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The Choquet–Deny Equation in a
Banach Space

Wojciech Jaworski and Matthias Neufang

Abstract. Let G be a locally compact group and π a representation of G by weakly∗ continuous isome-

tries acting in a dual Banach space E. Given a probability measure µ on G, we study the Choquet–Deny

equation π(µ)x = x, x ∈ E. We prove that the solutions of this equation form the range of a pro-

jection of norm 1 and can be represented by means of a “Poisson formula” on the same boundary

space that is used to represent the bounded harmonic functions of the random walk of law µ. The

relation between the space of solutions of the Choquet–Deny equation in E and the space of bounded

harmonic functions can be understood in terms of a construction resembling the W∗-crossed product

and coinciding precisely with the crossed product in the special case of the Choquet–Deny equation

in the space E = B(L2(G)) of bounded linear operators on L2(G). Other general properties of the

Choquet–Deny equation in a Banach space are also discussed.

1 Introduction

The classical Choquet–Deny theorem asserts that when µ is a regular probability
measure on a locally compact abelian group G, then every bounded continuous func-
tion h : G → C which satisfies

(1.1) h(g) =

∫

G

h(gg ′)µ (dg ′)

for every g ∈ G, is necessarily constant on the cosets of the smallest closed subgroup

Gµ containing the support of µ. The theorem can readily be seen to be equivalent to
the statement that whenever π is a representation of G by weakly continuous isomor-
phisms of a locally convex space E where for every x ∈ E and x∗ ∈ E∗ the function
G ∋ g → 〈π(g)x, x∗〉 ∈ C is bounded and continuous, then every vector x ∈ E which

satisfies

(1.2) x =

∫

G

π(g)xµ (dg)

is necessarily fixed by every g ∈ Gµ, i.e., π(g)x = x for every g ∈ Gµ.
The Choquet–Deny theorem is known to remain true for some nonabelian groups,

too; however, it is not true for all groups. When the theorem fails, then equations

(1.1) and (1.2) will have other solutions in addition to those described above. The
goal of this article is to understand the connection between the solutions of the clas-
sical Choquet-Deny equation (1.1) and its functional analytic counterpart (1.2), and
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to uncover some general properties of the spaces of such solutions. We will be con-
cerned mainly with representations that are adjoints of strongly continuous repre-

sentations by isometries in separable Banach spaces and our group G will, for the
most part, be locally compact and second countable.

In general, a bounded Borel function h : G → C satisfying (1.1) is called a µ-har-

monic function. Such functions have their origin in probability theory. They are

a special case of the harmonic functions of a Markov chain and, as such, have been
extensively studied. When G is locally compact, one usually considers the bounded µ-
harmonic functions as elements of L∞(G). They are then solutions of equation (1.2)
where π is now the right regular representation in L∞(G). In fact, the right-hand

sides of equations (1.1) and (1.2) define a positive weakly∗ continuous contraction
π(µ) : L∞(G) → L∞(G) which commutes with the left regular representation πl

of G in L∞(G) and can be viewed as the average
∫

G
π(g)µ (dg) of the right regular

representation. It is then immediate that the space Hµ ⊆ L∞(G) of bounded µ-

harmonic functions is a weakly∗ closed self-adjoint subspace of L∞(G) containing
constants and invariant under πl. It is a much deeper result, involving the theory
of martingales, that bounded µ-harmonic functions can be represented, by means
of a “Poisson formula”, as bounded Borel functions on a certain “boundary space”.

As a result, Hµ turns out to be isomorphic to an L∞-space and so has canonically
the structure of an abelian W ∗-algebra. More precisely, for each h1, h2 ∈ Hµ the
sequence π(µn)(h1h2) converges almost everywhere (hence, also weakly∗), and the
formula

(1.3) h1 ⋄ h2 = w∗-lim
n→∞

π(µn)(h1h2)

defines a product ⋄ on Hµ under which Hµ is an abelian W ∗-algebra. The product

⋄ coincides with the ordinary product in L∞(G) if and only if the Choquet–Deny
theorem holds for the particular measure µ. It is also remarkable that Hµ is the
range of a projection K : L∞(G) → Hµ of norm 1, which commutes with the left
regular representation.

We will show that the solutions of the Choquet–Deny equation (1.2) in a dual Ba-
nach space also form the range of a projection of norm 1 and can be represented by
means of a Poisson formula on the same boundary space that is used to represent
the classical bounded µ-harmonic functions. It will follow that the relation between

the space of such solutions and the space Hµ of the classical µ-harmonic functions
can be understood in terms of a construction closely resembling the well-known con-
struction of the W ∗-crossed product, and coinciding precisely with the latter in the
special case of the Choquet–Deny equation in the space B(L2(G)) of bounded linear

operators on L2(G). We will also see that the space of solutions of the Choquet–Deny
equation in a W ∗-algebra has itself canonically the structure of a W ∗-algebra.

2 Some Special Cases

Let E be a Banach space which is the dual of a Banach space E∗. The duality between
E∗ and E will be written 〈x∗ , x〉, x∗ ∈ E∗, x ∈ E. Let π∗ be a strongly continuous
representation of a locally compact group G by isometries in E∗, and let π be the
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adjoint of π∗, i.e., the representation in E by weakly∗ continuous isometries given by
π(g) = [π∗(g−1)]∗. As is well known, the representations π∗ and π can be extended

to representations of the measure algebra M(G) in E∗ and E, resp. Given σ ∈ M(G),
π∗(σ) and π(σ) are the bounded linear operators which satisfy

〈π∗(σ)x∗ , x〉 =

∫

G

〈π∗(g)x∗ , x〉σ(dg),

〈x∗ , π(σ)x〉 =

∫

G

〈x∗ , π(g)x〉σ(dg),

(2.1)

for all x∗ ∈ E∗ and x ∈ E. Clearly, ‖π∗(σ)‖, ‖π(σ)‖ ≤ ‖σ‖ and π(σ) = [π∗(σ̃)]∗,
where σ̃ denotes the measure σ̃(A) = σ(A−1). The Choquet–Deny equations in E∗
and E become

(2.2) π∗(µ)x∗ = x∗ and π(µ)x = x,

where µ ∈ M1(G), the subset of probability measures in M(G). Solutions of equa-
tions (2.2) will be referred to as µ-harmonic vectors, and we will denote by Hµπ∗

⊆ E∗
and Hµπ ⊆ E the spaces of such vectors. We note that Hµπ∗

and Hµπ always include
all those vectors that are fixed by every element of the subgroup Gµ. These are the

trivial solutions of the Choquet–Deny equation.
In the classical case we have E = L∞(G), E∗ = L1(G), and π and π∗ are the usual

right regular representations in L∞(G) and L1(G). While the Choquet–Deny theorem
is not true in general, it belongs to the folklore of the subject that the Choquet–

Deny equation in L1(G), and, more generally, in Lp(G), 1 ≤ p < ∞, as well as
the Choquet–Deny equations in C0(G) and M(G) admit only trivial solutions, no
matter what G and µ are. This fact, as well as a more general conclusion in the
same direction, can be easily deduced from the following fundamental result due to

Mukherjea [31] and Derriennic [9].

Lemma 2.1 If Gµ is not compact, then the convolution powers µn converge to zero in

the weak∗ topology of M(G).

Proposition 2.2 Let π be a representation of G by weakly continuous isomorphisms of

a locally convex space E and suppose that π vanishes at infinity, i.e., for every x ∈ E and

x∗ ∈ E∗ the function G ∋ g → 〈π(g)x , x∗〉 belongs to C0(G). Let v be a solution of the

Choquet–Deny equation in E, i.e.,

(2.3) 〈v , x∗〉 =

∫

G

〈π(g)v , x∗〉µ (dg)

for every x∗ ∈ E∗. Then π(g)v = v for every g ∈ Gµ. If Gµ is not compact then v = 0.

Proof If Gµ is compact, consider the restriction of π to Gµ and consider µ as a
measure on Gµ. Since the Choquet–Deny theorem holds for compact groups, the
result follows without difficulty because the function g → 〈π(g)v , x∗〉 is µ-harmonic.
If Gµ is not compact, observe that equation (2.3) holds with µ replaced by µn; then

use Lemma 2.1.
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Corollary 2.3 Let π∗ and π denote the right regular representations of G in C0(G)
and M(G), resp., and let µ ∈ M1(G). Then h ∈ Hµπ∗

if and only if h is constant on the

left cosets of Gµ. Also, σ ∈ Hµπ if and only if σ ∗ δg = σ for every g ∈ Gµ. If Gµ is not

compact, then Hµπ∗
= {0} and Hµπ = {0}.

Corollary 2.4 Let π∗ be the right regular representation of G in Lp(G), where

1 ≤ p < ∞. Then f ∈ Hµπ∗
if and only if for every g ∈ Gµ, f (xg) = f (x) for

almost every x ∈ G. If Gµ is not compact, then Hµπ∗
= {0}.

Proof When p > 1, Proposition 2.2 applies. When p = 1, embed L1(G) in M(G)
and use Corollary 2.3.

Another condition that ensures that the Choquet–Deny equation has only trivial
solutions is that of strict convexity. The proof of the following proposition is a routine
exercise.

Proposition 2.5 If the Banach space E (resp., E∗) is strictly convex then the Choquet–

Deny equation in E (resp., E∗) admits only trivial solutions.

Thus, in particular, the Choquet–Deny equation in a Hilbert space or in an
Lp-space with 1 < p < ∞ is not interesting.

We will now introduce two examples which provided the original stimulus for our
investigations.

Example 1 Let X be a locally compact G-space where G is a locally compact group

and the mapping G × X ∋ (g, x) → gx ∈ X is continuous. The action of G on
X gives rise to a strongly continuous representation π∗ of G in C0(X), defined by
(π∗(g) f )(x) = f (g−1x). The adjoint of π∗ is the representation π in M(X) = C0(X)∗

given by (π(g)σ)(A) = σ(g−1A).

Suppose µ ∈ M1(G) and σ ∈ M1(X). When both X and G are second countable,
π(µ)σ has the following simple probabilistic interpretation. Let X and Y be indepen-

dent random variables taking values in X and G, resp. If σ is the distribution of X

and µ is the distribution of Y , then π(µ)σ is the distribution of the X-valued random
variable Y X. The solutions of the Choquet–Deny equation π(µ)σ = σ in M1(X) are
called µ-stationary measures. From the probabilistic point of view they are, precisely,

the possible limits in M1(X), in the weak∗ topology, of probability distributions of se-
quences of X-valued random variables of the form YnYn−1 · · ·Y1X, where {Yn}

∞
n=1 is

a sequence of independent identically distributed G-valued random variables whose
common distribution is µ and X is an X-valued random variable, independent of

Y1,Y2, . . . . The sequence YnYn−1 · · ·Y1X forms a Markov chain in X [38, Proposi-
tion 4.4, p. 30], [10, §II]. The solutions of the Choquet–Deny equation π∗(µ̃) f = f

in C0(X) are harmonic functions of this Markov chain. When the Choquet–Deny
theorem holds, the µ-stationary measures are just the Gµ-invariant probability mea-

sures on X, and the elements of Hµ̃π∗
are functions f ∈ C0(X) with f (gx) = f (x)

for every g ∈ Gµ and x ∈ X. ♦
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Example 2 Let ρ be a continuous unitary representation of G in a Hilbert space
H. Then the formula π(g)A = ρ(g)Aρ(g−1) defines a representation π of G in B(H),

the algebra of bounded linear operators on H. The subrepresentation π∗ of π in the
ideal T(H) of trace class operators is strongly continuous (with respect to the trace
norm), and π is the adjoint of π∗. When the Choquet–Deny theorem holds, then
Hµπ = ρ(Gµ) ′, the commutant of ρ(Gµ) in B(H), and Hµπ∗

= ρ(Gµ) ′ ∩ T(H).

When H = L2(G) and ρ is the right regular representation, the Choquet–Deny
equation in B(L2(G)) can be viewed as a “non-commutative” or “quantized” ver-
sion of the classical Choquet–Deny equation. We will refer to π as the right regular
representation of G in B(L2(G)). Of course, π commutes with a similarly defined

left regular representation πl and therefore Hµπ is always invariant under πl. More-
over, since B(L2(G)) contains a copy of L∞(G), Hµπ contains a copy of Hµ. When
Gµ = G, the subspace of trivial solutions of the Choquet–Deny equation in B(L2(G))
is just V N(G), the von Neumann algebra generated by ρl, the left regular representa-

tion of G in L2(G); Hµπ = V N(G) if and only if the conclusion of the Choquet–Deny
theorem is true for µ. The equality Hµπ = V N(G) is possible only when G is an
amenable group, cf. [27, 39].

