r2, r3) between the two points x+ = (x+

1 , x+
2 , x+

3 ) and x− = (x−
1 , x−

2 , x−
3 ).

and define the time- and spanwise-averaged velocities as usual:

U+
i (X, Y) = u+

i = 1
ΔTLz

∫ ΔT

0

∫ Lz

0
u+

i dz dt, (3.2a)

U−
i (X, Y) = u−

i = 1
ΔTLz

∫ ΔT

0

∫ Lz

0
u−

i dz dt. (3.2b)

In the following, we use an overbar to denote the standard averaging operation in the time
and Z direction, as defined by (3.2). Velocity fluctuations around U+

i and U+
i are denoted

using primes, i.e.

u′+
i = u+

i − U+
i , u′−

i = u−
i − U−

i , (3.3a,b)

and fluctuating velocity differences are defined as

du′
i ≡ dui − dUi, (3.4)

where dui = u+
i − u−

i and dUi = dui = U+
i − U−

i . It is straightforward to prove that
du′

i = 0.
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Subtracting equation (3.1b) from (3.1a), multiplying each term by 2 du′
i and applying

the time- and spanwise-averaging operation defined in (3.2), we obtain

2 du′
i
∂ dui

∂t︸ ︷︷ ︸
Transient term

+ 2 du′
iu

+
j

∂ dui

∂x+
j

+ 2 du′
iu

−
j

∂ dui

∂x−
j︸ ︷︷ ︸

Nonlinear term

= −2 du′
i

(
∂ dp
∂x+

i
− ∂ dp

∂x−
i

)
︸ ︷︷ ︸
Pressure–velocity correlation

+ 2ν du′
i

∂2 dui

∂x+
j ∂x+

j
+ 2ν du′

i
∂2 dui

∂x−
j ∂x−

j︸ ︷︷ ︸
Viscous term

, (3.5)

where we have used ∂u+
i /∂x−

j = 0 and ∂u−
i /∂x+

j = 0 (because x+
j and x−

j are independent
variables).

We now define the second-order structure function as dq2 = (du′
i)

2 = (u′+
i − u′−

i )2.
This function has six dimensions, three in physical space (Xi) and three in scale space
(ri). In the particular case examined in this paper, due to the homogeneity in the spanwise
direction, there are only two dimensions in physical space. The integral of dq2 in a sphere
of radius r = |ri| (divided by the volume of the sphere) represents the energy of eddies
with size smaller than r = |ri| (see Davidson 2015); thus dq2 is usually referred to as scale
energy.

We seek the transport equation of dq2 in the physical and scale spaces. Applying the
variable transformation Xi = 0.5(x+

i + x−
i ) and ri = x+

i − x−
i and the definitions (3.3a,b)

and (3.4) into (3.5), after some algebra we get the following standard KHMH equation for
dq2:

∂ dq2

∂t︸ ︷︷ ︸
Transient term

+ U∗
j
∂ dq2

∂Xj︸ ︷︷ ︸
Mean flow advection

+ u′∗
j

∂ dq2

∂Xj︸ ︷︷ ︸
Turbulent advection

+ dUj
∂ dq2

∂rj︸ ︷︷ ︸
Linear interscale transfer

+ du′
j
∂ dq2

∂rj︸ ︷︷ ︸
Nonlinear interscale transfer

= −2 du′
i
∂ dp′

∂Xi︸ ︷︷ ︸
Pressure–velocity correlation

− 2 du′
iu

′∗
j

∂ dUi

∂Xj
− 2 du′

i du′
j
∂ dUi

∂rj︸ ︷︷ ︸
Production by mean flow (=P)

+ ν
1
2

∂2 dq2

∂Xj∂Xj︸ ︷︷ ︸
Physical diffusion

+ 2ν
∂2 dq2

∂rj∂rj︸ ︷︷ ︸
Scale diffusion

− 4ν

(
1
4

∂ du′
i

∂Xj

∂ du′
i

∂Xj
+ ∂ du′

i
∂rj

∂ du′
i

∂rj

)
︸ ︷︷ ︸

Dissipation (=ε)

. (3.6)

Note that U∗
j and u′∗

j denote the midpoint values of the time-average and fluctuating
velocities respectively, i.e. U∗

j = (U+
j + U−

j )/2 and u′∗
j = (u′+

j + u′−
j )/2. The physical

meaning of each term is also provided; the production by mean flow and dissipation are
denoted by P and ε respectively.

Assuming that the transient term is 0, the above equation can be written in divergence
form as

∂φsi

∂Xi
+ ∂φr i

∂ri
= P − ε, (3.7)
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Laminar/turbulent interface and interscale energy transfer

where

φsi = U∗
i dq2︸ ︷︷ ︸
=φM

si

+ u′∗
i dq2︸ ︷︷ ︸
=φF

si

+ 2 du′
i dp′︸ ︷︷ ︸

=φP
si

−1
2
ν
∂ dq2

∂Xi︸ ︷︷ ︸
=φV

si

(3.8)

is the total flux vector in physical space and

φr i = du′
i dq2︸ ︷︷ ︸

=φF
ri

+ dUi dq2︸ ︷︷ ︸
=φM

ri

−2ν
∂ dq2

∂ri︸ ︷︷ ︸
=φV

ri

(3.9)

is the total flux vector in scale space. We use the superscript ‘F’ to denote the nonlinear
components, φF

si
and φF

ri
, of these vectors respectively. The conditional decomposition of

the nonlinear fluxes φF
si

and φF
ri

is examined in § 5. We are now ready to proceed with the
derivation of the conditionally averaged KHMH equation.

4. Conditionally averaged KHMH equation

4.1. Definitions
In order to derive the conditionally averaged form of the KHMH equation, we need first to
define the conditions under which the averaging is performed. To this end, we employ the
local binary function τ(xi, t) to distinguish between instantaneous laminar and turbulent
states at point xi at time t. More specifically, τ(xi, t) takes the value of 0 for the former
(i.e. laminar) and 1 for the latter (i.e. turbulent) state. This binary function is computed
using the standard deviation of D = |v| + |w|; see Marxen & Zaki (2019) and Yao et al.
(2020) for more details.

Since the KHMH equation involves two points, the conditions for the averaging
operation should be defined using the states at both points. Four combinations are
possible:

(i) If both x+
i and x−

i are located within a turbulent patch, this is denoted as a
turbulent–turbulent (or TT) event, and it is defined by the condition τ+τ− = 1,
where τ+ = τ(x+

i , t) and τ− = τ(x−
i , t).

(ii) If both points are within the laminar region, this is a laminar–laminar (or LL) event,
and it is defined by the condition (1 − τ+)(1 − τ−) = 1.

(iii) If x+
i , x−

i are within a turbulent and a laminar patch respectively, this is a
turbulent–laminar (or TL) event, defined by τ+(1 − τ−) = 1.

(iv) If x+
i , x−

i are within a laminar and turbulent region respectively, this is a
laminar–turbulent (or LT) event, defined by (1 − τ+)τ− = 1.

In our notation, the first upper-case letter denotes the state of point x+
i and the second the

state of x−
i . We also use the generic notation AA to refer to a general event, i.e. AA = TT

or LL or TL or LT . The four events are shown schematically in figure 3.
We can now define the time- and spanwise-average two-point intermittencies as

γ (TT)(X, Y; r1, r2, r3) ≡ 1
ΔTLz

∫ ΔT

0

∫ Lz

0
τ+τ− dz dt, (4.1a)
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–1.6 × 10–1 –1.4 × 10–1–0.1 –0.05 0 0.05

Wall-normal velocity fluctuation

80

60

40

20

1150 1200

LL event
(r3 > 0, r1 > 0)

TL event
(r3 > 0, r1 = 0)

LT event
(r3 > 0, r1 = 0)

TT event
(r3 > 0, r1 > 0)

1250 1300 1350 1400 1450

(X – X0) /L0

Z
/L

0

Figure 3. Contour plot of wall-normal velocity fluctuations in the transitional region. A turbulent spot is
clearly visualised on the right half of the figure. Within the spot τ = 1, while outside (grey region) τ = 0.
The four different two-point event types, LL, TT , TL and LT , are shown. All points are located at the same
horizontal plane, i.e. r2 = 0.

