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Abstract
Bilateral teleoperation has witnessed significant development since the mid-20th century, addressing challenges
related to human presence in environments with constraints or a lack of skilled professionals. This article presents
the kinematic and self-collision analyses of the quasi-spherical parallel manipulator, a three-legged parallel robot
used as a haptic master device. The device is designed for remote center of motion-constrained operation in the
telesurgical field. Inverse and forward kinematics are thoroughly analyzed to study working modes, singular config-
urations, and implement a haptic control architecture. The research explores the operative and reachable workspaces
of the possible working modes, comparing them to find the most suitable one. Results highlight how the addition
of the self-collision phenomenon impacts the working mode choice, drastically reducing most of the modes’ oper-
ative workspaces. An anti-collision control algorithm is finally introduced to maintain the architecture within its
reachable workspace.

1. Introduction
Bilateral teleoperation has begun to formally spread during the mid-20th century [1], with exemplary
cases such as Raymond C. Goertz’s master–slave architecture for radioactive material handling in 1953
[2], or William R. Ferrel’s work on transmission delay in 1965 [3]. Since then, this approach has garnered
escalating attention within the scientific community, driving ongoing interest and development over the
last decades.

Teleoperation excels by strategically addressing challenges tied to human presence. These challenges
span from extreme environmental constraints [2, 4, 5] to logistical difficulties arising from system-
atic or unforeseen lack of skilled professionals in specific geographical areas, as evident in fields such
as telemedicine and telesurgery [6–8]. In such scenarios, optimal conditions can also necessitate the
seamless exchange of visual, auditory, and haptic feedback from the slave device so as to mitigate
the challenges related to the absence of the operator within the operation area [7, 9]. Haptic feedback
implementation has been demonstrated to optimally address to this problem [10, 11].

On the telesurgical field, a plethora of solutions have been invented in order to adequately address a
various range of surgical interventions, such as spinal surgery [12, 13], laparoscopy [14, 15], and cancer
care [16]. In each mentioned scenario, the surgeon maneuvers a master device to monitor and control
the position of an instrumented tool interacting with the patient. Often, this involves implementing a
remote center of motion (RCM) constraint to minimize the surgical incision required for entering inside
the patient’s body.
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Figure 1. 3-RRR spherical parallel manipulator inside solidWorks environment [17].

Figure 2. The quasi-spherical manipulator (qSPM) device inside SolidWorks (a); operative workspace
inside the cartesian space (b). Relevant dimensions of the device are outlined in Table II in appendix.

On the topic, one of the authors has already presented different spherical parallel manipulator (SPM)
master prototypes [17–20], out of many possible architectures present in literature, as in refs. [21–
23]. The first design [17], as in Figure 1, consisted of three symmetrical legs composed by two links
(“proximal” and “distal”) and three revolute joins (3-RRR prototype).

As a previous article has demonstrated [18], the mentioned architecture lacked sufficient dexterity
due to the presence of serial and parallel singularities of each of the three legs within the operative
workspace. Other articles [19, 20] have proposed and experimented on a different viable architecture,
the quasi-spherical parallel manipulator (qSPM), deriving from the 3-RRR prototype by modifying the
first and the last joint of one leg to be a universal joint instead of a rotational one, as in leg A of Figure 2a.
This architecture was selected as it leads to a more dexterous solution, presenting singularity points
further away from workspace center [19]. The main objective of the end effector (EE) is controlling the
orientation of an instrumented tool mounted on a robotic slave arm [24, 25] and acting on an RCM conic
workspace shown in Figure 2b. The architecture is actuated by three motors mounted around the absolute
reference frame (RF) axes and acting on the proximal links, as highlighted by A, B, C in Figure 2a.
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Figure 3. Schematized qSPM system in MATLAB environment, link nomenclature: legs A, B, C (red,
green, blue), platform (cyan) (a). Geometrical angles definition of leg B on a common plane xz (b).