We note that, analogously to the classical case, the Choquet–Deny equation in
T(L2(G)) has always only trivial solutions, and when Gµ is not compact, Hµπ∗

={0}.
This follows from Proposition 2.2 when T(L2(G)) is considered as a locally con-
vex space under the σ

(
T(L2(G)), K(L2(G))

)
-topology, where K(L2(G)) denotes the

ideal of compact operators. ♦

In connection with Example 2 we would like to mention that a very different
route to establish a “non-commutative” Choquet–Deny equation has been recently

taken by Chu and Lau [5]. There, the duality between L∞(G) and L1(G) is replaced
by that between the group von Neumann algebra V N(G) and the Fourier algebra
A(G). Moreover, the measure algebra M(G) is replaced by the Fourier–Stieltjes alge-
bra B(G), and probability measures correspond to the elements of the set P1(G) con-

sisting of bounded continuous positive definite functions σ on G with σ(e) = 1. The
role of the right regular representation of M(G) in L∞(G) is played by the canon-
ical action of B(G) on V N(G). For a fixed σ ∈ B(G), the authors study the space
Hσ = {T ∈ V N(G) ; σT = T} of σ-harmonic functionals on A(G). Their investi-

gations show analogies with, but mainly reveal crucial differences from, the classical
situation. For instance, for σ ∈ P1(G), Hσ is always a subalgebra of V N(G) — which
is in contrast to the fact that for a probability measure µ, the space of bounded µ-har-
monic functions is a subalgebra of L∞(G) only if it is trivial. This completely different

behaviour is not surprising, since the classical theory of harmonic functions can be
recovered from the setting of [5] only for abelian groups.

3 The Preannihilator of Hµπ

Given a probability measure µ on a locally compact group G, let Jµ denote the set

(3.1) Jµ = {ϕ − ϕ ∗ µ ; ϕ ∈ L1(G)},
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where the bar means closure with respect to the L1-norm. Evidently, Jµ is a left ideal
in the group algebra L1(G), whose annihilator in L∞(G) is precisely the space Hµ of

the bounded µ-harmonic functions. As pointed out by Willis [43, 44], ideals of this
form appear naturally, not only in the theory of µ-harmonic functions, but also in
the study of amenability and certain factorization questions in group algebras. The
quotient L1(G)/ Jµ turns out to be an abstract L1-space whose pointwise realization

is the boundary needed to represent the µ-harmonic functions by means of a Poisson
formula. The space J of all ideals of the form Jµ, where µ ranges over M1(G), has an
interesting order structure when ordered by inclusion [18, 43]. We note that

Jµ ⊆ L1
0(G, Gµ) ⊆ L1

0(G),

where L1
0(G, Gµ) denotes the kernel of the canonical mapping from L1(G) to

L1(G/Gµ), and L1
0(G) = L1

0(G, G) is the augmentation ideal

L1
0(G) = { f ∈ L1(G) ;

∫
f = 0}.

Moreover, L1
0(G, Gµ) coincides with the preannihilator of the subspace of trivial so-

lutions of the Choquet–Deny equation and the equality Jµ = L1
0(G, Gµ) holds if and

only if the conclusion of the Choquet–Deny theorem is true for µ.
Let π∗ be a strongly continuous representation of G by isometries in a Banach

space E∗ and π the adjoint of π∗ acting in the dual E of E∗. The analog of Jµ is the

closed subspace Jµπ of E∗ given by

(3.2) Jµπ = {x∗ − π∗(µ̃)x∗ ; x∗ ∈ E∗},

where the bar now denotes the norm closure in E∗. It is evident that, as in the classical
case, Hµπ = J ⊥µπ.

Remark 3.1 The subspace of trivial solutions of the Choquet–Deny equation
in E is the annihilator of the closed subspace E∗0(Gµ) of E∗ spanned by the set

{x∗ − π∗(g)x∗ ; g ∈ Gµ, x∗ ∈ E∗}. Thus E∗0(Gµ) plays the role of L1
0(G, Gµ);

Jµπ ⊆ E∗0(Gµ), with equality if and only if the Choquet–Deny theorem in E has
only trivial solutions.

Throughout the sequel, it will be convenient to identify L1(G) with the subspace
of absolutely continuous complex measures in M(G). With this convention in force,
we obtain the following simple relation between Jµ and Jµπ. Recall that for every
σ ∈ M(G), σ̃ denotes the measure σ̃(A) = σ(A−1).

Theorem 3.2 Jµπ = π∗( J̃µ)E∗ = {π∗(ϕ̃)x∗ ; ϕ ∈ Jµ, x∗ ∈ E∗} and Jµπ =

π∗( J̃µ) Jµπ.

Proof Given ϕ ∈ Jµ, x∗ ∈ E∗, and x ∈ Hµπ , we obtain

〈π∗(ϕ̃)x∗ , x〉 = 〈x∗ , π(ϕ)x〉 =

∫

G

〈x∗ , π(g)x〉ϕ (dg) = 0,
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because the function g → 〈x∗ , π(g)x〉 is µ-harmonic. Hence, π∗( J̃µ)E∗ ⊆ Jµπ. In

particular, this means that π∗( J̃µ) Jµπ ⊆ Jµπ, and so Jµπ is a left Banach J̃µ-module.
But as pointed out in [43, p. 203], if {εα}α∈A is a bounded approximate identity in

L1(G) then

ηαn = εα ∗ (δe −
1
n

n∑

i=1

µi), α ∈ A, n ∈ N,

is a bounded right approximate identity for Jµ. Since

lim
n→∞

‖π∗( 1
n

n∑

i=1

µi)x∗‖ = 0

for every x∗ ∈ Jµπ, it easily follows that the J̃µ-module Jµπ has a bounded left ap-

proximate identity. Hence, Cohen’s factorization theorem yields π∗( J̃µ) Jµπ = Jµπ .

Thus Jµπ = π∗( J̃µ)E∗.

Example 2 (continued) Suppose that E∗ is a Banach algebra with multiplication
denoted by ⋆. It is immediate that if the identity

π∗(σ)(x∗ ⋆ y∗) = x∗ ⋆ (π∗(σ)y∗)

holds for all x∗, y∗ ∈ E∗ and σ ∈ M(G), then Jµπ will be a left ideal in E∗. This
is, of course, the case when π∗ is the right regular representation in L1(G) and ⋆
is the convolution in L1(G). Continuing our discussion of the “non-commutative”

Choquet–Deny equation in B(L2(G)), we wish to point out here that the convolution
in L1(G) has, in fact, an analog in T(L2(G)), and that with respect to this “non-
commutative” convolution, Jµπ is a left ideal in T(L2(G)), exactly as in the classical
case. Such “non-commutative” convolution was recently introduced and studied [32,

33], and we believe that ideals of the form Jµπ may be useful in further investigation
of the resulting “non-commutative” version of the group algebra L1(G) [37].

The convolution in T(L2(G)) can be defined as follows. Let πl denote the left
regular representation of G in B(L2(G)) and πl∗ its restriction to T(L2(G)). Recall

that there is a canonical mapping κ : T(L2(G)) → L1(G) ⊆ M(G), which commutes
with the left and right regular representations and is given by κ(S)(A) = tr[SF(A)]
for every Borel set A ⊆ G, where F(A) ∈ B(L2(G)) is the operator of multiplication
by the characteristic function of A; κ is the preadjoint of the canonical embedding of

L∞(G) in B(L2(G)). One then defines convolution of two trace class operators S and
T by

(3.3) S ∗ T = πl∗(κ(S))T.

Since κ(S ∗T) = κ(S) ∗ κ(T), it easily follows that ∗ is an associative algebra product

with the further property that

tr(S ∗ T) = tr(S) tr(T)

https://doi.org/10.4153/CJM-2007-034-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-034-4


802 W. Jaworski and M. Neufang

for all S, T ∈ T(L2(G)). Then
(
T(L2(G)), ∗

)
is a Banach algebra with respect to

the trace norm. Since the left and right regular representations commute, it is also

evident that

π∗(σ)(S ∗ T) = S ∗ (π∗(σ)T)

for all σ ∈ M(G) and S, T ∈ T(L2(G)). Hence, we obtain the following.

Proposition 3.3 Jµπ is a left ideal in (T(L2(G)), ∗).1

In connection with Remark 3.1 we note that for E∗ = T(L2(G)), E∗0(G) is the

preannihilator V N(G)⊥ of V N(G) in T(L2(G)) and is properly contained in the aug-
mentation ideal of (T(L2(G)), ∗), unless G = {e}.

The “non-commutative” convolution can also be defined in essentially the same
way in the space N(Lp(G)) of nuclear operators on Lp(G), when 1 < p < ∞. Since
N(Lp(G)) is the predual of B(Lp(G)), it will remain true that the preannihilator of

the space of solutions of the Choquet–Deny equation in B(Lp(G)) is a left ideal in
N(Lp(G)). ♦

As we already mentioned, in the classical case the quotient L1(G)/ Jµ is an ab-
stract L1-space whose pointwise realization is the boundary needed to represent the

µ-harmonic functions by means of a Poisson formula. This fact can be established
by a purely functional analytic argument, see [43]. It is therefore conceivable that a
purely functional analytic argument could also be used to obtain a Poisson formula
for the µ-harmonic vectors and relate it to the formula for the classical bounded

µ-harmonic functions. However, we will not attempt to pursue this approach here,
choosing instead a more basic, probabilistic approach based on martingale theory.
The price to be paid for this is the assumptions of separability that we will need to
impose on the predual E∗ of our Banach space and, for our main results, also on

the group G. On the other hand, the probabilistic approach yields certain powerful
convergence results which do not seem possible to obtain by other means.

4 Random Walks and Their Harmonic Functions

In this section we review elements of the classical theory of the bounded µ-harmonic

functions and those elements of the theory of random walks that are needed to de-
velop our generalization. With the exception of some more specialized results per-
taining to the theory of µ-boundaries, most of the material presented here is a special
case of the basic theory of Markov chains [34, 38].

Let G be a locally compact group and µ a probability measure on G. By the (right)

random walk of law µ one means the Markov chain with state space G and transi-
tion probability Π(g, A) = µ(g−1A). The position of the random walk after its n-th
step (n = 0, 1, . . . ) can be expressed as the product Y0Y1 · · ·Yn where Y0 is the ini-
tial position and Y1,Y2, . . . are independent G-valued random variables distributed

1The definition of the “non-commutative” convolution given here is the reverse of the definition orig-
inally given in [32, 33], i.e., our S ∗ T is T ∗ S in [32, 33]; this ensures that Jµπ is, as the classical Jµ, a left
ideal.
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according to the law µ. In general, Y0 is also a random variable, independent of
Y1,Y2, . . . and distributed according to a law ν.

Let G∞ denote the product space G∞
=

∏∞
n=0 G (the space of paths ω = {ωn}

∞
n=0

of the random walk), Xn : G∞ → G, n = 0, 1, . . . , the canonical projections, and
B∞ the product σ-algebra

∏∞
n=0 B = σ(X0, X1, . . . ), where B stands for the σ-alge-

bra of Borel subsets of G. The law µ of the random walk and the starting measure

ν define a measure Qν on (G∞, B∞), called the Markov measure. The canonical
projections Xn become random variables on the probability space (G∞, B∞, Qν),
with distributions ν∗µn. When G is second countable, Qν is the image of the product
measure ν×µ×µ×· · · on (G∞, B∞) under the mapping G∞ ∋ (ω0, ω1, ω2, . . . ) 7→
(ω0, ω0ω1, ω0ω1ω2, . . . ) ∈ G∞. 2

In the case that ν is a point measure δg , we will write Qg rather than Qδg
. The

function G × B∞ ∋ (g, A) 7→ Qg(A) is, in fact, a transition probability from (G, B)
to (G∞, B∞), and one has

(4.1) Qν(A) =

∫

G

Qg(A)ν (dg), A ∈ B∞.