γ (TL)(X, Y; r1, r2, r3) ≡ 1
ΔTLz

∫ ΔT

0

∫ Lz

0
τ+(1 − τ−) dz dt, (4.1b)

γ (LT)(X, Y; r1, r2, r3) ≡ 1
ΔTLz

∫ ΔT

0

∫ Lz

0
(1 − τ+)τ− dz dt, (4.1c)

γ (LL)(X, Y; r1, r2, r3) ≡ 1
ΔTLz

∫ ΔT

0

∫ Lz

0
(1 − τ+)(1 − τ−) dz dt. (4.1d)

Since τ+τ− + (1 − τ+)(1 − τ−) + τ+(1 − τ−) + (1 − τ+)τ− = 1, we have γ (TT) +
γ (TL) + γ (LT) + γ (LL) = 1. Two point intermittencies were also defined in Yao et al.
(2020), where TL and TL events were amalgamated as a combined TL event. Here we
consider the two event types separately for reasons that will become clear shortly.

The conditional time averages of the general two-point increment dQ = Q(x+
i ) − Q(x−

i )

are defined as

dQ
(TT)

(X, Y; r1, r2, r3) ≡ 1
ΔTLzγ (TT)

∫ ΔT

0

∫ Lz

0
τ+τ− dQ dz dt, (4.2a)

dQ
(TL)

(X, Y; r1, r2, r3) ≡ 1
ΔTLzγ (TL)

∫ ΔT

0

∫ Lz

0
τ+(1 − τ−) dQ dz dt, (4.2b)

dQ
(LT)

(X, Y; r1, r2, r3) ≡ 1
ΔTLzγ (LT)

∫ ΔT

0

∫ Lz

0
(1 − τ+)τ− dQ dz dt, (4.2c)

dQ
(LL)

(X, Y; r1, r2, r3) ≡ 1
ΔTLzγ (LL)

∫ ΔT

0

∫ Lz

0
(1 − τ+)(1 − τ−) dQ dz dt. (4.2d)
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Figure 4. Contour plot of instantaneous streamwise velocity fluctuations. Yellow ovals demarcate two
turbulent spots. The purple vertical dotted line represents a fixed streamwise location, X. Two event types,
TL and LT , are shown with r1 /= 0 and r3 = 0.

This means that the standard time average can be decomposed as

dQ(X, Y; r1, r2, r3) = 1
ΔTLz

∫ ΔT

0

∫ Lz

0
dQ dz dt

= γ (TT) dQ
(TT) + γ (TL) dQ

(TL) + γ (LT) dQ
(LT) + γ (LL) dQ

(LL)
.

(4.3)

The definitions are similar for the conditionally averaged midpoint variable Q∗ =
0.5[Q(x+

i ) + Q(x−
i )]. Thus,

Q∗(X, Y; r1, r2, r3) = 1
ΔTLz

∫ ΔT

0

∫ Lz

0
Q∗ dz dt

= γ (TT)Q∗(TT) + γ (TL)Q∗(TL) + γ (LT)Q∗(LT) + γ (LL)Q∗(LL)
. (4.4)

Referring back to figure 3, it is clear that dQ
(TL)

and dQ
(LT)

are two-point averages
across the laminar/turbulent interface. For r1 = 0 and r3 /= 0 (case shown in figure 3),
these two conditional averages are taken across the interface in the spanwise direction.
For r1 > 0 and r3 = 0 (case shown in figure 4), LT averaging is taken across the tail
(i.e. the downstream end) of a turbulent spot, while TL is taken across the head of the
spot (i.e. the upstream end). It is therefore possible to distinguish the different properties
of the head or tail of a spot using the appropriate conditionally averaged quantity. This is
an important observation and facilitates the physical interpretation of the results presented
in § 6. Note that dQ

(TL)
(r1, r2, r3) = dQ

(LT)
(−r1, −r2, −r3), but since we consider only

positive separations, we need to retain both dQ
(TL)

and dQ
(LT)

.
We can now proceed to derive the conditionally averaged KHMH equation.

4.2. Derivation of the conditionally averaged KHMH equation
We start again with the Navier–Stokes equations at two points x+

i and x−
i , (3.1), and define

the conditional velocity fluctuation difference as

du′(AA)
i ≡ dui − dU(AA)

i , (4.5)

where AA = TT or LL or TL or LT as mentioned earlier, dui = u+
i − u−

i and dU(AA)
i =

dui
(AA)

(from definition (4.2)). It is straightforward to prove that du′(AA)
i

(AA)

= 0; this is
the equivalent of du′

i = 0 in standard averaging.
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Similarly, the conditional fluctuation velocity at the midpoint is defined as

u′∗
i

(AA) ≡ u∗
i − U∗

i
(AA)

, (4.6)

where u∗
i = 0.5(u+

i + u−
i ) and U∗

i
(AA) = u∗

i
(AA)

, and again u′∗
i

(AA)
(AA)

= 0.
Subtracting equation (3.1b) from (3.1a), multiplying each term by 2 du′(AA)

i and then
applying the (AA) averaging operation as defined in (4.2), we obtain

2 du′(AA)
i

∂ dui

∂t

(AA)

︸ ︷︷ ︸
Transient term

+ 2 du′(AA)
i u+

j
∂ dui

∂x+
j

+ 2 du′(AA)
i u−

j
∂ dui

∂x−
j

(AA)

︸ ︷︷ ︸
Nonlinear term

= −2 du′(AA)
i

(
∂ dp
∂x+

i
− ∂ dp

∂x−
i

)(AA)

︸ ︷︷ ︸
Pressure–velocity correlation

+ 2ν du′(AA)
i

∂2 dui

∂x+
j ∂x+

j
+ 2ν du′(AA)

i
∂2 dui

∂x−
j ∂x−

j

(AA)

︸ ︷︷ ︸
Viscous term

,

(4.7)

where we have used again ∂u+
i /∂x−

j = 0 and ∂u−
i /∂x+

j = 0. This is the equivalent of (3.5)
for standard averaging.

We now define the two-point conditional energy as dq2(AA)
(AA) = du′(AA)

i du′(AA)
i

(AA)

and
seek its transport equation in the physical and scale spaces, similar to (3.6). Applying again
the variable transformation Xi = 0.5(x+

i + x−
i ) and ri = x+

i − x−
i and the definitions (4.5)

and (4.6) into (4.7), after some algebra we get the following conditionally averaged KHMH

equation for dq2(AA)
(AA)

:

∂ dq2(AA)

∂t

(AA)

︸ ︷︷ ︸
Transient term

+ U∗
j
(AA) ∂q2(AA)

∂Xj

(AA)

︸ ︷︷ ︸
Mean advection

+ u′∗
j

(AA) ∂ dq2(AA)

∂Xj

(AA)

︸ ︷︷ ︸
Turbulent advection

+ dU(AA)
j

∂ dq2(AA)

∂rj

(AA)

︸ ︷︷ ︸
Linear transfer

+ du′(AA)
j

∂ dq2(AA)

∂rj

(AA)

︸ ︷︷ ︸
Nonlinear transfer

= −2 du′(AA)
i

∂ dp′(AA)

∂Xi

(AA)

︸ ︷︷ ︸
Pressure–velocity correlation

+ ν
1
2

∂2 dq2(AA)