The previous scientific production [19, 20], nonetheless, did not take into account the actual reach-
able workspace of the robot, that is, the workspace accessible from the central position without either
crossing singularity or self-collision. Around the matter of self-collision, specific scientific production,
and different on-line and off-line approaches have been developed [26–28], as the self-collision problem
is in function of the robotic architecture and is often analytically implicit or generally complex to handle.

The rest of the article is organized as follows: Section 2 addresses the qSPM prototype’s geome-
try and kinematics, analyzing the Jacobian and its singularity, and defining an haptic feedback control;
Section 3 defines the operative and reachable workspaces, focusing on the singularity study through
dexterity maps; Section 4 proposes a general definition and analytical identification of self-collision
in spherical manipulators; Section 5 compares reachable workspaces and joint space aspects with and
without self-collision, evaluating the phenomenon experimentally in the best working mode on the pro-
totype produced in ref. [20] and presenting an off-line algorithm able to automatically detect and avoid
critical points within the operative workspace; and Section 6 concludes the article, proposing future
developments.

2. Kinematic Analysis
2.1. Main architecture assumptions
The proposed geometrical description of the qSPM, schematized in Figure 3a, derives from the following
architecture assumptions:

M1) We define rnK |n=(1,··· ,5),K=(A,B,C) the unitary vector referenced on the origin of the absolute RF
(O, x̂, ŷ, ẑ) identifying the axis of revolution of a generic rotational joint Kn|n=(1,··· ,5),K=(A,B,C). We
impose r1A ≡ ẑ, r1B ≡ x̂, r1C ≡ ŷ;

M2) For the superposition principle, universal joints of the URU leg can be divided in two rotative
joints lying on perpendicular axes, namely A1 ≡ A2 and A4 ≡ A5. Thus: r1A ⊥ r2A and r4A ⊥ r5A;

M3) With such formulation, we define the constant geometrical angles (α, β, γ ), respectively, iden-
tifying the proximal links’ and distal links’ angular span (i.e., respectively, angles K1ÔK2|K=(B,C)

and K2ÔK3|K=(B,C)), and the angle EÔX|X=(A4≡A5,B3,C3), as shown in Figure 3b;
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M4) Due to the architecture’s spherical geometry, and thus with minimal exceptions in the URU leg,
links’ fundamental shapes only depend on geometrical angles of Assumption (M3). The overall
description is thus scalable, having a quasi-spherical description;

M5) For the sake of brevity, we implicitly assume, unless stated otherwise, the formulation of vector
rnK |n=(1,··· ,5),K=(A,B,C) = RnK · ẑ, being RnK a suitable (3 × 3) rotational matrix;

M6) In order to be consistent with previous articles’ work [17–19], the EE orientation rE is expressed
in Euler zxz angles, as in (1);

rE(ψ , θ , φ) = RE(ψ , θ , φ)ẑ = Rz(ψ) · Rx(θ ) · Rz(φ) (1)

In which: RE and the triplet (ψ , θ , φ) the rotational matrix and the angles describing the zxz Euler
description; inscriptions Rz(·) and Rx(·) rotation matrices around axes ẑ and x̂.

M7) As described in Section 1, three motors are mounted on the proximal links and thus act on the
active angles θ1Ar1A, θ1Br1B, and θ1Cr1C.

2.2. Inverse kinematics model and working modes
Adopting the geometrical description as in Section 2.1, we can derive the inverse kinematics model
(IKM) resolution as a trigonometric function of the active angles (2).

⎧⎪⎨
⎪⎩

A1 · cos (θ1A) + A2 · sin (θ1A) + A3 = 0 (2a)

B1 · cos (θ1B) + B2 · sin (θ1B) + B3 = 0 (2b)

C1 · cos (θ1C) + C2 · sin (θ1C) + C3 = 0 (2c)

In which: Ki|(K=A,B,C),i=(1,2,3) are functions of constant and imposed angles (α, β, γ ,ψ , θ , φ) and are
reported in (34)(35)(36) in Appendix; A3 = 0 due to the different structure of leg A.