The transition probability Π(g, A) = µ(g−1A) is invariant with respect to the

action of G on G by left translations, i.e., Π(gg ′, gA) = Π(g ′, A) for all g, g ′ ∈ G

and A ∈ B. There is also a related action of G on the space of paths G∞, namely,
g{ωn}

∞
n=0 = {gωn}

∞
n=0. With this action, (G∞, B∞) is a Borel G-space. The Markov

measures Qg satisfy

(4.2) Qgg ′(gA) = Qg ′(A), g, g ′ ∈ G, A ∈ B∞,

i.e., the transition probability (g, A) → Qg(A) is G-invariant.
In general, when f : X → X ′ is a Borel function from a Borel space (X, A) into

a Borel space (X ′, A ′) and σ a measure on (X, A), we will write f σ for the measure

( f σ)(A ′) = σ( f −1(A ′)), A ′ ∈ A ′. When (X, A) is a Borel G-space and g ∈ G, gσ
will stand for the measure (gσ)(A) = σ(g−1A), A ∈ A. The convolution ν ∗ σ of a
measure ν on G with σ is defined by

(4.3) (ν ∗ σ)(A) =

∫

G

(gσ)(A)ν (dg), A ∈ A,

provided that the function G ∋ g 7→ (gσ)(A) is Borel for every A ∈ A. Using the
above notation, we have Qg = gQe (4.2) and Qν = ν ∗ Qe (4.1).

Let B(G) and B(G∞) denote the algebras of bounded complex-valued Borel func-

tions on G and G∞, resp., equipped with the sup-norms. The natural action of G

on B(G) and B(G∞) is the action (g f )(x) = f (g−1x) associated with the left regular
representations. It follows from (4.2) that the formula

(4.4) (R f )(g) =

∫

G∞

f (ω)Qg (dω) =

∫

G∞

f (gω)Qe (dω)

2Second countability ensures that the mapping (ω0, ω1, ω2, . . . ) 7→ (ω0, ω0ω1, ω0ω1ω2, . . . ) is mea-
surable. To ensure this without second countability requires extending the infinite product measure
ν × µ × µ × · · · to a σ-algebra larger than B∞.
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defines an equivariant contraction R : B(G∞) → B(G).
We will denote by r the right regular representation of G in B(G), as well as its

extension to a representation of M(G).
The Markov shift ϑ is the transformation ϑ : G∞ → G∞ given by ϑ({ωn}

∞
n=0) =

{ωn+1}
∞
n=0. Then ϑ commutes with the natural G-action on G∞ and transforms the

Markov measure Qν into the Markov measure Qν∗µ, i.e.,

(4.5) ϑQν = Qν∗µ.

The formula θ f = f ◦ ϑ defines an injective homomorphism θ of B(G∞) into itself.

It is an immediate consequence of (4.1) and (4.5) that

(4.6) Rθ = r(µ)R.

The σ-algebra B(i)
= {A ∈ B∞ ; ϑ−1(A) = A} is called the invariant σ-al-

gebra. Elements of B(i) are called invariant sets, and B(i)-measurable functions are
called invariant random variables. A B∞-measurable function f : G∞ → C is B(i)-

measurable if and only if f ◦ ϑ = f . Since ϑ and the G-action on G∞ commute, B(i)

is preserved by the G-action and therefore (G∞, B(i)) is also a Borel G-space.
We will denote by Bi the algebra of bounded complex-valued invariant random

variables. Bi is precisely the subalgebra of B(G∞) consisting of the fixed points of the

homomorphism θ : B(G∞) → B(G∞). By (4.6), for every f ∈ Bi , r(µ)R f = R f , i.e.,

R f is a bounded µ-harmonic function. We note that this property of R is equivalent
to having

(4.7) Qe(A) = (µ ∗ Qe)(A)

for every A ∈ B(i).

We will denote by Hµ the space of bounded µ-harmonic functions in B(G),
equipped with the sup norm. Then Hµ is invariant under the left regular representa-
tion; by the action of G on Hµ we will always mean the action associated with the left
regular representation.

An invariant set A ∈ B(i) will be called universally null (resp., universally conull)
if Qg(A) = 0 (resp., Qg(A) = 1) for every g ∈ G. We will say that a property
dependent on ω ∈ G∞ holds universally almost everywhere (u.a.e.) if it holds for ω
in a universally conull set.

Let Nu denote the collection of universally null sets. An invariant random variable
f : G∞ → C will be called universally essentially bounded if

(4.8) ‖ f ‖u = inf
∆∈Nu

(
sup

ω∈G∞−∆

| f (ω)|
)

< ∞.

‖ · ‖u is a C∗-norm on the ∗-algebra L
∞
i (µ) of equivalence classes of the universally

essentially bounded invariant random variables, where two such random variables
are equivalent when they coincide u.a.e. Since Nu is invariant under the action of G

on G∞, the natural action of G on Bi (the left regular representation) induces an ac-

tion of G on L
∞
i (µ), and the contraction R of equation (4.4) induces an equivariant

contraction, which we denote also by R, of L
∞
i (µ) into Hµ. The following funda-

mental result [34, Proposition V.2.4] is a well-known consequence of the Martingale
Convergence Theorem.
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Proposition 4.1 R is an equivariant isometric isomorphism of L
∞
i (µ) onto Hµ. More-

over, for every h ∈ Hµ, the sequence {h ◦ Xn}
∞
n=0 converges u.a.e. to R−1h.

We will find it useful in our treatment of the µ-harmonic vectors in Section 6 that
the sequence {h ◦ Xn}

∞
n=0 converges u.a.e. not only when h ∈ Hµ but also when h

is a µ-subharmonic function. A bounded above Borel function h : G → R is called
µ-subharmonic if

(4.9) h(g) ≤

∫

G

h(gg ′)µ (dg ′)

holds for every g ∈ G. Clearly, if h is bounded harmonic, then |h| is subharmonic.
It is also easy to see that if h1, . . . , hn are subharmonic functions, then so is h =

max1≤i≤n hi . The next proposition is a direct consequence of the theory of sub-

martingales.

Proposition 4.2 Given a bounded above subharmonic function h : G → R, the se-

quence h ◦ Xn converges u.a.e. to an invariant random variable f : G∞ → R such that

for every g ∈ G,

h(g) ≤

∫

G∞

f (ω)Qg (dω).

Returning to the µ-harmonic functions, observe that since L
∞
i (µ) is an abelian

C∗-algebra, Hµ itself is an abelian C∗-algebra when equipped with the product

h1 ⋄ h2 = R[(R−1h1)(R−1h2)].

The following intrinsic description of this product is an immediate consequence of

Proposition 4.1 and the Dominated Convergence Theorem.

Corollary 4.3 Given h1, h2 ∈ Hµ, the sequence r(µn)(h1h2) converges pointwise to

h1 ⋄ h2.

In general, ⋄ differs from the usual pointwise product of functions. It is not hard
to see that ⋄ coincides with the usual product if and only if for every A ∈ B(i) and
every g ∈ G, Qg(A) is either 0 or 1 (since Qg = gQe, this is equivalent to having

Qe(A) ∈ {0, 1} for every A ∈ B(i)). The Hewitt–Savage 0-1 law [13], [30, p. 190]
implies that for second countable abelian groups ⋄ is always identical with the usual
product. This, in turn, implies the Choquet–Deny theorem, see [30, pp. 192–193].

The measure µ is called spread out if for some n the convolution power µn is
nonsingular (of course, on a discrete group every measure is spread out). Bounded
µ-harmonic functions of a spread out measure are right uniformly continuous [4,
Proposition I.6, p. 23]. It can be shown that for spread out µ, ⋄ is the usual product if

and only if every bounded µ-harmonic function is constant on the left cosets of Gµ,
i.e., the Choquet–Deny equation in B(G) has only trivial solutions. When G is nilpo-
tent, or is compactly generated and has polynomial growth, then for every spread
out µ the Choquet–Deny equation has only trivial solutions [4, Proposition IV.10,
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p. 98], [22]. The largest class known today of countable groups for which this is the
case is the class of FC-hypercentral groups [17, Theorem 4.8]. On the other hand,

⋄ differs from the usual product for every probability measure (spread out or not)
for which Gµ is nonamenable.3 We also note that every σ-compact amenable lo-
cally compact group admits an absolutely continuous probability measure µ such
that G = Gµ and the Choquet–Deny equation has only trivial solutions [27, 39]; but

amenability of G alone does not guarantee that every absolutely continuous proba-
bility measure has this property [27], [21, Theorem 3.13], [22, Theorem 3.16].

Since every G-invariant function f : G → C is constant, Proposition 4.1 also has
the following corollary.

Corollary 4.4 G acts ergodically on L
∞
i (µ), i.e., if f ∈ L

∞
i (µ) and g f = f for every

g ∈ G, then f is constant u.a.e.

We will now discuss the Choquet–Deny equation in L∞(G). Recall that the space
of µ-harmonic functions in L∞(G) is denoted by Hµ. Evidently, every h ∈ Hµ de-
fines an element of Hµ. When the Haar measure λ is σ-finite, i.e., when G is σ-

compact, one can prove using martingales that every element of Hµ arises in this way,
i.e., Hµ is precisely the space of equivalence classes of the elements of Hµ modulo λ
[9, Proposition 2]. In fact, σ-finiteness of λ is also used in the proofs of Proposition
4.5 and Corollary 4.6 below.

We will therefore assume for the remainder of this section that G is σ-compact.

For spread out µ, every h ∈ Hµ is continuous. Therefore for such µ, Hµ = Hµ.
However, in general, Hµ can be very different from Hµ. For example, when G is
abelian and µ is any discrete probability measure with Gµ = G, then Hµ = C1 by the
Choquet–Deny theorem; at the same time every bounded Borel function constant on

the cosets of the subgroup generated by the discrete support of µ is µ-harmonic.

By (4.1) and (4.2) the Markov measure Qλ, where λ is the left Haar measure,

is a G-invariant measure on (G∞, B∞), and therefore the natural action of G on
G∞ induces an action of G on L∞(G∞, B∞, Qλ) and on L∞(G∞, B(i), Qλ). We will
denote the latter space by L∞

i (µ). Equation (4.4) defines an equivariant contraction
of L∞

i (µ) into L∞(G) which (abusing notation) we will still denote by R. It is clear

that RL∞
i (µ) ⊆ Hµ. The following analog of Proposition 4.1 is also a consequence

of the theory of martingales.

Proposition 4.5 R is an equivariant isometric isomorphism of L∞
i (µ) onto Hµ. For

every h ∈ Hµ the sequence {h ◦ Xn}
∞
n=0 converges Qλ-a.e. to R−1h.

We note that in general the measure Qλ fails to be σ-finite when restricted to
B(i).4 However, by (4.1) the measure class of the Markov measure Qν is completely
determined by the measure class of ν. Thus when β is any finite measure equivalent

3When Gµ is nonamenable, then by, e.g., [10, p. 213], there exists a nonconstant bounded continuous
µ-harmonic function h : Gµ → C. A version of the argument in [30, pp. 192–193] shows that 0 <

Qe(A) < 1 for some A ∈ B(i). So ⋄ differs from the usual product.
4When µ is spread out, σ-finiteness of Qλ implies that every bounded µ-harmonic function is constant

on the cosets of Gµ, see [21, Proposition 2.6] and [22, Lemma 2.3].
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to λ, then Qβ is a finite measure equivalent to Qλ, and one can replace Qλ by Qβ .
Consequently, L∞

i (µ) and Hµ are abelian W ∗-algebras. Denoting by ⋄ the product

h1 ⋄ h2 = R[(R−1h1)(R−1h2)]

in Hµ, one can easily prove the following analog of Corollary 4.3. Now r denotes the
right regular representation in L∞(G).

Corollary 4.6 Given h1, h2 ∈ Hµ, the sequence r(µn)(h1h2) converges λ-a.e. to h1⋄h2

and (hence) converges in the weak∗ topology.