∂Xj∂Xj

(AA)

︸ ︷︷ ︸
Physical diffusion

+ 2ν
∂2 dq2(AA)

∂rj∂rj

(AA)

︸ ︷︷ ︸
Scale diffusion

− 2 du′(AA)
i u′∗

j
(AA) ∂ dU(AA)

i
∂Xj

(AA)

− 2 du′(AA)
i du′(AA)

j
∂ dU(AA)

i
∂rj

(AA)

︸ ︷︷ ︸
Production

− 2ν

(
∂ du′(AA)

i

∂x+
j

∂ du′(AA)
i

∂x+
j

+ ∂ du′(AA)
i

∂x−
j

∂ du′(AA)
i

∂x−
j

)(AA)

︸ ︷︷ ︸
Dissipation

. (4.8)

The form of (4.8) is similar to the standard form (3.6). This is due to the
appropriate definitions of the conditional fluctuating quantities in (4.5) and (4.6) that

satisfy du′(AA)
i

(AA)

= 0 and u′∗
i

(AA)
(AA)

= 0. There is, however, an important difference.
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Standard averaging commutes with the spatial differentiation operation, for example,

∂ dQ
∂rj

= 1
ΔTLz

∂

∂rj

(∫ ΔT

0

∫ Lz

0
dQ dz dt

)
= 1

ΔTLz

∫ ΔT

0

∫ Lz

0

∂ dQ
∂rj

dz dt = ∂ dQ
∂rj

. (4.9)

However, this is not the case for conditionally averaged quantities, for example

∂ dQ
(TT)

∂rj
= 1

ΔTLz

∂

∂rj

(
1

γ (TT)

∫ ΔT

0

∫ Lz

0
τ+τ− dQ dz dt

)
, (4.10)

while

∂ dQ
∂rj

(TT)

= 1
ΔTLz

(
1

γ (TT)

∫ ΔT

0

∫ Lz

0
τ+τ− ∂ dQ

∂rj
dz dt

)
/= ∂ dQ

(TT)

∂rj
, (4.11)

because γ (TT) depends on rj. The same issue appears in the conditionally averaged
turbulent kinetic energy equation (Marxen & Zaki 2019).

This lack of commutation has two important implications. First, (4.8) cannot be written
in conservative form. For example, for the nonlinear interscale energy transfer term, we
have

du′(AA)
j

∂ dq2(AA)

∂rj

(AA)

=
∂ dq2(AA) du′(AA)

j

∂rj

(AA)

/=
∂(dq2(AA) du′(AA)

j

(AA)

)

∂rj
. (4.12)

The first equality in the above equation is because ∂ du′(AA)
j /∂rj = 0 (this is equivalent to

∂ du′
j/∂rj = 0 for standard averaging). It is easy to prove; for example if AA = TT , we have

∂ du′(TT)
j

∂rj
= ∂ duj

∂rj
−

∂ dU(TT)
j

∂rj
= ∂ duj

∂rj
− ∂

∂rj

(
1

ΔTLzγ (TT)

∫ ΔT

0

∫ Lz

0
τ+τ− dUj dz dt

)

= ∂ duj

∂rj
− ∂

∂rj

(
dUj

ΔTLzγ (TT)

∫ ΔT

0

∫ Lz

0
τ+τ− dz dt

)

= ∂ duj

∂rj
− ∂ dUj

∂rj
= 0 − 0 = 0, (4.13)

because duj and dUj satisfy the continuity equation in the scale space. We also took into
account that dUj is constant with respect to Z and t and used (4.1a).

The second implication is computational. For standard averaging, all the terms in the
KHMH equation can be evaluated numerically by differentiating locally at points x+

i and
x−

i , for example

∂ dUi

∂rj
= ∂ dui

∂rj
= ∂ dui

∂rj
= 1

2

(
∂(u+

i −u−
i )

∂x+ − ∂(u+
i −u−

i )

∂x−
j

)
= 1

2

(
∂u+

i

∂x+
j

+ ∂u−
i

∂x−
j

)

= 1
2

(
∂u+

i

∂x+
j

+ ∂u−
i

∂x−
j

)
= 1

2

(
∂U+

i

∂x+
j

+ ∂U−
i

∂x−
j

)
. (4.14)
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However, this is not the case for the conditionally averaged velocity difference:

∂ dU(AA)
i

∂rj
= ∂ dui

(AA)

∂rj
/= ∂ dui

∂rj

(AA)
⎡
⎣= 1

2

⎛
⎝∂(u+

i −u−
i )

∂x+
j

(AA)

− ∂(u+
i −u−

i )

∂x−
j

(AA)
⎞
⎠

= 1
2

⎛
⎝∂u+

i

∂x+
j

(AA)

+ ∂u−
i

∂x−
j

(AA)
⎞
⎠
⎤
⎦ . (4.15)

This means that the derivatives of the conditionally averaged two-point variables must
be calculated directly in scale space. The process and validation against standard averaging
are presented in Appendix A.

5. Conditional decomposition of nonlinear energy fluxes

In this section we decompose the nonlinear energy fluxes in scale and physical
spaces, φF

rj
= dq2 du′

j = (du′
i)

2 du′
j and φF

sj
= u′∗

j δq2 respectively, see (3.9) and (3.8), into
conditionally averaged components, i.e. we seek to derive expressions similar to (4.3) and
(4.4). The decomposition for the second-order structure function (quadratic quantity) was
derived in Yao et al. (2020). Here we extend the method to energy fluxes (cubic quantities).

For the nonlinear energy flux in scale space φF
rj

= (du′
i)

2 du′
j, we have

φF
rj

= (du′
i)

2 du′
j = (dui − dUi)2(duj − dUj)

= (dui)2 duj − (dui)2 dUj − 2 dui duj dUi + 2 dUi dUi dUj

= γ (TT)(dui)2 duj
(TT) + γ (TL)(dui)2 duj

(TL) + γ (LT)(dui)2 duj
(LT)

+ γ (LL)(dui)2 duj
(LL) − (dui)2 dUj − 2 dui duj dUi + 2 dUi dUi dUj, (5.1)

where (4.3) was applied to (dui)2 duj.

We now write (dui)2 duj
(AA)

(AA = TT or LL or TL or LT) in terms of conditional
fluctuations. To do this, we use the definition du′(AA)

i ≡ dui − dU(AA)
i , see (4.5), and

express the conditional nonlinear energy flux φF
rj

(AA) = (du′(AA)
i )2 du′(AA)

j

(AA)

as

φF
rj

(AA) = (du′(AA)
i )2 du′(AA)

j

(AA)

= (dui)2 duj
(AA) − (dui)2(AA)

dU(AA)
j

− 2 dui duj
(AA)

dU(AA)
i − 2 dU(AA)

i dU(AA)
i dU(AA)

j . (5.2)

Solving for (dui)2 duj
(AA)

and substituting into (5.1), we obtain the desired decomposition:

φF
rj

= γ (TT)φF
rj

(TT) + γ (TL)φF
rj

(TL) + γ (LT)φF
rj

(LT) + γ (LL)φF
rj

(LL) + φrj, (5.3)

where the additional term φrj is given by

φrj =
TT,TL,LT,LL∑

AA,BB=
γ (AA)γ (BB) dui dui

(AA)
(dU(AA)

j − dU(BB)
j )
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+
TT,TL,LT,LL∑

AA,BB=
2γ (AA)γ (BB) dui duj

(AA)
(dU(AA)

i − dU(BB)
i )

−
TT,TL,LT,LL∑
AA,BB,CC=

2γ (AA)γ (BB)γ (CC) dU(AA)
i (dU(AA)

i dU(AA)
j − dU(BB)

i dU(CC)
j ). (5.4)