Remark 4.7 Let L1
i (µ) denote the space of complex measures on (G∞, B(i)), ab-

solutely continuous with respect to Qλ. Note that if ϕ ∈ L1(G) ⊆ M(G), then
ϕ∗Qe ∈ L1

i (µ) and 〈ϕ , R f 〉 = 〈ϕ∗Qe , f 〉 for every f ∈ L∞
i (µ). Hence, R is weakly∗

continuous as a mapping into L∞(G), and the preadjoint R∗ : L1(G) → L1
i (µ) of

R is given by R∗ϕ = ϕ ∗ Qe. In fact, by Lemma 4.8 below, the inverse mapping
R−1 : Hµ → L∞

i (µ) is also weakly∗ continuous. Thus the weak∗ (ultraweak) topol-
ogy of Hµ, endowed with the above W ∗-algebra structure, coincides with the re-
striction of the weak∗ topology of L∞(G) to Hµ. The kernel of R∗ is precisely the

preannihilator Jµ of Hµ in L1(G). It follows that L1(G)/ Jµ is isometrically isomor-
phic to L1

i (µ), i.e., L1(G)/ Jµ is an abstract L1-space, a result already mentioned in
Section 3.

Lemma 4.8 Let X and Y be Banach spaces and T a weakly∗ continuous isometry of

a weakly∗ closed subspace V ⊆ X∗ into Y ∗. Then W = TV is also weakly∗ closed and

T−1 : W → V is weakly∗ continuous.

Proof The proof is a routine application of the Krein–Smulian theorem (e.g., [8,
Theorem 7, Ch. V.5 and Corollary 11, Ch. V.3]).

Proposition 4.9 The following conditions are equivalent:

(i) The product ⋄ in Hµ coincides with the usual product in L∞(G).

(ii) For each A ∈ B(i), Qg(A) ∈ {0, 1} for λ-a.e. g ∈ G.

(iii) The Choquet–Deny theorem is true for µ, i.e., every bounded continuous µ-har-

monic function is constant on the left cosets of Gµ.

(iv) The Choquet–Deny equation in L∞(G) has only trivial solutions.

Proof That (i) ⇔ (ii) and (iii) ⇔ (iv) is straightforward.

(iv) ⇒ (i): Let h1, h2 ∈ Hµ. Then for every ϕ ∈ L1(G),

〈ϕ , π(µn)(h1h2)〉 =

∫

G

〈ϕ , π(g)(h1h2)〉µn (dg) =

∫

G

〈ϕ , h1h2〉µ
n (dg) = 〈ϕ , h1h2〉.

Hence, π(µn)(h1h2) = h1h2 and thus h1 ⋄ h2 = h1h2.
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(i) ⇒ (iii): Let h be a bounded continuous µ-harmonic function. Then |h|2 is also
µ-harmonic. So for every g ∈ G,

∫

G

|h(gt)−h(g)|2µ (dt) =

∫

G

|h(gt)|2 −h(gt)∗h(g)−h(gt)h(g)∗ + |h(g)|2µ (dt) = 0.

Using continuity of h this implies that h(gt) = h(g) for every t ∈ supp µ. Thus
r(t)h = h for every t ∈ supp µ and, hence, also for every t ∈ Gµ. Therefore h must
indeed be constant on the left cosets of Gµ.

Since every universally null set is Qλ-null, L∞
i (µ) is canonically the quotient of

L
∞
i (µ). Continuity of the bounded µ-harmonic functions of a spread out measure

and equation (4.1) imply that for spread out µ each of the Markov measures Qg ,

g ∈ G, is absolutely continuous with respect to Qλ. Consequently, an invariant set
A ∈ B(i) is universally null if and only if it is Qλ-null, and so L

∞
i (µ) and L∞

i (µ)
coincide for spread out µ. As our discussion of the relation between Hµ and Hµ

indicates, for nonspread out µ, L
∞
i (µ) and L∞

i (µ) can be very different. Moreover,

in general, L
∞
i (µ) is not a W ∗-algebra.5

In contrast to the case of spread out probability measures (or probability mea-
sures on discrete groups) the Choquet–Deny theorem for general measures on con-
tinuous noncompact nonabelian locally compact groups has been verified only for

2-step nilpotent groups [12], nilpotent [SIN] groups [19], and some more special
groups [12].

The formula

h(g) =

∫

G∞

f (ω)Qg (dω)

is the Poisson formula for the bounded µ-harmonic functions, and the Borel space

(G∞, B(i)) can be regarded as a “boundary”. However, this boundary is not a “nice”
space, its pathological feature being the fact that the σ-algebra B(i) does not separate
points (unless G = {e}). Moreover, (G∞, B(i)) itself does not depend on µ, this
dependence being encoded entirely in the properties of the Poisson kernel Qg . Apart

from the problem of extending the Choquet–Deny theorem to nonabelian groups, a
major problem in the theory of bounded µ-harmonic functions has been to find a
realization of the boundary as a topological (at least) Hausdorff space whose points

can be regarded as limit points of the trajectories of the random walk (see [24–26,28]
and references therein). This theory is outside the scope of this article and we will
confine ourselves to mentioning only certain generalities regarding the possibility of
realizing the boundary as a “nice” space, related to the fact that Hµ is an abelian

W ∗-algebra.
By a G-space (X, A, α) we mean a Borel G-space (X, A) with a quasiinvariant

measure α. When (X, A, α) and (X ′, A ′, α ′) are two such G-spaces, we say that
L∞(X, A, α) is G-isomorphic to L∞(X ′, A ′, α ′) if there exists an equivariant ∗-iso-

morphism of the ∗-algebra L∞(X, A, α) onto L∞(X ′, A ′, α ′). We define the µ-boun-

dary as any G-space (X, A, α) such that L∞(X, A, α) is G-isomorphic to L∞
i (µ). We

5For example, when µ = δe, then L∞

i
(µ) ∼= B(G); when G = R and µ is a discrete probability measure

whose discrete support generates Q , then L∞

i
(µ) ∼= B(R/Q).
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remark that since Qλ is equivalent to a finite measure, the same is true about the
quasiinvariant measure α on any µ-boundary. Moreover, a G-space (X, A, α) is a

µ-boundary if and only if there exists an equivariant identity-preserving isometry of
L∞(X, A, α) onto Hµ.

Let us assume that G is second countable. Then L1(G) is separable and therefore
so is the predual of Hµ. Hence, L1

i (µ) is also separable. Moreover, given f ∈ L∞
i (µ)

and ϕ ∈ L1
i (µ), the function G ∋ g → 〈ϕ , g f 〉 ∈ C is Borel (in fact, continuous).

These properties permit a routine application of the classical Mackey’s theorem about
pointwise realization of group actions [29]. It shows that there always exist µ-boun-
daries that are standard Borel spaces such that the map G × X ∋ (g, x) → gx ∈ X is

Borel. Moreover, by a theorem of Varadarajan [42, Theorem 3.2] one can even take
X to be a compact metric space with the map G × X ∋ (g, x) → gx ∈ X continuous.
If (X, A, α) is a standard µ-boundary with the map G × X ∋ (g, x) → gx ∈ X Borel
and Φ : L∞(X, A, α) → L∞

i (µ) is the equivariant isomorphism, then there exists a

probability measure ρ on X (the Poisson kernel) such that

(RΦ f )(g) =

∫

X

f (gx)ρ (dx) (mod λ)

for every f ∈ L∞(X, A, α).

Another realization of the µ-boundary, often called the Poisson space [4], is the
spectrum of the C∗-subalgebra of Hµ consisting of left uniformly continuous boun-
ded µ-harmonic functions; the disadvantage of the Poisson space is that it usually is
not metrizable.

Finally, we note that the action of G on a µ-boundary has certain very distinc-
tive properties. It is always approximately transitive and amenable [7, 15, 16, 45],
and when µ is spread out it is strongly approximately transitive [22]. There are also
further properties of a more probabilistic nature related to the convergence proper-

ties of the underlying random walk [10, 11, 20]. Amenability of the G-action on the
µ-boundary is intimately related to the existence of a norm 1 equivariant projection
of L∞(G) onto Hµ; in the sequel we will obtain a generalized version of this result in
the setting of the Choquet–Deny equation in a dual Banach space.

5 Vector Valued Harmonic Functions

Let E be a Banach space with a separable predual E∗. As is well known, the Borel

structure in E∗ defined by the norm topology is the same as that defined by the weak
topology and also the same as the weak Borel structure generated by the functions
〈 · , x〉, x ∈ E. Thus a function f from a Borel space (X, A) to E∗ is measurable
(Borel) if and only if for each x ∈ E the function X ∋ t → 〈 f (t) , x〉 ∈ C is Borel. We

note that if f : X → E∗ is Borel, then the function t → ‖ f (t)‖ is also Borel.
Given a complex measure σ on (X, A) and a Borel function f : X → E∗ such

that
∫

X
‖ f ‖ d|σ| < ∞, by the integral

∫
X

f dσ we will mean the unique vector∫
X

f dσ ∈ E∗ with

(5.1)
〈∫

X

f dσ , x
〉

=

∫

X

〈 f (t) , x〉σ (dt)
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for every x ∈ E.
The proper Borel structure in E to work with is that given by the weak∗ topology.

This Borel structure is well known to be standard and coincides with the weak Borel
structure generated by the functions 〈x∗ , · 〉, x∗ ∈ E∗. A function f from a Borel
space (X, A) to E is therefore Borel if and only if for each x∗ ∈ E∗ the function
X ∋ t → 〈x∗ , f (t)〉 ∈ C is Borel. If f : X → E is Borel, then the function t → ‖ f (t)‖
is also Borel.

Given a complex measure σ on (X, A) and a Borel function f : X → E such that∫
X
‖ f ‖ d|σ| < ∞, the integral

∫
X

f dσ is the unique vector
∫

X
f dσ ∈ E with

(5.2)
〈

x∗ ,

∫

X

f dσ
〉

=

∫

X

〈x∗ , f (t)〉σ(dt)

for every x∗ ∈ E∗.
Let G be a locally compact group and µ ∈ M1(G). A bounded (with respect to the

norm on E) Borel function h : G → E will be called µ-harmonic if it satisfies equation
(1.1) for every g ∈ G. The goal of this section is to extend Proposition 4.1 and Corol-
lary 4.3 to such µ-harmonic functions. This will prove very useful in the following
sections, in our study of the µ-harmonic vectors arising from a representation of G

by isometries in E.
Let B(G, E) and Bi(E) denote the Banach spaces of bounded Borel functions

f : G → E and bounded B(i)-measurable functions f : G∞ → E (E-valued invariant
random variables), resp., equipped with the sup-norms ‖·‖sup. The concept of a uni-

versally essentially bounded invariant random variable with values in E is introduced
as in the classical case and the Banach space of equivalence classes of such random
variables (with norm ‖ · ‖u) will be denoted by L

∞
i (µ, E). Finally, let rE stand for

the right regular representation of G in B(G, E), as well as its extension to a repre-

sentation of M(G), and let Hµ(E) denote the space of bounded E-valued µ-harmonic
functions. The group acts on B(G, E), Bi(E), L

∞
i (µ, E), and Hµ(E) in the same way

as in the classical case.
It is clear that given f ∈ Bi(E), the function

(5.3) h(g) =

∫

G∞

f (ω) Qg(dω)

is bounded µ-harmonic, and (5.3) defines an equivariant contraction RE from Bi(E)
into Hµ(E). As in the classical case, we will use the same symbol RE to denote the

contraction from L
∞
i (µ, E) into Hµ(E) defined by (5.3).

Lemma 5.1 If f : G∞ → E is a universally essentially bounded invariant random

variable and h = RE f , then the sequence h ◦ Xn converges weakly∗ u.a.e. to f and the

sequence ‖h ◦ Xn‖ converges u.a.e. to ‖ f ‖.