Following the same process, the following decomposition can be obtained for the
nonlinear energy flux in physical space φF

sj
= u′∗

j δq2 = u′∗
j (du′

i)
2:

φF
sj

= γ (TT)φF
sj

(TT) + γ (TL)φF
sj

(TL) + γ (LT)φF
sj

(LT) + γ (LL)φF
sj

(LL) + φsj, (5.5)

where φF
sj

(AA) = u′∗
j

(AA)
(du′(AA)

i )2
(AA)

and the additional term φsj is given by

φsj =
TT,TL,LT,LL∑

AA,BB=
γ (AA)γ (BB) dui dui

(AA)
(U∗

j
(AA) − U∗

j
(BB)

)

+
TT,TL,LT,LL∑

AA,BB=
2γ (AA)γ (BB) duiu∗

j
(AA)

(dU(AA)
i − dU(BB)

i )

−
TT,TL,LT,LL∑
AA,BB,CC=

2γ (AA)γ (BB)γ (CC) dU(AA)
i (dU(AA)

i U∗
j
(AA) − dU(BB)

i U∗
j
(CC)

). (5.6)

It is clear that the additional terms arise due to differences in the conditionally averaged
quantities. Similar terms appear in single-point statistics; see for example (2.9) in Marxen
& Zaki (2019) or (5.306) in Pope (2000).

Figure 5 presents contours of all the terms appearing in (5.3) for the decomposition of
the energy flux vector (φF

r3
, φF

s2
) at location TR2 on the (r3, Y) plane (the separations in

the other two directions are equal to 0, i.e. r1 = 0, r2 = 0). In the figure, we combine
the results of TL and LT together. Figure 5(a), denoted as LHS, depicts the results
from the direct calculation of the flux vector (φF

r3
, φF

s2
) using standard time average,

i.e. ((du′
i)

2 du′
3, (du′

i)
2u′∗

2 ). Figure 5( f ), denoted as RHS, presents the sum of all terms
in (5.3). It is clear that the results in the two panels are essentially identical, confirming
the validity of the derived decomposition. The flux vector originates from the focal point
Y/L0 ≈ 2.5 and r3/L0 ≈ 10 and transfers energy radially to different directions. The
strongest flux is located in the region 0 < Y/L0 < 10, r3/L0 > 10 and is found to be
positive, indicating strong inverse cascade. This pattern was observed in Yao et al. (2022).

Apart from verifying the decomposition (5.3), figure 5 provides important insight into
the origin of the aforementioned energy flux pattern. It is interesting to observe that the
inverse cascade arises from the TL + LT , LL and φ components; all contribute to the strong
positive flux in the region 0 < Y/L0 < 10, r3/L0 > 10 with values that are of the same
order of magnitude. Outside this region, they have small values. On the other hand, the
TT component contributes to the forward cascade in the region left of the focal point. The
shape therefore of the energy flux vectors on the (r3, Y) plane arises from the superposition
of the contribution of TT term which is responsible for forward cascade, and all the other
terms which are responsible for inverse cascade.
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Figure 5. Nonlinear interscale energy flux vector (φF
r3

, φF
s2

) (denoted LHS) and the constituent components

(γ (AA)φF
r3

(AA)
, γ (AA)φF

s2

(AA)
), where AA = TT, TL + LT, LL, in the (r3, Y) plane at location TR2. Here, RHS

denotes the sum of the terms on the right-hand side of (5.3). Contours represent the magnitude of the flux
vectors and the purple horizontal lines indicate the local boundary layer thickness.

The constituent terms plotted in figure 5 are weighted by the corresponding two-point
intermittencies, γ (AA), which can have very small values depending on the location
examined (see figure 1). In the following section, the evolution of the vectors

(φF
r3

(AA)
, φF

s2

(AA)
) = ((du′(AA)

i )2 du′(AA)
3

(AA)

, (du′(AA)
i )2u′∗

2
(AA)

(AA)

) at different streamwise
locations is examined.

6. Evolution of conditionally averaged nonlinear energy fluxes

In this section we consider the evolution of the nonlinear energy fluxes in the transitional
region. To simplify the analysis and interpretation of the results we consider r2 = 0,
i.e. points x+

i and x−
i have the same wall-normal distance.

6.1. Fluxes on (r3, Y) plane

Figure 6 shows the conditionally averaged energy fluxes (φF
r3

(AA)
, φF

s2

(AA)
), where AA =

TT or TL + LT or LL at locations TR1, TR2, TR3. The last row (marked as ‘Total’) depicts
(φF

r3
, φF

s2
). In all plots, r1 = 0 and r2 = 0.

At the early stages of transition, at location TR1 (left column), the flux vector
(φF

r3

(LL)
, φF

s2

(LL)
) is dominant and is almost identical to the total flux. We can clearly see

strong inverse cascade occurring to the right of the focal point, which is mainly due to LL
events. The vectors (φF

r3

(TT)
, φF

s2

(TT)
) and (φF

r3

(TL)
, φF

s2

(TL)
) + (φF

r3

(LT)
, φF

s2

(LT)
) are very

localised and their behaviour is difficult to interpret. This may be due to the small number
of TT and TL/LT events at this early transition location. Notice, however, the high values

of the magnitude of the TT vector, (φF
r3

(TT)
, φF

s2

(TT)
), compared with all the other vectors.
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Figure 6. Conditionally averaged flux vectors (φF
r3

(AA)
, φF

s2

(AA)
) (a–i) and standard-averaged flux vector

(φF
r3

, φF
s2

) ( j–l) at locations TR1 (a,d,g,j), TR2 (b,e,h,k) and TR3 (c, f ,i,l). The contours represent the magnitude
of the corresponding flux vectors and the purple horizontal lines indicate the local boundary layer thickness.

However, its overall contribution to the total flux, γ (TT)φF (TT), is small because the values
of intermittency γ (TT) are negligible at this location (see figure 1).

At location TR2 (middle column), TT and TL/LT events start to play a more significant
role as expected, but they act in different areas of the map. Events of the LL type maintain
their dominant contribution to the inverse cascade, while TL and LT events also amplify
and contribute to the inverse cascade in the area 10L0 < r3 < 20L0 above Y ≈ 5L0. Notice
again that TT-averaged flux vectors have a much higher magnitude compared with the total
flux, and show a mixture of the forward and inverse cascade to the left and right of the
focal point respectively (with the forward cascade being slightly stronger). This picture
is consistent with figure 5 where the conditionally averaged fluxes are weighted by the
two-point intermittency.

At location TR3 (right column), TT events now assume the dominant role because γ (TT)

approaches 1, LL events are localised (in the same way that TT events were localised at
TR1 location), while TL and LT events again give rise to inverse cascade. Interestingly, as
intermittency increases, TT events show stronger inverse cascade. For comparison, the flux
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Figure 7. Standard-averaged flux vector (φF
r3

, φF
s2

) at TU location. The contour represents the magnitude of
the flux vectors.

vector (φF
r3

, φF
s2

) at the fully turbulent location TU is plotted in figure 7. At this location,
the inverse cascade is weakened (but it is still visible) and energy flows in the wall-normal
direction before looping back to small spanwise length scales.

The strong inverse cascade found at TR2 and TR3 locations is clearly not observed in
the fully turbulent region. The origin of the inverse cascade arises mainly due to TL and
LT events. Indeed, in the TR2 location their magnitude is 5–6 times larger compared with
LL events (that also contribute to inverse cascade), while in TR3 it is about 2–3 times
larger. The laminar/turbulent interface, therefore, plays a crucial role in the inverse cascade
process. In the next section, we focus on the TR2 location and explore in more depth the
cascade process in the three-dimensional (r1, r3, Y) hyperplane.