Proof Given x∗ ∈ E∗, consider the functions hx∗ : G → C and fx∗ : G∞ → C

defined by hx∗(g) = 〈x∗ , h(g)〉 and fx∗(ω) = 〈x∗ , f (ω)〉, resp. Then hx∗ ∈ Hµ and
hx∗ = R fx∗ . By Proposition 4.1, fx∗ = limn→∞ hx∗ ◦ Xn u.a.e. Since E∗ is separable
this easily implies that w∗-limn→∞ h ◦ Xn = f u.a.e.
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The proof of the second statement invokes Proposition 4.2. Let H(g) = ‖h(g)‖,
g ∈ G. Then H is a bounded µ-subharmonic function and therefore there exists an

invariant random variable F : G∞ → [0,∞) with F = limn→∞ H ◦ Xn u.a.e. We
need to prove that F(ω) = ‖ f (ω)‖ u.a.e. It is easy to see that ‖ f (ω)‖ ≤ F(ω) u.a.e.
Therefore to prove that F(ω) = ‖ f (ω)‖ u.a.e., it suffices to prove that

∫

G∞

F(ω)Qg (dω) =

∫

G∞

‖ f (ω)‖Qg (dω)

for every g ∈ G.
Let {x∗i}

∞
i=1 be a sequence dense in the unit ball of E∗. For each k = 1, 2, . . . ,

define a function Hk : G → [0,∞) by Hk(g) = max1≤i≤k |〈x∗i , h(g)〉|. Let

(5.4) Skn(g) =

∫

G∞

Hk(ωn)Qg (dω) =

∫

G

Hk(gg ′)µn (dg ′), n = 0, 1, . . .

where ωn = Xn(ω), and let S(g) = supk,n Skn(g). Note that the sequence {Hk}
∞
k=1 is

nondecreasing and each Hk is µ-subharmonic. Hence, Skn ≤ Sk ′n ′ whenever k ≤ k ′

and n ≤ n ′. Moreover, the sequence {Hk}
∞
k=1 converges pointwise to H while for any

fixed k, limn→∞ Hk(ωn) = max1≤i≤k |〈x∗i , f (ω)〉| u.a.e. Hence,

S(g) = sup
k

sup
n

Skn(g) = sup
k

lim
n→∞

Skn(g)

=

∫

G∞

sup
k

max
1≤i≤k

|〈x∗i , f (ω)〉| Qg(dω) =

∫

G∞

‖ f (ω)‖Qg(dω),

(5.5)

and

S(g) = sup
n

sup
k

Skn(g) = sup
n

lim
k→∞

Skn(g) = sup
n

∫

G∞

H(ωn)Qg (dω)

= lim
n→∞

∫

G∞

H(ωn)Qg (dω) =

∫

G∞

F(ω)Qg (dω).

(5.6)

This completes the proof.

Remark 5.2 It is a standard result of the theory of vector valued martingales [35,
Proposition V-2-8] that when E is assumed separable, then the sequence h ◦ Xn con-
verges in norm u.a.e. to f . This result can easily be deduced from the second state-

ment of our lemma by mimicking a part of the argument in [35, p. 110].

Proposition 5.3 RE is an equivariant isometry of L
∞
i (µ, E) onto Hµ(E). Moreover,

for every h ∈ Hµ(E) the sequence h ◦ Xn converges weakly∗ u.a.e. to R−1
E h and the

sequence ‖h ◦ Xn‖ converges u.a.e. to ‖R−1
E h‖.

Proof By Lemma 5.1 it suffices to prove the first statement.
We know that RE is an equivariant contraction into Hµ(E). Let f : G∞ → E be

a universally essentially bounded invariant random variable and h = RE f . Using
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the first or the second statement of Lemma 5.1, it immediately follows that ‖ f ‖u ≤
‖h‖sup. Hence, RE is isometric. It remains to prove that RE is surjective.

Given h ∈ Hµ(E), for each x∗ ∈ E∗ define a function hx∗ : G → C by hx∗(g) =

〈x∗ , h(g)〉. Then hx∗ ∈ Hµ. Hence, by Proposition 4.1, the set

Ωx∗ = {ω ∈ G∞ ; {hx∗(ωn)}∞n=0 converges}

is universally conull and there exists fx∗ ∈ Bi such that for every ω ∈ Ωx∗ , fx∗(ω) =

limn→∞ hx∗(ωn), and that hx∗ = R fx∗ . A routine argument using separability of
E∗ shows that Ω =

⋂
x∗∈E∗

Ωx∗ is also universally conull. Now, for every ω ∈ Ω,

the function E∗ ∋ x∗ → fx∗(ω) is a bounded linear functional on E∗. It follows
that there is a B(i)-measurable function f : G∞ → E such that for every ω ∈ Ω,
f (ω) = w∗-limn→∞ h(ωn), and h = RE f . So RE is indeed surjective.

When E is a W ∗-algebra, then under the norm ‖ · ‖u, L
∞
i (µ, E) is a C∗-algebra. As

in the classical case we will denote by ⋄ the product

h1 ⋄ h2 = RE[(R−1
E h1)(R−1

E h2)]

in Hµ(E).

Corollary 5.4 If E is a W ∗-algebra, then for every h∈Hµ(E), the sequence {h◦Xn}
∞
n=0

converges in the σ-strong∗ topology u.a.e. to R−1
E h. Moreover, given h1, h2 ∈ Hµ(E)

and g ∈ G, the sequence [rE(µn)(h1h2)](g) converges in the σ-strong∗ topology to

(h1 ⋄ h2)(g).

Proof Since the predual of E is separable, we may assume that E acts in a separable
Hilbert space H. Since Hµ(E) is a selfadjoint subspace of B(G, E) and each h ∈ Hµ(E)
is bounded, it suffices to prove convergence in the strong operator topology.

Given h ∈ Hµ(E) let f be a representative of R−1
E h. We need to show that there

exists a universally conull invariant set Ω such that for every ω ∈ Ω and ξ ∈ H, the
sequence h(ωn)ξ converges in norm to f (ω)ξ.

Note that the function hξ(g) = h(g)ξ is an H-valued bounded µ-harmonic func-
tion and the function fξ(ω) = f (ω)ξ, a universally essentially bounded H-valued

invariant random variable with hξ = RH fξ . Hence, by Lemma 5.1 the set

Ωξ = {ω ∈ G∞ ; w-lim
n→∞

h(ωn)ξ = f (ω)ξ and lim
n→∞

‖h(ωn)ξ‖ = ‖ f (ω)ξ‖ }

is universally conull. But by an elementary result on weak convergence in H,

Ωξ = {ω ∈ G∞ ; lim
n→∞

h(ωn)ξ = f (ω)ξ }.

Separability of H implies that

Ω =
⋂

ξ∈H

Ωξ = {ω ∈ G∞ ; f (ω) = s-lim
n→∞

h(ωn)}
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is also universally conull. This proves the first statement.
To prove the second statement, given h1, h2 ∈ Hµ(E), let f1, f2 be representatives

of R−1h1 and R−1h2, resp. We know that fi(ω) = s-limn→∞ hi(ωn) u.a.e. and there-
fore using boundedness of the hi ’s, we also have ( f1 f2)(ω) = s-limn→∞(h1h2)(ωn)
u.a.e. Then a version of the Dominated Convergence Theorem yields, for every g ∈ G

and ξ ∈ H,

(h1 ⋄ h2)(g)ξ =

∫

G∞

( f1 f2)(ω)ξ Qg(dω) = lim
n→∞

∫

G∞

(h1h2)(ωn)ξ Qg(dω)

= lim
n→∞

∫

G∞

(h1h2)(gg ′)ξ µn(dg ′) = lim
n→∞

[rE(µn)(h1h2)](g)ξ.

Remark 5.5 Write Hµ(E) for the space of equivalence classes modulo λ of bounded

E-valued µ-harmonic functions and L∞
i (µ, E) for L∞(G∞, B(i), Qλ, E), the space of

equivalence classes modulo Qλ of Qλ-essentially bounded E-valued invariant random
variables. When G is σ-compact, there is no difficulty extending Proposition 5.3 and
Corollary 5.4 to this setting, but we will not need it. An important difference between

Hµ(E) and Hµ(E), and between L
∞
i (µ, E) and L∞

i (µ, E) (which is already present in
the classical case E = C) is that Hµ(E) and L∞

i (µ, E) are duals of Banach spaces
while Hµ(E) and L

∞
i (µ, E) are, in general, not. Therefore, when E is a W ∗-alge-

bra, L
∞
i (µ, E) and Hµ(E) will be C∗-algebras but, in general, not W ∗-algebras, while

Hµ(E) and L∞
i (µ, E) = L∞

i (µ) ⊗ E remain W ∗-algebras.

6 Harmonic Vectors

As in Section 5, E will denote a Banach space with a separable predual E∗ and G a
locally compact group. We will consider a representation π of G in E which is the
adjoint of a strongly continuous representation π∗ by isometries in E∗. Our goal is to
obtain a Poisson formula for the µ-harmonic vectors in E (cf. §2) and relate it to the

classical Poisson formula for the bounded µ-harmonic functions. Our main result
will require the assumption that G be second countable, but the initial results of this
section are valid for any locally compact group.

Observe that when x ∈ E is a µ-harmonic vector, then the function g → π(g)x is

a bounded E-valued µ-harmonic function. Hence, the space Hµπ of the µ-harmonic
vectors in E is isometrically isomorphic to a closed subspace of Hµ(E) and there-
fore also to a closed subspace Lµπ of L

∞
i (µ, E). We proceed to give a more explicit

description of Lµπ .

Recall that G acts in a natural way on each of the function spaces B(G, E), Hµ(E),
Bi(E), L

∞
i (µ, E), and L∞

i (µ, E), and that we write g f for g ∈ G applied to a func-
tion f . Now, the representation π induces a representation π̂ in each of the func-
tion spaces in question: π̂(g) transforms a function f (or a class of functions when

f ∈ L
∞
i (µ, E) or f ∈ L∞

i (µ, E)) into the function (π̂(g) f )( · ) = π(g) f ( · ). It is clear
that π̂ commutes with the natural action of G.

It is easy to see that µ-harmonic functions of the form π( · )x, where x ∈ Hµπ , are
precisely those elements h ∈ Hµ(E) which satisfy g−1h = π̂(g)h for every g ∈ G, i.e.,
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h(gg ′) = π(g)h(g ′) for all g, g ′ ∈ G. Since the isomorphism RE of Proposition 5.3 is
equivariant with respect to both the natural action of G and the representation π̂, it

follows that Hµπ is isometrically isomorphic to

Lµπ = { f ∈ L
∞
i (µ, E) ; g−1 f = π̂(g) f for every g ∈ G}.

More precisely, we have the following.

Theorem 6.1 The mapping Rπ : Lµπ → E given by

(6.1) Rπ f = (RE f )(e) =

∫

G∞

f (ω)Qe (dω)

is an isometric isomorphism of Lµπ onto Hµπ . Furthermore, given x ∈ Hµπ , the se-

quence π(ωn)x converges weakly∗ u.a.e. to R−1
π x.

Note that the elements of Lµπ are equivalence classes modulo Nu of those uni-
versally essentially bounded B(i)-measurable functions f : G∞ → E which have the
property that for each g ∈ G, f (gω) = π(g) f (ω) u.a.e. Let

Biπ = { f ∈ Bi(E) ; f (gω) = π(g) f (ω) for every g ∈ G and ω ∈ G∞}.

Trivially, every element of Biπ represents an element of Lµπ . But it is also true that

every element of Lµπ can be represented by an element of Biπ .

Corollary 6.2 Lµπ is the quotient of Biπ modulo Nu.

Proof It suffices to show that if f : G∞ → E is a universally essentially bounded
invariant random variable such that for each g ∈ G, f (gω) = π(g) f (ω) u.a.e., then
there exists f ′ ∈ Biπ with f = f ′ u.a.e. But with x = Rπ f , the set {ω ∈ G∞ ;
w∗-limn→∞ π(ωn)x exists} is obviously G-invariant, and by Theorem 6.1 it is uni-

versally conull. Define f ′ : G∞ → E by

f ′(ω) =

{
w∗-limn→∞ π(ωn)x when the limit exists,

0 otherwise.

Equation (6.1) can be viewed as a Poisson formula for the µ-harmonic vectors.

However, the use of the subspace Lµπ and the norm ‖ · ‖u has certain serious disad-
vantages.

First, Hµπ is the dual of the quotient E∗/ Jµπ , because Hµπ = J ⊥µπ . So Lµπ is
also the dual of E∗/ Jµπ. But, in general, L

∞
i (µ, E) has no predual and therefore it

is not clear how the predual E∗/ Jµπ of Lµπ is related to the Poisson formula and
the boundary space (G∞, B(i)).

Secondly, as we pointed out in Section 4, when G is second countable, then for the
purpose of representing the classical µ-harmonic functions, the badly behaved Borel
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space (G∞, B(i)) can be replaced by a standard Borel G-space or even a topological
G-space. Recall that this regularization of the boundary relies on the fact that L∞

i (µ)

is an abelian W ∗-algebra.