6.2. Fluxes on the (r1, r3, Y) hyperplane and (r1, r3) plane

We project the conditionally averaged fluxes φF(AA) and φS(AA) on the (r1, r3, Y)

hyperplane, i.e. plot three-dimensional maps of the vector (φF
r1

(AA)
, φF

r3

(AA)
, φF

s2

(AA)
). We

select location TR2, which is in the middle of the transition region, and has single-point
intermittency of about 0.4 (see figure 1).

Stream-tubes obtained from the total and the nonlinear flux vectors (standard- or
conditionally averaged) are shown in figure 8; see caption for details. Figure 8(a) shows
the standard-averaged total energy flux vector (φr1, φr3, φs2) that includes the nonlinear,
linear, pressure and viscous components (see (3.9)). This plot is very similar to that
of figure 8(b) that shows the nonlinear component (φF

r1
, φF

r3
, φF

s2
), the latter being the

dominant component (see Yao et al. (2022) for a detailed discussion on the other
components). Both plots depict a dense cluster of stream-tubes with energy flowing to
larger r1 scales (inverse cascade) with energy originating at Y ≈ 5L0 and r3 ≈ 10L0.
There is milder inverse cascade in larger r3 scales. In another (smaller) cluster, energy
flux vectors rotate and bend towards the Y axis (r1 = 0, r3 = 0).

The decomposition (5.3) allows us to probe in more detail the origin of the strong
inverse cascade in the r1 direction and identify the flow events that determine it. In the
homogeneous spanwise direction TL and LT events can be combined together as TL + LT
(see figure 3). However, the streamwise direction is inhomogeneous and these events have
to be considered separately. As mentioned earlier, for a fixed (X, Y) spatial location and
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Figure 8. Stream-tubes of (a) the total flux vector (φr1 , φr3 , φs2 ), (b) the standard-averaged nonlinear

flux vector (φF
r1

, φF
r3

, φF
s2

), and the conditionally averaged vectors (c) (φF
r1

(LT)
, φF

r3

(LT)
, φF

s2

(LT)
),

(d) (φF
r1

(TL)
, φF

r3

(TL)
, φF

s2

(TL)
), (e) (φF

r1

(TT)
, φF

r3

(TT)
, φF

s2

(TT)
) and ( f ) (φF

r1

(LL)
, φF

r3

(LL)
, φF

s2

(LL)
) at TR2.

The plots are generated by placing a sphere of radius 5L0 at point (r1, r3, Y) = (5L0, 10L0, 3L0) and tracing
the stream-tubes crossing the sphere. The stream-tubes are coloured according to the sign of the first
component, i.e. φr1 , φF

r1
, φF

r1

(LT), φF
r1

(TL), φF
r1

(TT) and φF
r1

(LL) (red for positive, blue for negative, thus indicating
inverse or forward cascade in the r1 direction respectively). The colour bars also refer to the value of the first
component (the minimum/maximum values are the same to facilitate comparison).
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r3 separation, a TL event with r1 > 0 takes place across the upstream laminar/turbulent
interface of a spot. On the other hand, an LT event is taken across the downstream interface
(see figure 4).

Figures 8(c) and 8(d) show the stream-tubes for the conditionally averaged flux vectors

(φF
r1

(LT)
, φF

r3

(LT)
, φF

s2

(LT)
) and (φF

r1

(TL)
, φF

r3

(TL)
, φF

s2

(TL)
) respectively. It is very clear that

the LT flux vector contributes most strongly to the inverse cascade; this corresponds to the
downstream laminar/turbulent interface of a spot. Indeed there is a cluster of stream-tubes
whose direction indicates the transfer of energy to larger streamwise scales, up to r1 ≈
50L0. The stream-tubes then bend towards smaller scales, r1, r3 → 0. On the other hand,
TL events that correspond to energy flux across the upstream interface of a turbulent spot
also contribute to inverse cascade, but over a shorter streamwise range, 0 < r1 < 20L0.
This clearly indicates that interscale energy transfer processes are different at the upstream
and downstream interfaces of turbulent spots.

Figures 8(e) and 8( f ) show the stream-tubes of the conditionally averaged flux

vectors (φF
r1

(TT)
, φF

r3

(TT)
, φF

s2

(TT)
) and (φF

r1

(LL)
, φF

r3

(LL)
, φF

s2

(LL)
). The former corresponds

to interscale transfer within spots; there is weak inverse cascade and the stream-tubes
bend towards smaller scales. The latter corresponds to time instants where both points are
located within laminar regions. There is strong forward cascade to small scales and then
bending and energy transfer to larger scales away from the wall. This is a quite complicated
energy flux pattern, which is difficult to interpret physically.

Plots in the three-dimensional hyperplane (r1, r3, Y) visualise the main features of the
energy flux paths, but can hide important detail. To uncover this detail, in figure 9 we
plot the flux vectors in the (r1, r3) plane at the specific height Y = 4.5L0. The total flux
vector and the standard-averaged nonlinear component (figures 9a and 9b respectively)
are very similar and show a recirculating pattern with inverse cascade for r3 > 10 over
the range of r1 examined and forward cascade for r3 < 10L0. It is very interesting to see
that around r3 = 10L0 the energy flux is negligible; this cannot be easily observed from
figure 8. The conditionally averaged fluxes also show detail that cannot be discerned from

the three-dimensional plots. For example, the strong inverse cascade of φF
r1

(LT) extends

over the whole range of r3 and r1, while for φF
r1

(TL) it extends only in a specific range of
separations, r3 ≈ (5 − 15)L0, depending on r1, as can be seen from figures 9(c) and 9(d)
respectively. The flux component φF

r1

(LL) (figure 9e) clearly demonstrates forward cascade

over the whole r3 range examined, but φF
r1

(TT) (figure 9f ) is very small around r3 ≈ 10
and increases at the boundaries of the domain. These plots confirm that the strong inverse
cascade in the standard-averaged flux is due to LT events at the downstream interface of
the turbulent spots. Interestingly, the energy fluxes due to TL and LL events almost cancel
out around r3 ≈ 10L0, and this explains the very small fluxes in this area for φF

r1
. Notice

also that the TT events account for the forward cascade observed in φF
r1

and φr1 for small
r3 separations.

The above figures have demonstrated the central role of the downstream
laminar/turbulent interface in the interscale transfer and in particular the inverse cascade
over a large range of scales. Additionally, TL events were localised in a smaller range
of spanwise and streamwise separations. We now try to explain physically this behaviour
with the aid of the cartoons shown in figure 10. More specifically, we consider a fixed X
location (for figures 8 and 9, X = XTR2) and follow a turbulent spot of diamond shape as it
propagates to the right and crosses this location. The arrowhead shape at the upstream
and downstream ends in figure 10 is a simplified, but rather realistic, approximation.
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Figure 9. Flux vectors (a) (φr1 , φr3 ), (b) (φF
r1

, φF
r3

), (c) (φF
r1

(LT)
, φF

r3

(LT)
), (d) (φF

r1

(TL)
, φF

r3

(TL)
),

(e) (φF
r1

(TT)
, φF

r3

(TT)
) and ( f ) (φF

r1

(LL)
, φF

r3

(LL)
) on the (r1, r3) plane at wall-normal height Y = 4.5L0 and

location TR2. Contours represent the magnitude of the energy flux vectors in the plane.

This can be seen from figure 11 where we demarcate the boundaries of two turbulent
spots. It is also consistent with experimental spot observations (see figures 12 and 14 in
Anthony, Jones & Lagraff (2005)). The sharp corners of the spot around the maximum
thickness are less realistic; the shape is more rounded in this region as can be seen from
figure 18 of Marxen & Zaki (2019). However, analysis of this simplified shape can provide
significant physical insight, as is seen next.

A compilation of reported leading and trailing edge propagation speeds suggests typical
values around 0.9U∞ and 0.5U∞ respectively (see Fransson 2010). The fact that the the
leading edge propagates faster results in the spot growth in the streamwise direction and is
consistent with the dominant role of the downstream laminar/turbulent interface in inverse
cascade. This explains the direction of the nonlinear energy fluxes shown in figure 8, but
does not explain the difference in the streamwise and spanwise separations over which TL
and LT events are active.

The underlying cause for this difference can be elucidated with the aid of figure 10
that depicts snapshots of the propagating spot at three time instants t1, t2 and t3. In all
snapshots, we consider a fixed middle point (denoted with a yellow circle) located at
the streamwise position, X. The blue and red circles represent the x+

i and x−
i points

respectively. Only points with a fixed spanwise separation, r3 = Δz, are shown in the
figure. At time t = t1, the downstream apex of the spot lies exactly at the fixed X location.
It can be seen that for an LT event (the only type of event possible at this time instant),
the streamwise separation r1(t1) is very long, of the order of the spot length. For Δz = 0,
r1(t1) attains a maximum value, equal to twice the spot length.

At time instant t = t2, approximately half of the spot has crossed X. The valid spanwise
locations of the middle point are determined by the spreading angle of the front apex. Note
that for fixed r3 = Δz, TL and LT events coexist, but it is clear that the r1(t2) separation of
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Figure 10. A propagating turbulent spot of diamond shape crossing a fixed X location; the view shown is in
the (X, Z) plane. Red, yellow and blue circles represent the x−

i , Xi and x+
i points respectively. Only points with

fixed r3 = Δz separation are shown.
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Figure 11. Contour plot of instantaneous streamwise velocity fluctuations. The boundaries of two turbulent
spots in the transition region (marked by dashed yellow lines) indicate spots of approximately diamond shape.

an LT event is shorter than the one at t = t1, i.e. r1(t2) < r1(t1). At t = t3, the whole spot
has crossed the considered location; thus the rear apex is at X. At this time instant, only TL
events are possible. It can be seen that only a narrow range of r1 separations is admissible
for a given r3. The actual range depends on the spreading angle of the rear apex. Thus on
average, the valid r1 separations corresponding to TL events at t2 and t3 are more narrow
compared with LT events at t = t1 and t2. This explains the inverse cascade over a wider
range of separations for LT events shown in figure 9(c). We also conjecture that the largest
admissible r1 value mentioned earlier explains why the stream-tubes shown in figure 8(c)
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Figure 12. The PDFs of (du′(AA)
i )2 du′(AA)

1 for AA = LT , TL, TT and LL for r1 = 30L0 and r3 = 10L0 at
Y = 4.5L0.

reach up to a maximum r1 (the exact value depends on point of origin of the stream-tubes
in the (r3, Y) plane) and then bend backward towards small scales.

To provide further insight into the observed behaviour of the conditionally averaged
fluxes, we examine in more detail the flux vector component in the r1 direction

φF
r1

(AA) = (du′(AA)
i )2 du′(AA)

1

(AA)

. In figure 12, the probability density functions (PDFs)

of (du′(AA)
i )2 du′(AA)

1 for AA = LT , TL, TT and LL are plotted for separations r1 = 30L0

and r3 = 10L0 at plane Y = 4.5L0. The PDF of the instantaneous flux (du′(LT)
i )2 du′(LT)

1
is asymmetric and skewed to positive values (implying more intense instantaneous
inverse cascade events than forward cascade events). This is also the case but
it is less evident for (du′(TL)

i )2 du′(TL)
1 , while (du′(TT)

i )2 du′(TT)
1 is almost symmetric

and (du′(LL)
i )2 du′(LL)

1 is skewed to the left. Note the large positive and negative
fluctuations of the instantaneous fluxes compared with the time-average values reported
in figure 9. This means that instantaneously energy flows in either direction, and intense
fluxes of relatively low probability tip the balance in one direction or another after
time-averaging.

7. Conditionally averaged scale energy production and transfer within a turbulent
spot and comparison with fully developed turbulence

The conditional averaging operations defined in § 4.1 allow us to compute the scale energy
production and interscale transfer within a turbulent spot and compare them with the
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corresponding quantities in the fully turbulent region. Similar work has been done for
single-point statistics, for example, the turbulent kinetic energy by Park et al. (2012), Nolan
& Zaki (2013) and Marxen & Zaki (2019). To the best of our knowledge, this is the first
time this type of analysis is extended to two-point statistics.

We start by deriving a decomposition similar to (5.3) for the production term P of the
KHMH equation (3.6). This term consists of two components, one due to inhomogeneity
of the mean flow in scale space, Pr = −2du′

i du′
j(∂ dUi/∂rj), and the other due to

inhomogeneity in physical space, Ps = −2du′
iu

′∗
j (∂ dUi/∂Xj). Here we decompose the

former component, Pr, which is the dominant one; this is also discussed below. Applying
a process similar to that described in § 5, we obtain

Pr = −2du′
i du′

j
∂ dUi

∂rj

= −2(γ (TT))2du′(TT)
i du′(TT)

j

(TT) ∂ dU(TT)
i

∂rj
− 2(γ (TL))2du′(TL)

i du′(TL)
j

(TL) ∂ dU(TL)
i

∂rj

− 2(γ (LT))2du′(LT)
i du′(LT)

j

(LT) ∂ dU(LT)
i

∂rj
− 2(γ (LL))2du′(LL)

i du′(LL)
j

(LL) ∂ dU(LL)
i

∂rj
− φ,

(7.1)

where the additional term φ is given by

φ = 2(γ (TT))2 dU(TT)
i dU(TT)

j
∂ dU(TT)

i
∂rj

+ 2(γ (TL))2 dU(TL)
i dU(TL)

j
∂ dU(TL)

i
∂rj

+ 2(γ (LT))2 dU(LT)
i dU(LT)

j
∂ dU(LT)

i
∂rj

+ 2(γ (LL))2 dU(LL)
i dU(LL)

j
∂ dU(LL)

i
∂rj

+ 2γ (TT) dui duj
(TT)

[
dU(TT)

i
∂γ (TT)

∂rj
+ ∂

∂rj
(γ (LL) dU(LL)

i

+ γ (TL) dU(TL)
i + γ (LT) dU(LT)

i )

]

+ 2γ (TL) dui duj
(TL)

[
dU(TL)

i
∂γ (TL)

∂rj
+ ∂

∂rj
(γ (LL) dU(LL)

i

+ γ (TT) dU(TT)
i + γ (LT) dU(LT)

i )

]

+ 2γ (LT) dui duj
(LT)

[
dU(LT)

i
∂γ (LT)

∂rj
+ ∂

∂rj
(γ (LL) dU(LL)

i

+ γ (TL) dU(TL)
i + γ (TT) dU(TT)

i )

]

+ 2γ (LL) dui duj
(LL)

[
dU(LL)

i
∂γ (LL)

∂rj
+ ∂

∂rj
(γ (TT) dU(TT)

i

960 A24-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

19
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.194


Laminar/turbulent interface and interscale energy transfer

+ γ (TL) dU(TL)
i + γ (LT) dU(LT)

i )

]
− 2 dUi dUj

∂ dUi

∂rj
. (7.2)

Note that the terms P(AA)
r = −2du′(AA)

i du′(AA)
j

(AA)

(∂ dU(AA)
i /∂rj) that appear in (7.1)

are the production terms of the conditionally averaged KHMH equation (4.8). Due
to the strong shear in the wall-normal direction, the dominant component of Pr =
−2du′

i du′
j(∂ dUi/∂rj) is Pr(1,2) = −2du′

1 du′
2(∂ dU1/∂r2)|r2=0. It can be easily proved (see

Yao et al. 2022) that for r1 = 0 this component is equal to −2du′
1 du′

2(∂U1/∂x2). The
corresponding production component due to inhomogeneity of the mean flow in physical
space, Ps = −2du′