Now, let β be any fixed finite measure equivalent to λ. Then L∞
i (µ, E) is canon-

ically the dual of L1
i (µ, E∗) = L1(G∞, B(i), Qβ, E∗), the space of equivalence classes

of Qβ-integrable B(i)-measurable functions f : G∞ → E∗. As we will see, the Pois-

son formula for the µ-harmonic vectors becomes very satisfactory once the subspace
Lµπ ⊆ L

∞
i (µ, E) is replaced by the weakly∗ closed subspace

Lµπ = { f ∈ L∞
i (µ, E) ; g−1 f = π̂(g) f for every g ∈ G } ⊆ L∞

i (µ, E).

For the remainder of this article we will assume that G is second countable.

In the setting of Example 2 one readily obtains the following.

Proposition 6.3 Lµπ equals the crossed product L∞
i (µ) ×πl

G where πl is the left reg-

ular representation in L∞
i (µ).

Lemma 6.4 Let f : G∞ → E be a bounded invariant random variable such that for

each g ∈ G, f (gω) = π(g) f (ω) for Qλ-a.e. ω ∈ G∞. Then there exists an invariant

random variable f ′ : G∞ → E such that f = f ′ Qλ-a.e., ‖ f ′‖sup ≤ ‖ f ‖sup, and

π(g) f ′(ω) = f ′(gω) for every g ∈ G and ω ∈ G∞.

Proof Consider the Borel G-space (G∞, B∞). As a countable product of standard

Borel spaces, (G∞, B∞) is standard. Moreover, Qλ is a σ-finite invariant measure on
(G∞, B∞) and the mapping G × G∞ ∋ (g, ω) → gω ∈ G∞ is Borel.

Next, let E f denote the closed ball B̄E(0, ‖ f ‖sup) of radius ‖ f ‖sup and centre 0
in E. With the G-action given by π and with the weak∗ topology, E f is a topological

G-space and the mapping G × E f ∋ (g, x) → π(g)x ∈ E f is continuous. Therefore
this mapping is also Borel (with respect to the product Borel structure on G × E f ).
Thus E f is a standard Borel G-space with the mapping G×E f ∋ (g, x) → π(g)x ∈ E f

Borel and f is a Borel function of G∞ into E f such that for every g ∈ G, f (gω) =

π(g) f (ω) Qλ-a.e. We are therefore in a position to apply [46, Proposition B.5, p. 198]
to conclude that there exists a B∞-measurable function f ′ ′ : G∞ → E f such that
f ′ ′

= f Qλ-a.e. and f ′ ′(gω) = π(g) f ′ ′(ω) for every g ∈ G and ω ∈ G∞.

Let

Γ = {ω ∈ G∞ ; f ′ ′(ω) = f ′ ′(ϑn(ω)) for every n ≥ 0}

=

∞⋂
n=0

ϑ−n
(
{ω ∈ G∞ ; f ′ ′(ω) = f ′ ′(ϑ(ω))}

)

where ϑ is the Markov shift, cf. §4. Note that Γ ⊆ ϑ−1(Γ ), Γ is G-invariant,
Γ ∈ B∞, and Qλ(G∞ − Γ ) = 0 (the latter because ϑ preserves the measure class
of Qλ, cf. (4.5)).
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Let

∆ =

∞⋂
n=0

ϑ−n(G∞ − Γ ) = {ω ∈ G∞ − Γ ; ϑn(ω) ∈ G∞ − Γ for every n ≥ 1}.

Then ϑ−1(∆) = ∆, i.e., ∆ ∈ B(i), and ∆ is G-invariant. Note also that if ω ∈
(G∞ − Γ ) ∩ (G∞ − ∆), then there exists k(ω) ≥ 1 such that ϑk(ω)(ω) ∈ Γ , and if

ϑi(ω) ∈ Γ and ϑ j(ω) ∈ Γ for some i, j ≥ 1, then f ′′(ϑi(ω)) = f ′ ′(ϑ j(ω)).

Define a function f ′ : G∞ → E by

f ′(ω) =





0 for ω ∈ ∆,

f ′ ′(ω) for ω ∈ Γ ,

f ′ ′(ϑk(ω)ω) for ω ∈ G∞ − (Γ ∪ ∆).

It is straightforward to verify that f ′ is an invariant random variable equal to f

Qλ-a.e. and satisfying ‖ f ′‖sup ≤ ‖ f ‖sup as well as f ′(gω) = π(g) f ′(ω) for every
g ∈ G and ω ∈ G∞.

Lemma 6.5 Given f1, f2 ∈ Biπ the following conditions are equivalent:

(i) f1 = f2 u.a.e.,

(ii) f1 = f2 Qλ-a.e.,

(iii) f1 = f2 Qe-a.e.

Moreover, for every f ∈ Biπ , ‖ f ‖ is constant u.a.e.

Proof Note that the set {ω ∈ G∞ ; f1(ω) = f2(ω)} is G-invariant. The equivalence
follows immediately from this observation and equations (4.1) and (4.2). The second

statement follows from Corollary 4.4 and the observation that the function F(ω) =

‖ f (ω)‖ is G-invariant.

By Corollary 6.2 and Lemmas 6.4 and 6.5, there exists a surjective mapping
Φ : Lµπ → Lµπ such that Φ[ f ]u = [ f ]Qλ

for every f ∈ Biπ where [ · ]u and [ · ]Qλ

denote equivalence classes modulo Nu and Qλ, resp. It is clear that Φ is a linear map-

ping. It is also an isometry because, by Lemma 6.5, the essential sup-norm of f ∈ Biπ

modulo Nu is the same as the essential sup-norm modulo Qλ-null sets. It follows that
there exists an isometry Rπ of Lµπ onto Hµπ such that

(6.2) Rπ[ f ]Qλ
= (RE f )(e) =

∫

G∞

f (ω) Qe(dω)

for every f ∈ Biπ.

Theorem 6.6 Rπ is an isometric weak∗ homeomorphism of Lµπ onto Hµπ.
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Proof It remains to prove that Rπ and R−1
π are weakly∗ continuous. By Lemma 4.8

it is enough to prove this for Rπ. Using the Krein–Smulian theorem, it suffices to

show that the restriction of Rπ to the closed unit ball of Lµπ is weakly∗ continuous
at zero. Let F j be a net in the closed unit ball of Lµπ , converging weakly∗ to 0. It is
enough to show that lim j〈x∗ , RπF j〉 = 0 for all x∗ in a dense subset D of E∗.

Using an approximate identity in L1(G) ⊆ M(G), one can see that the set

D =

{∫

G

π∗(g)x∗ σ(dg) ; σ ∈ L1(G), x∗ ∈ E∗

}

is dense in E∗. Using Lemma 6.4, for each i choose a representative f j of F j in Biπ .
Let y∗ =

∫
G

π∗(g)x∗ σ(dg) ∈ D. Then

〈y∗ , RπF j〉 =

∫

G∞

〈y∗ , f j(ω)〉Qe(dω)

=

∫

G∞

(∫

G

〈π∗(g)x∗ , f j(ω)〉σ (dg)

)
Qe (dω)

=

∫

G∞

(∫

G

〈x∗ , π(g−1) f j(ω)〉σ (dg)
)

Qe (dω)

=

∫

G∞

(∫

G

〈x∗ , f j(g−1ω)〉σ (dg)
)

Qe (dω)

=

∫

G∞

〈x∗ , f j(ω)〉Qσ̃ (dω).

(6.3)

Let β be a finite measure equivalent to λ. Then Qσ̃ ≪ Qβ . Let s be a version of
the Radon–Nikodym derivative of the restriction of Qσ̃ to B(i) with respect to the

restriction of Qβ to B(i). Then

〈y∗ , RπF j〉 =

∫

G∞

〈s(ω)x∗ , f j(ω)〉Qβ(dω).

Since the function ω → s(ω)x∗ defines an element of L1
i (µ, E∗) = L∞

i (µ, E)∗, and
w∗-lim j F j = 0, it becomes clear that lim j〈y∗ , RπF j〉 = 0.

Remark 6.7 Let (X, A, α) be a µ-boundary which is a standard Borel space with
the mapping G × X ∋ (g, t) → gt ∈ X Borel, and let Φ be the equivariant iso-

morphism of L∞(X, A, α) onto L∞
i (µ). It can be shown [20] that there exists a

B(i)-measurable function F : G∞ → X which induces Φ in the sense that Φ f = f ◦F,
f ∈ L∞(X, A, α), and is itself equivariant when restricted to a suitable G-invariant
subset Ω ∈ B(i). The measure ρ = FQe is the Poisson kernel on the µ-boundary

(X, A, α):

(RΦ f )(g) =

∫

X

f (gt)ρ (dt) (mod λ)
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for every f ∈ L∞(X, A, α). 6

Using the mapping F, one can obtain a version of the Poisson formula (6.2) on
the standard µ-boundary (X, A, α). This can be particularly useful when a “natural”
realization of the µ-boundary is known. For example, when G is almost connected
and µ is spread out, then the natural pointwise realization of the µ-boundary turns

out to be a homogeneous space G/H of G [24]; Hµπ is then isomorphic to the space
of equivariant maps from G/H to E, modulo the family of null sets of G/H.

Remark 6.8 Theorem 6.6 applies, in particular, to the classical Choquet–Deny

equation in E = L∞(G). In this case Lµπ must therefore be isomorphic to L∞
i (µ).

The isomorphism Ψ = R−1
π R : L∞

i (µ) → Lµπ (where R is as in Proposition 4.5)
can be described explicitly as follows. Given f ∈ Bi , let ḟ denote the function
ḟ : G∞ × G → C given by ḟ (ω, g) = f (gω). Using the fact that the mapping

G∞ ×G ∋ (ω, g) → gω ∈ G∞ is measurable with respect to the σ-algebras B∞ ×B

and B∞, it follows that for a fixed ω, f (ω, · ) ∈ B(G), and for every ν ∈ L1(G) ⊆
M(G), the function ω →

∫
G

ḟ (ω, g) ν(dg) ∈ C is B(i)-measurable. Hence, if we de-

fine f̈ : G∞ → L∞(G) by f̈ (ω) = [ ḟ (ω, · )]λ, then f̈ ∈ Bi(L∞(G)). It is immediate
that f̈ ∈ Biπ(L∞(G)), so that [ f̈ ]Qλ

∈ Lµπ . Moreover, Rπ[ f̈ ]Qλ
= R[ f ]Qλ

. Therefore

Ψ is given by Ψ[ f ]Qλ
= [ f̈ ]Qλ

for every f ∈ Bi . We also note that Ψ is equivariant
with respect to the natural actions of G on L∞

i (µ) and Lµπ (the left regular represen-
tations).

Remark 6.9 Let Fµπ ⊆ Hµπ denote the subspace of trivial solutions of the Cho-

quet–Deny equation in E. Recall that x ∈ Fµπ if and only if π(g)x = x for every
g ∈ Gµ. Let Fµπ = R−1

π Fµπ. We claim that given f ∈ Biπ, [ f ]Qλ
∈ Fµπ if and only if

f is constant Qe-a.e.

Indeed, necessity follows from the last statement of Theorem 6.1: if x = Rπ[ f ]Qλ
,

then

f (ω) = w∗-lim
n→∞

π(ωn)x Qe-a.e.

But ∫

G∞

‖π(ωn)x − x‖Qe(dω) =

∫

G

‖π(g)x − x‖µn (dg) = 0.

So for each n, π(ωn)x = x Qe-a.e. and therefore f (ω) = x Qe-a.e. Conversely,
suppose that there is a set Ω ∈ B(i) with Qe(Ω) = 1 and f (ω) = x for every ω ∈ Ω.
Using (4.7) and (4.2) we obtain that Qg(Ω) = 1 for µ-a.e. g ∈ G. Hence,

π(g)x =

∫

G∞

π(g) f (ω) Qe(dω) =

∫

G∞

f (gω) Qe(dω) =

∫

G∞

f (ω) Qg(dω) = x

for µ-a.e. g ∈ G. Since the mapping g → π(g)x is continuous with respect to the
weak∗ topology on E, this implies that π(g)x = x for every g ∈ Gµ.

6This is shown in [20] for so-called continuous µ-boundaries. The result for standard µ-boundaries
requires a little extra work relying on the theory of pointwise realizations of L∞-spaces and homomor-
phisms between them [29].
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The above description of Fµπ simplifies when G = Gµ because in this case the
constant function f (ω) = x, x ∈ Fµπ , belongs to Biπ. Therefore in this case Fµπ

consists of equivalence classes modulo Qλ of such constant functions.