1u′∗
2 (∂ dU1/∂X2), is much smaller. Therefore in this section we consider

only Pr(1,2) = −2du′
1 du′

2(∂ dU1/∂r2)|r2=0 and the corresponding conditionally averaged

(TT) component P(TT)
r(1,2) = −2du′(TT)

1 du′(TT)
2

(TT)

(∂ dU(TT)
1 /∂r2)|r2=0 within a turbulent

spot. We focus at location TR2 and compare the aforementioned component with Pr(1,2)

evaluated at the fully turbulent region, TU.
We also extend the decomposition (5.3) to the total fluxes in physical and scale spaces

φs and φr, defined in (3.8) and (3.9) respectively. The resulting expressions are

φsj = γ (TT)φs
(TT)
j + γ (TL)φs

(TL)
j + γ (LT)φs

(LT)
j + γ (LL)φs

(LL)
j + φ, (7.3)

where

φs
(AA)
j = U∗

j
(AA) dq2(AA)

(AA)

+ u′∗
j

(AA) dq2(AA)
(AA)

+ 2 du′(AA)
j dp′(AA)

(AA)

− 1
2
ν
∂ dq2(AA)

∂Xj

(AA)

(7.4)

and
φr j = γ (TT)φr

(TT)
j + γ (TL)φr

(TL)
j + γ (LT)φr

(LT)
j + γ (LL)φr

(LL)
j + φ, (7.5)

where

φr
(AA)
j = du′(AA)

j dq2(AA)
(AA)

+ dU(AA)
j dq2(AA)

(AA)

− 2ν
∂ dq2(AA)

∂rj

(AA)

. (7.6)

The full expressions, including the remainder terms, are provided in Appendix B.

7.1. Conditionally and standard-averaged production and fluxes

In figure 13, contours of P(TT)
r(1,2) at TR2 and of Pr(1,2) at TR2 and TU are plotted in the

(r3, Y) plane for r1 = 0. It can be seen that the production peaks within the turbulent spot
and the fully turbulent region are located at approximately the same spanwise separation
and wall-normal height, r3 ≈ 5L0 and Y ≈ 1.3L0 respectively. On the other hand, the peak
of Pr(1,2) at TR2 is found to be at larger r3 separation and further away from the wall, r3 ≈
7.5L0 and Y ≈ 4.5L0. We mark the spanwise scales where the peaks appear, r3 = 5L0 and
7.5L0, with vertical dotted lines in figure 13, and plot the variation of the three production
terms along these lines in figure 14. Notice the very close matching of the conditionally
averaged production P(TT)

r(1,2) at TR2 (dashed line) and the standard-averaged production
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Figure 13. Contour plots of conditionally averaged production P (TT)
r(1,2) at TR2 (a), standard-averaged

production Pr(1,2) at TR2 (b) and TU (c) on the (r3, Y) plane for r1 = 0. The red and black vertical dotted
lines are placed at r3 = 5L0 and 7.5L0, respectively. The horizontal purple line indicates the local boundary
layer thickness.

0 5 Y/L0

r3/L0 = 5

r3/L0 = 7.5

10 15

0.2

0.4

0.6

0.8

1.0

1.2

P
ro

/m
ax

(p
ro

(r
3
/L

0
 =

 5
))

Figure 14. Variation of production terms along the wall-normal distance at r3/L0 = 5.0 and 7.5. The variation
is along the dotted vertical lines shown in figure 13 that pass through the corresponding production peaks. The
plots are normalised by the value at r3/L0 = 5.0. The solid lines represent Pr(1,2) at TU. The dashed lines
denote P(TT)

r(1,2) and the circles Pr(1,2), both at location TR2.

Pr(1,2) at TU (solid line) close to the wall (for Y ≤ 1.3L0) while further away the two sets
deviate. On the other hand, Pr(1,2) at TR2 shows significantly different behaviour even
close to the wall, and of course peaks at a different distance.

Figure 15(a) shows stream-tubes in the (r1, r3, Y) hyperplane obtained from the
conditionally averaged total fluxes (φ

(TT)
r1 , φ

(TT)
r3 , φ

(TT)
s2 ) at TR2 together with an isosurface

of the conditionally averaged production. In figure 15(b) we plot (φr1, φr3, φs2) and
production in the fully turbulent region. The latter figure reflects the dynamics of near-wall
turbulence; energy is extracted from the mean flow at the buffer layer where the production
peak is located, then it is transferred away from the wall and towards larger r1 scales
before bending back to smaller scales (dissipation region). This behaviour is related to the
self-sustained turbulence mechanism near the wall (see Cimarelli et al. 2013). A similar
pattern can be discerned in figure 15(a), but the inverse cascade and flow of energy away
from the wall is over a smaller range of r1 separations (up to r1 ≈ 10); the stream-tubes
again bend towards small scales. There are also some deviations between the two plots for
larger r3 separations. If the centre of the sphere (used for identifying which stream-tubes
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Figure 15. Stream-tubes of the conditionally averaged total flux vector (φ
(TT)
r1 , φ

(TT)
r3 , φ

(TT)
s2 ) at TR2 (a) and

of the standard-averaged vector (φr1 , φr3 , φs2 ) at TU (b) in the three-dimensional (r1, r3, Y) hyperplane. The
stream-tubes are coloured according to the sign of φr3 (red for positive, blue for negative, thus indicating inverse
and forward cascade respectively). The colour bar refers to the value of φr3 . The plots were generated by placing
a sphere of radius 15L0 at (r1 = 5L0, r3 = 5L0, Y = 1.3L0) and tracing the stream-tubes crossing the sphere.
Isosurfaces of the production term with values 0.9 × max(P (TT)

r(1,2)) (a) and 0.85 × max(Pr(1,2)) (b) are shown
in yellow.

to trace) is placed at smaller r3 and the radius is reduced, the similarity between the two
panels is more evident (see figure 16 and caption for details).

The shorter range of inverse cascade in the TR2 location compared with TU is probably
because the spots are still developing, the merging is not yet complete and thus they have
a smaller footprint in the streamwise direction. Note also the similarities of figures 15(a)
and 16(a) to figure 8(e) that shows only the nonlinear component of the flux vector. This
similarity confirms that this is the most important component that determines the overall
behaviour.

8. Conclusions

We apply conditional averaging to study the interscale energy transfer process during
bypass transition. To this end, we define two-point intermittencies and apply them to
decompose the energy fluxes into different components that depend on the local conditions
at the two points used to define the flux; the points are both within a laminar region or a
turbulent spot or straddle the laminar/turbulent interface. The flux terms are evaluated
numerically directly in the scale space because conditional averaging does not commute
with the spatial derivative operator.

In the (r1, r3, Y) hyperplane, strong inverse cascade is found in the r1 direction, due
to the nonlinear fluxes across the downstream and upstream boundaries of a spot. For
the former boundary, the inverse cascade extends over a larger range of r1 separations
compared with the latter boundary. We explain this finding by considering a propagating
spot as it passes across a fixed streamwise location.