For a general µ, Hµπ = Fµπ if and only if every f ∈ Biπ is constant modulo Qe.
This will be the case whenever the classical Choquet–Deny equation in L∞(G) has

only trivial solutions. However, recall that for a certain type of representations we
have Hµπ = Fµπ , regardless of what Hµ is (cf. Proposition 2.2, Corollaries 2.3 and
2.4, and Proposition 2.5). Thus for certain types of representations it is always true
that every bounded B(i)-measurable equivariant function f : G∞ → E is constant

modulo Qe (and modulo Qλ when G = Gµ). This seems to be an interesting and
completely unexplored property of the µ-boundaries.

Example 1 (continued) The solutions of the Choquet–Deny equation in E = M(X)
are in one-to-one correspondence with equivalence classes modulo Qλ of bounded
B(i)-measurable equivariant functions f : G∞ → M(X). Suppose that σ = Rπϕ is
a µ-stationary measure, i.e., σ ∈ Hµπ ∩ M1(X). Using the last statement of Theo-

rem 6.1, it is easy to see that ϕ(ω) ∈ M1(X) Qλ-a.e. More precisely, ϕ = [ f ]Qλ
where

f ∈ Biπ is such that f (ω) ∈ M1(X) for every ω in a universally conull G-invariant
set Ω ∈ B(i). Let Biπ1 denote the subset of Biπ consisting of such functions. Thus
µ-stationary measures are in one-to-one correspondence with equivalence classes of

the elements of Biπ1.

In general, the set of µ-stationary measures, and therefore also Biπ1, can be empty
(cf. Corollary 2.3). It is never empty when X is compact. In this case the existence of

an equivariant function f ∈ Biπ1 can be also deduced using [46, Proposition 4.3.9]
and the fact that the action of G on every µ-boundary is amenable. The fact that the
existence of a µ-stationary measure on a locally compact second countable G-space
implies the existence of an equivariant function f ∈ Biπ1 was first observed and

exploited by Furstenberg [10]. ♦

Suppose that E is a W ∗-algebra and π(g) ∈ Aut(E) for every g ∈ G. Then Lµπ is
a weakly∗ closed ∗-subalgebra of L∞

i (µ, E) = L∞
i (µ) ⊗ E, and so both Lµπ and Hµπ

are themselves W ∗-algebras when the multiplication, ⋄, in Hµπ is given by

x1 ⋄ x2 = Rπ[(R−1
π x1)(R−1

π x1)].

A simple computation and Corollary 5.4 yield the following.

Corollary 6.10 If E is a W ∗-algebra and π(g) ∈ Aut(E) for every g ∈ G, then

for every x ∈ Hµπ the sequence π(ωn)x converges Qλ-a.e. in the σ-strong∗ topology

to R−1
π x. Moreover, given x1, x2 ∈ Hµπ, the sequence π(µn)(x1x2) converges in the

σ-strong∗ topology to x1 ⋄ x2.

Evidently, the product ⋄ coincides with the product of E whenever the Choquet–Deny
theorem is true for µ. We note that in the setting of Example 2, since Hµπ contains a
copy of Hµ, the product ⋄ coincides with the product of B(L2(G)) if and only if the
Choquet–Deny theorem is true.
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7 Approximation Properties in the Predual and Projections

The goal of this concluding section is to present some additional properties of the
space of µ-harmonic vectors and the Poisson formula. We will continue to work in
the setting of Section 6. Recall that G is assumed second countable.

We begin with a few results which link the predual Lµπ∗ of Lµπ to the predual of

E. Let Rπ∗ : E∗ → Lµπ∗ denote the preadjoint of Rπ and (E∗)1 and (Lµπ∗)1 the unit
balls in E∗ and Lµπ∗, resp. Our first result summarizes general properties of weakly∗

continuous isometries between dual Banach spaces.

Theorem 7.1 Rπ∗E∗ = Lµπ∗ and Rπ∗((E∗)1) is norm dense in (Lµπ∗)1.

Theorem 7.2 If E is a W∗-algebra and π(g) ∈ Aut(E) for every g ∈ G, then Rπ∗NE is

norm dense in NLµπ
, where NE and NLµπ

denote the sets of normal states on E and Lµπ ,

resp.

Proof Since Rπ preserves positivity and maps the unit of Lµπ to the unit of E, it is
clear that Rπ∗NE ⊆ NLµπ

. The density follows by a routine application of the Hahn–
Banach theorem.

Recall that in the case of the classical Choquet–Deny equation in L∞(G), Rπ∗ϕ =

ϕ ∗ Qe for every ϕ ∈ L1(G) ⊆ M(G). So Theorem 7.2 says that probability measures
of the form ϕ ∗ Qe, where ϕ is a probability measure in L1(G) ⊆ M(G), are norm
dense in the set of probability measures in L1

i (µ). When µ is spread out, it can be

shown that this is equivalent to the condition that the convex hull of the orbit of Qe

under the natural action of G be dense in the set of probability measures in L1
i (µ).

An abstraction of this property of the action of G on the µ-boundary is the concept
of a strongly approximately transitive action, which plays an important role in the

theory of µ-boundaries [21–24]. When µ is not necessarily spread out, Theorem 7.2
implies that the action of G on the µ-boundary is approximately transitive, a concept
first introduced by Connes and Woods in the context of the theory of von Neumann
algebras [6].

Our next result is a generalization of [9, Théorème 1].

Theorem 7.3 If x∗ ∈ E∗, then

‖Rπ∗x∗‖ = inf
n≥1

∥∥ 1
n

n∑

i=1

π∗(µ̃i)x∗
∥∥ = lim

n→∞

∥∥ 1
n

n∑

i=1

π∗(µ̃i)x∗
∥∥ .

Proof The sequence ‖
∑n

i=1 π∗(µ̃i)x∗‖, n = 1, 2, . . . is subadditive. Hence, the sec-
ond equality is elementary. Moreover, from the identity π(µ)Rπ = Rπ , it immediately
follows that

‖Rπ∗x∗‖ ≤ lim
n→∞

∥∥ 1
n

n∑

i=1

π∗(µ̃i)x∗
∥∥ .

It remains to establish the opposite inequality.
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Let ε > 0 be given. Then for every n ≥ 1 we can find xn ∈ E with ‖xn‖ ≤ 1 and

|〈x∗ , 1
n

n∑

i=1

π(µi)xn〉| = |〈 1
n

n∑

i=1

π∗(µ̃i)x∗ , xn〉| ≥
∥∥ 1

n

n∑

i=1

π∗(µ̃i)x∗
∥∥ − ε.

Define zn by zn =
1
n

∑n
i=1 π(µi)xn. Clearly, zn is a sequence in the closed unit ball of

E. Since this ball is weakly∗ compact there is a convergent subnet zn j
and, obviously,

z = w∗-lim j zn j
∈ Hµπ . Hence, there is ζ in the closed unit ball of Lµπ with z = Rπζ .

Thus

lim
n→∞

∥∥ 1
n

n∑

i=1

π∗(µ̃i)x∗
∥∥ − ε = lim

j

∥∥ 1
n j

n j∑

i=1

π∗(µ̃i)x∗
∥∥ − ε

≤ lim
j

∣∣〈x∗ , 1
n j

n j∑

i=1

π(µi)xn j

〉∣∣

= |〈x∗ , Rπζ〉| = |〈Rπ∗x∗ , ζ〉| ≤ ‖Rπ∗x∗‖.

Since ε is arbitrary, we are done.

We will now prove the existence of a norm 1 projection of E onto Hµπ and explore
some of the consequences of this result.

Theorem 7.4 If Hµπ 6= {0}, then there exists a projection K, of norm 1, of E onto

Hµπ , which commutes with every weakly∗ continuous linear operator T : E → E com-

muting with π. If E is a W ∗-algebra and π(g) ∈ Aut(E) for every g ∈ G, then K can be

chosen completely positive.

Proof Let {n j} be an ultranet in N with n j → ∞. Since each closed ball in E is
weakly∗ compact, the ultranet 1

n j

∑n j

i=1 π(µi)x converges in the weak∗ topology, for

every x ∈ E. We can thus define K : E → E by Kx = w∗-lim j
1
n j

∑n j

i=1 π(µi)x.

It is easy to see that K has all the desired properties. To prove complete positivity
use [36, Theorem 6.5].

Remark 7.5 Let K denote the projection constructed in the proof of Theorem 7.4.
When Gµ is compact, by a version of the Ito–Kawada theorem [40, Theorem 2,
p. 138], the sequence 1

n

∑n
i=1 µi converges weakly∗ to the normalized Haar measure

ωGµ
of Gµ; therefore when Gµ is compact, K = π(ωGµ

). On the other hand, when
Gµ is not compact, Lemma 2.1 implies that the kernel of K will always contain the
norm closed π-invariant subspace E0 consisting of those vectors x ∈ E for which the
function g → 〈x∗ , π(g)x〉 belongs to C0(G) for every x∗ ∈ E∗.

Example 3 Consider the classical Choquet–Deny equation in E = L∞(G). It is
clear from Remark 7.5 that the projection K constructed in the proof of Theorem 7.4
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is weakly∗ continuous if and only if Gµ is compact, and that when Gµ is not com-
pact, then K(C0(G)) = {0}. In fact, when Gµ is not compact, then not only the

projection constructed in the proof of Theorem 7.4, but any bounded projection
of L∞(G) onto Hµ which commutes with every weakly∗ continuous linear opera-
tor T : L∞(G) → L∞(G) commuting with π must necessarily vanish on C0(G) and
therefore cannot be weakly∗ continuous.

Let us prove a slightly stronger result. Let LUC(G) denote the set of bounded
left uniformly continuous functions f : G → C and let S : LUC(G) → Hµ be any
bounded linear operator commuting with the left regular representation. Then
S(LUC(G)) ⊆ LUC(G), in particular, S(C0(G)) ⊆ LUC(G). Hence, the mapping

C0(G) ∋ f 7→ (S f )(e) is a well-defined bounded linear functional on C0(G), and
so there exists σ ∈ M(G) such that (S f )(e) =

∫
G

f dσ for every f ∈ C0(G). Using
the assumption that S commutes with the left regular representation, it follows that
S↾C0(G) = π(σ)↾C0(G) (where π is the right regular representation). Next, since

for every f ∈ C0(G), π(µ)S f = S f , i.e., π(µ ∗ σ) f = π(σ) f , we obtain µ ∗ σ = σ,
which is a version of the Choquet–Deny equation in M(G) where the left, instead of
right, regular representation is used. When Gµ is not compact, Corollary 2.3 yields
σ = 0 and so S vanishes on C0(G). Hence we obtain the following.

Proposition 7.6 If S : LUC(G) → Hµ is a bounded linear operator commuting with

the left regular representation, then S vanishes on C0(G).

♦

Example 2 (continued) Let us identify the elements of L∞(G) with the correspond-

ing multiplication operators in L2(G). Moreover, let

B0(L2(G)) = {A ∈ B(L2(G)) ; for every T ∈ T(L2(G))

the function g 7→ tr[T(π(g)A)] vanishes at infinity}.

So B0(L2(G)) is a norm-closed subspace containing the ideal of compact operators,
as well as C0(G).

Proposition 7.7 When Gµ is not compact, then every bounded linear operator

S : B(L2(G)) → Hµπ which commutes with every weakly∗ continuous operator com-

muting with π, vanishes on B0(L2(G)). In particular, any bounded projection of

B(L2(G)) onto Hµπ which commutes with every weakly∗ continuous operator commut-

ing with π vanishes on B0(L2(G)) and therefore cannot be weakly∗ continuous (in fact,

is even singular).

Proof Given ξ, η ∈ L2(G), let Ψξη : B(L2(G)) → LUC(G) ⊆ B(L2(G)) denote the

linear mapping which associates with each A ∈ B(L2(G)) the multiplication operator
defined by the left uniformly continuous function hξηA(g) = 〈(π(g)A)ξ , η〉. It is
easy to see that when Aα is a norm bounded net in B(L2(G)) which converges to zero
weakly∗, the net hξηAα

converges to zero uniformly on compacta. This implies, via
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a routine argument, that Ψξη is weakly∗ continuous. It is also straighforward to see
that Ψξη commutes with π.