We derive also the conditionally averaged KHMH equation, which, although not used
directly, inspires the conditional decomposition of the production term and the total energy
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Figure 16. Same as figure 15, but the sphere is now placed at (r1 = 5L0, r3 = 2.5L0, Y = 1.3L0) and
has smaller radius, 4L0. Isosurfaces of the production term with values 0.95 × max(P (TT)

r(1,2)) (a) and
0.85 × max(Pr(1,2)) (b) are shown in yellow.

fluxes when both points are located within a turbulent spot (TT events). We compare with
the corresponding terms in the fully turbulent region and find significant similarities,
but also some differences. In both plots, a cluster of stream-tubes originates from the
production peak and transfers energy to larger scales before bending back to small scales
and the near-wall region. This spiral shape is similar to that found in the fully turbulent
region and in channel flow. However, the extent of the spiralling motion is confined to
smaller separations, probably because the spots have not yet fully merged. Also, a smaller
cluster of stream-tubes transfers energy in the r1 and r3 directions, which is not found in
the fully turbulent region.

The conditional averaging approach for two-point statistics developed in the paper can
be applied to other flow configurations that exhibit sharp interfaces, such as wakes and jets,
where a TNTI separates the irrotational and vortical regions. Important questions remain to
be answered; for example, do the conditionally averaged statistics exhibit self-similarity?
How does this develop as the jet/wake expands? Research in this direction is left as future
work.
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Appendix A. Calculation of derivatives of two-point quantities directly in scale space

In this appendix, we provide the steps for the numerical evaluation of derivatives of
two-point quantities directly in scale space.
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dU (r3, r2 = dy1 + dy2) dU (r3, r2 = –(dy1 + dy2))

dy1

Middle point for dU

dy2

Y = Y0

Y space

Figure 17. Sketch for the calculation of ∂ dU(AA)
i /∂r2|r2=0.

A.1. Calculation of ∂ dU(AA)
i /∂r2|r2=0

(i) Consider a cell with centroid at distance Y = Y0 from the wall. The distances of
the centroids of the cells located above and below are dy1 and dy2 respectively
(see figure 17). Recall that the grid is non-uniform in the wall-normal direction,
so dy1 /= dy2. Calculate dU(AA)

i (r2 = dy1 + dy2) = U(AA)
i (Y0 + dy1) − U(AA)

i (Y0 −
dy2), i.e. the velocity difference between the red +/− markers in figure 17.

(ii) Calculate dU(AA)
i (r2 = −(dy1 + dy2)) = −dU(AA)

i (r2 = dy1 + dy2), i.e. the velocity
difference between the blue +/− markers.

(iii) Use the central difference scheme to compute

∂ dU(AA)
i

∂r2

∣∣∣∣∣
r2=0

= dU(AA)
i (r2 = dy1 + dy2) − dU(AA)

i (r2 = −(dy1 + dy2))

2(dy1 + dy2)
, (A1)

and store the value at the midpoint (denoted with a green circle in figure 17).
(iv) Repeat steps (i)–(iii) for cell centroids at different heights Y0.
(v) Because the mesh is non-uniform, the middle point is not located at Y0, so interpolate

values of ∂ dU(AA)
i /∂r2|r2=0 at midpoints to obtain the value at Y0.

Comparison with evaluation at points x+
i and x−

i for the standard-averaged streamwise
velocity shows that the results are identical (see figure 18.

A.2. Calculation of ∂ dU(AA)
i /∂r1|r1=0

(i) Calculate dU(AA)
i (r3, r1 = 2Δx), i.e. the velocity difference between the red +/−

points shown in the left-hand panel of figure 19, at a fixed height y = Y0.
(ii) Calculate dU(AA)

i (r3, r1 = −2Δx), i.e. the velocity difference between the blue +/−
points shown in the right-hand panel of figure 19, at a fixed height y = Y0.

(iii) Use the central difference scheme to compute

∂ dU(AA)
i

∂r1

∣∣∣∣∣
r1=0

= dU(AA)
i (r3, r1 = 2Δx) − dU(AA)

i (r3, r1 = −2Δx)
2(2Δx)

, (A2)

and store the value at the middle point (marked with a green circle in both panels of
figure 19).
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Figure 18. Contour plot of ∂ dU1/∂r2|r2=0 in the (r3, Y) plane. Evaluation directly in scale space (a) and
from 1

2 (∂U+
1 /∂x+

2 + ∂U−
1 /∂x−

2 ) (b).

dU (r3= 2dz, r1= 2dx) dU (r3= 2dz, r1= –2dx)

Middle point for dU Middle point for dU

Z space

X space

Figure 19. Sketch for the calculation of ∂ dU(AA)
i /∂r1|r1=0.

(iv) Repeat steps (i)–(iii) at different heights Y0.

Figure 19 shows the four points involved for ∂ dU(AA)
i /∂r1|r1=0. The process is similar

for the evaluation of ∂ dU(AA)
i /∂r1 for different r1 values. Comparison with evaluation at

points x+
i and x−

i for the standard-averaged streamwise velocity shows identical results
(see figure 20).

Appendix B. Conditional decomposition of total fluxes in scale and physical spaces

B.1. Decomposition of the total flux in scale space

φr j = γ (TT)φr
(TT)
j + γ (TL)φr

(TL)
j + γ (LT)φr

(LT)
j + γ (LL)φr

(LL)
j + φ, (B1)

where

φr
(AA)
j = du′(AA)

j dq2(AA)
(AA)

+ dU(AA)
j dq2(AA)

(AA)

− 2ν
∂ dq2(AA)

∂rj

(AA)

, (B2)
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Figure 20. Contour plot of ∂ dU1/∂r1|r1=0 in the (r3, Y) plane. Evaluation directly in scale space (a) and
from 1

2 (∂U+
1 /∂x+

1 + ∂U−
1 /∂x−

1 ) (b).

φ =
TT,TL,LT,LL∑

AA=

[
γ (AA)((dui)2(AA)

dU(AA)
j + 2 dui duj

(AA)
dU(AA)

i

−2 dU(AA)
i dU(AA)

i dU(AA)
j ) + γ (AA) dU(AA)

i dU(AA)
i dUj − 2νγ (AA)

×
(

2 dU(AA)
i

∂ dU(AA)
i

∂rj
+ 2 dU(AA)

i
∂ dui

∂rj

(AA)

− ∂(dU(AA)
i )2

∂rj

)]

− (dui)2 dUj − 2 dui duj dUi + dUi dUi dUj

− 2ν

(
−2 dUi

∂ dUi

∂rj
− 2 dUi

∂ dui

∂rj
+ ∂(dUi)

2

∂rj

)
. (B3)

B.2. Decomposition of the total flux in physical space

φsj = γ (TT)φs
(TT)
j + γ (TL)φs

(TL)
j + γ (LT)φs

(LT)
j + γ (LL)φs

(LL)
j + φ, (B4)

where

φs
(AA)
j = U∗

j
(AA) dq2(AA)

(AA)

+ u′∗
j

(AA) dq2(AA)
(AA)

+ 2 du′(AA)
j dp′(AA)

(AA)

− 1
2
ν
∂ dq2(AA)

∂Xj

(AA)

, (B5)

φ =
TT,TL,LT,TT∑

AA=

[
γ (AA)((dui)2(AA)

U∗
j
(AA) + 2 duiU∗

j
(AA)

dU(AA)
i

− 2 dU(AA)
i dU(AA)

i U∗
j
(AA)

) + γ (AA) dU(AA)
i dU(AA)

i U∗
j − 1

2
νγ (AA)

960 A24-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

19
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.194


H. Yao and G. Papadakis

×
(

2 dU(AA)
i

∂ dU(AA)
i

∂Xj
+ 2 dU(AA)

i
∂ dui

∂Xj

(AA)

− ∂(dU(AA)
i )2

∂Xj

)

+ 2γ (AA) dU(AA)
i dP(AA)

]
− 1

2
ν

(
−2 dUi

∂ dUi

∂Xj
− 2 dUi

∂ dui

∂Xj
+ ∂(dUi)

2

∂Xj

)

− (dui)2U∗
j − 2 duiU∗

j dUi + dUi dUiU∗
j − 2 dUi dP. (B6)
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