Let e j be a net of positive integrable functions on G forming a bounded approx-
imate identity in L1(G). Since for a given f ∈ LUC(G), Ψ√

e j
√

e j
f = e⋆

j ∗ f , where

⋆ denotes the involution in L1(G), it follows that the net Ψ√
e j
√

e j
↾LUC(G) con-

verges in the strong operator topology to the identity operator on LUC(G). Now,

if T ∈ B(B(L2(G))) commutes with every weakly∗ continuous operator commuting
with π, then TΨ√

e j
√

e j
= Ψ√

e j
√

e j
T, and it follows that T(LUC(G)) ⊆ LUC(G). This

applies, in particular, to our operator S : B(L2(G)) → Hµπ . Therefore

S(LUC(G)) ⊆ LUC(G) ∩ Hµπ ⊆ Hµ.

Thus, using Proposition 7.6, we conclude that S(C0(G)) = {0}. But

Ψξη(B0(L2(G))) ⊆ C0(G)

for each ξ, η ∈ L2(G). Hence,

ΨξηS(B0(L2(G))) = SΨξη(B0(L2(G))) ⊆ S(C0(G)) = {0}.

Since this holds for arbitrary ξ, η ∈ L2(G), S(B0(L2(G))) = {0}, as claimed.

We wish to point out that Proposition 7.7 does not rely on the Hilbert space set-
ting: the proof can be modified to yield an analogous result for Lp(G), 1 < p < ∞,

with the obvious definition of B0(Lp(G)). ♦

Corollary 7.8 Suppose that E is a W ∗-algebra and π(g) ∈ Aut(E) for every g ∈ G. If

Hµπ 6= {0} and E is injective, then Hµπ is also injective.

Proof We will show that Lµπ is injective. Since L∞
i (µ, E) = L∞

i (µ) ⊗ E is injective
[41, p. 120], it suffices to construct a norm 1 projection Λ of L∞

i (µ, E) onto Lµπ .

Let η be any absolutely continuous probability measure on G. The formula

J f =

∫

G

π(g)−1 f (g) η(dg)

defines a contraction J of L∞(G, E) into E such that J[π( · )x]λ = x for every x ∈ E.
Define K̂ = K J where K is the projection described in Theorem 7.4. Then K̂ is a
contraction of L∞(G, E) onto Hµπ such that K̂[π( · )x]λ = x for every x ∈ Hµπ .
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Next, (5.3) defines a contraction, which we will denote again by RE, of L∞
i (µ, E)

into L∞(G, E) (in fact, RE is an isometry onto Hµ(E), cf. Remark 5.5). Note that

REϕ = [π(·)Rπϕ]λ for every ϕ ∈ Lµπ . Put Λ = R−1
π K̂RE.

Our final result involves the concept of an amenable action of a locally compact

group on a W ∗-algebra. The concept of an amenable action was first introduced by
Zimmer [45] in the context of a measure class preserving action of a locally compact
second countable group on a standard Borel space. It was subsequently shown [1]
that Zimmer’s definition is equivalent to the following: Let Γ be a locally compact

second countable group and X a standard Borel Γ -space such that the mapping
Γ × X ∋ (g, x) → gx is Borel. Let α be a σ-finite quasiinvariant measure on X.
Then Γ acts on L∞(X, α) and the resulting representation of Γ is the adjoint of the
natural strongly continuous representation of Γ in L1(X, α). Consider the tensor

product L∞(Γ )⊗L∞(X, α) equipped with the Γ -action which is the tensor product
of the action of Γ on L∞(Γ ) by left translations and the action on L∞(X, α). The
action of Γ on (X, α) is amenable if there exists a norm 1 equivariant projection of
L∞(Γ )⊗L∞(X, α) onto L∞(X, α). Motivated by the theory of W ∗-crossed products,

this definition was extended to the case when Γ acts on an arbitrary W ∗-algebra [2]:
Let E be a W ∗-algebra and γ : Γ → Aut(E) a representation of Γ which is the adjoint
of a strongly continuous representation of Γ in E∗. The resulting action of Γ on E

is called amenable if there exists a norm 1 equivariant projection P of L∞(Γ ) ⊗ E

onto E where the action of Γ on L∞(Γ ) ⊗ E is the tensor product of the action of
Γ on L∞(Γ ) by left translations and the action γ on E. We note that by [41, p.
116], P is necessarily a conditional expectation, i.e., P preserves positivity and for all
z ∈ L∞(Γ ) ⊗ E and x ∈ E, we have P(z(1 ⊗ x)) = (Pz)x and P((1 ⊗ x)z) = xPz.

When Γ is amenable, γ is automatically amenable, but many actions of nonamenable
groups are also amenable.

Recall that in the case of the classical Choquet–Deny equation in L∞(G) the action

of G on G by left translations gives rise to the natural action of G on any µ-boundary.
Zimmer [45] showed that when µ is spread out, this boundary action is always amen-
able (granted that the µ-boundary is a standard Borel G-space). Connes and Woods
[7] sketched a proof of amenability of the action of G on the space-time boundary of

a random walk with time-dependent transition probabilities (the µ-boundaries dis-
cussed here can be viewed as a special case of such space-time boundaries). A simple
proof of amenability of the action of G on boundaries of arbitrary random walks on
amenable G-spaces, given in [15], is based on a version of Theorem 7.4. Here we

adapt this proof to the setting of the Choquet–Deny equation in a W ∗-algebra E.

Let Γ and γ be as described above in the definition of amenablility of the action
on the W ∗-algebra E, and let us assume that γ and π commute. Then Hµπ is a
Γ -invariant subspace of E, and by Corollary 6.10, γ(g)↾Hµπ ∈ Aut(Hµπ) for every

g ∈ Γ . Thus Γ acts on Hµπ.

Corollary 7.9 If γ and π commute, Γ acts amenably on the W ∗-algebra E, and

Hµπ 6= {0}, then Γ acts amenably on Hµπ .
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Proof Let P : L∞(Γ ) ⊗ E → E be the projection appearing in the definition
of amenability of the action of Γ on E, and let K be the projection described in

Theorem 7.4. Then KP↾(L∞(Γ ) ⊗ Hµπ) is a norm 1 equivariant projection of
L∞(Γ ) ⊗ Hµπ onto Hµπ.

Amenability of the natural action of Γ = G on a µ-boundary (X, α) follows as a
special case of Corollary 7.9 because L∞(X, α) ∼= Hµ and G always acts amenably on
L∞(G).

We note that in the case of the “noncommutative” Choquet–Deny equation con-

sidered in Example 2, the action of Γ = G on B(L2(G)) associated with the left
regular representation is amenable if and only if G is amenable, by [3, Corollaire 3.7].
The trivial example µ = δe indicates that, in general, when G fails to be amenable,
the action of G on the W ∗-algebra Hµπ of the µ-harmonic operators need not be

amenable.

Note added in proof Some time after submission of the present paper, the authors
discovered the article [14] by Izumi where Example 2 is studied and the structure
formula L∞

i (µ)×πl
G is obtained for the special case of a countable discrete group G.

Izumi asks (Problem 4.3) if the latter holds for an arbitrary locally compact second
countable group. Our Proposition 6.3 answers this question in the affirmative. ♦

Acknowledgement We are indebted to Dr. Christophe Cuny for valuable discus-
sions.
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Astérisque 4, Soc. Math. France, Paris, 1973, pp. 41–59.

https://doi.org/10.4153/CJM-2007-034-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-034-4


826 W. Jaworski and M. Neufang

[13] E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products. Transactions Amer. Math.
Soc. 80(1955), 470–501.

[14] M. Izumi, Non-commutative Poisson boundaries. Contemp. Math. 347(2004), 69–81.

[15] W. Jaworski, Poisson and Furstenberg Boundaries of Random Walks. Ph.D. Thesis, Queen’s
University, 1991.

[16] , Poisson and Furstenberg boundaries of random walks. C. R. Math. Rep. Acad. Sci. Canada
13(1991), no. 6, 279–284.

[17] , Countable amenable identity excluding groups. Canad. Math. Bull. 47(2004)), no. 2,
215–228.

[18] , Probability measures on almost connected amenable locally compact groups and some related
ideals in group algebras. Illinois J. Math. 45(2001), no. 1, 195–212.

[19] , Ergodic and mixing probability measures on [SIN] groups. J. Theoret. Probab. 17(2004),
741–759.

[20] , The asymptotic σ-algebra of a recurrent random walk on a locally compact group. Israel J.
Math. 94(1996), 201–219.

[21] , Strongly approximately transitive group actions, the Choquet-Deny theorem, and polynomial
growth. Pacific J. Math. 165(1994), no. 1, 115–129.

[22] , Strong approximate transitivity, polynomial growth, and spread out random walks on locally
compact groups. Pacific J. Math. 170(1995), no. 2, 517–533.

[23] , A Poisson formula for solvable Lie groups. J. Anal. Math. 68(1996), 183–208.

[24] , Random walks on almost connected locally compact groups: boundary and convergence. J.
Anal. Math.74(1998), 235–273.

[25] V. A. Kaimanovich, The Poisson boundary of polycyclic groups. In: Probability Measures on Groups
and Related Structures XI. World Sci. Publ., River Edge, NJ, 1995 pp. 182–195.

[26] , The Poisson formula for groups with hyperbolic properties. Ann. of Math.152(2000), no. 3,
659–692.

[27] V. A. Kaimanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy.
Ann. Probab. 11(1983), no. 3, 457–490.

[28] F. Ledrappier, Some asymptotic properties of random walks on free groups. In: Topics in Probability
and Lie Groups: Boundary Theory. CRM Proc. Lecture Notes 28, American Mathematical Society.
Providence, RI, 2001 pp. 117–152, .

[29] G. W. Mackey, Point realizations of transformation groups. Illinois J. Math. 6(1962), 327–335.

[30] P.-A. Meyer, Probabilités et potentiel. Hermann, Paris, 1966.

[31] A. Mukherjea, Limit theorems for probability measures on non-compact groups and semigroups. Z.
Wahrscheinlichkeitstheorie Verw. Gebiete 33(1975/1976), no. 4, 273–284.

[32] M. Neufang, Abstrakte harmonische Analyse und Modulhomomorphismen über von
Neumann-Algebren. Ph.D. Thesis, Universität des Saarlandes, 2000.

[33] M. Neufang, A quantized analogue of the convolution algebra L1(G). Preprint,
http://mathstat.carleton.ca/~mneufang

[34] J. Neveu, Mathematical Foundations of the Calculus of Probability. Holden-Day, San Francisco, 1965.

[35] , Discrete-Parameter Martingales. North-Holland, Amsterdam, 1975.

[36] V.I. Paulsen, Completely Bounded Maps and Dilations. Pitman Research Notes in Mathematics
Series 146, Longman, Scientific & Technical, Harlow, 1986.

[37] A. Pirkovskii, Biprojectivity and biflatness for convolution algebras of nuclear operators. Canad. Math.
Bull. 47(2004), no. 3, 445–455.

[38] D. Revuz, Markov Chains. Second edition. North Holland Mathematical Library 11, North
Holland Publishing, Amsterdam, 1984.

[39] J. Rosenblatt, Ergodic and mixing random walks on locally compact groups. Math. Ann 257(1981),
no. 1, 31–42.

[40] M. Rosenblatt, Markov Processes: Structure and Asymptotic Behaviour. Die Grundlehren der
Mathematischen Wissenschaften 184. Springer-Verlag, New York, 1971.

[41] S. Stratila, Modular Theory in Operator Algebras. Abacus Press, Tunbridge Wells, 1981.

[42] V. S. Varadarajan, Groups of automorphisms of Borel spaces. Trans. Amer. Math. Soc. 109(1963),
191–220.

[43] G. Willis, Probability measures on groups and some related ideals in group algebras. J. Funct. Anal.
92(1990), no. 1, 202–263.

[44] , Factorization in finite-codimensional ideals in group algebras. Proc. London Math. Soc.
82(2001), no. 3, 676–700.

https://doi.org/10.4153/CJM-2007-034-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-034-4


The Choquet–Deny Equation in a Banach Space 827

[45] R. J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random
walks. J. Funct. Anal. 27(1978), no. 3, 350–372.

[46] , Ergodic Theory and Semisimple Lie Groups. Monographs in Mathematics 81. Birkhäuser
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