It can be demonstrated that the IKM admits eight solutions, or working modes mi|i=(1,...,8), directly
depending on the configuration of legs A, B, and C, as in Figure 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1A = atan2(− A1, A2) (A3 = 0), mi|i=(1,...,8)

θ1B = atan2(yB1, xB1) m1,5, m2,6

atan2(yB2, xB2) m3,7, m4,8

θ1C = atan2(yC1, xC1) m1,5, m3,7

atan2(yC2, xC2) m2,6, m4,8

(3)

In which expressions of xKi|K=(B,C),i=(1,2) and yKi|K=(B,C),i=(1,2) are reported in (37) in Appendix.

2.3. Jacobian computation
The Jacobian matrix can be reconstructed by time deriving the geometric description of the three legs
[19]. The system can be reduced as in (4).

ω = J−1
p Js�̇ = J�̇ (4)

In which: � = [θ1A, θ1B, θ1C]t is the joint vector; �̇ and ω are the angular speeds of the motors and the
platform; Jp (5a) and Js (5b) are the parallel and serial parts of the Jacobian.
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Figure 4. Admitted working modes mi|i=(1,...,8) of the qSPM system.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jp =

⎡
⎢⎢⎣

(r4A × r5A)t

(r2B × r3B)t

(r2C × r3C)t

⎤
⎥⎥⎦ (5a)

Js =
⎡
⎢⎣

r1A · (r4A × r5A) 0 0

0 r1B · (r2B × r3B) 0

0 0 r1C · (r2C × r3C)

⎤
⎥⎦ (5b)

Note that J implicitly depends on working modes mi|i=(1,...,8) due to the IKM structure.

2.4. Singularity definition
Singular positions can thus be achieved in three different ways:

• Serial singularity: happening if det(Js) = 0, that is, when factors of at least one triple product in
expression (5b) are linearly dependent. This happens when the vectors lie on the same plane or
at least two of them are parallel, that is, the legs are either fully retracted or fully extended, as
shown in Figure 5a, and two solutions mi|i=(1,...,8) coincide. Serial singularities tend to be outside
of the operative workspace, defined in Section 3.1;

• Parallel singularity: happening if det(Jp) = 0, that is, when the matrix in (5a) is composed by lin-
early dependent vector entries, that is, when at least two of the planes containing (r3K , r2K)|K=(B,C)

or (r4A, r5A) are parallel, as shown in Figure 5b;
• Structural singularity: happening when both determinants det(Js) and det(Jp) are null.

2.5. Forward kinematics model
The forward kinematics model (FKM) of the architecture depends on the analysis of spherical four-bar
loops presented in ref. [29]. In a similar way of what was done in ref. [20], we can identify the B2B3C3C2

four-bar loop, expressed as in (6) (7).

zt · Rx(δ) · Rz(π − ξ ) · Rx(β) · Rz(π − σ ) · Rx(γ ′) · z − zt · (Rx(β))t · z = 0 (6)
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Figure 5. Serial singularity example, obtained in (ψ , θ , φ) = (179, 54.7, 0)(◦), in which leg B is
fully extended and m1 and m3 coincide (a); parallel singularity example, obtained with m3 in
(ψ , θ , φ) = (109.5, 41.7, −40)(◦), in which planes described by vectors (r4A, r5A) (plane A, red) and
(r2B, r3B) (plane B, green) are parallel (b).

Figure 6. Spherical four-bar loop used for the resolution of the FKM . Nomenclature from Figure 3a.

RE = R2C · Rz(θ2C) · Rx(− β) · Rz

(
5

6
· π + σ

)
· Rx(− γ ) · Rz(− φE) (7)

In which, as shown in Figure 6: ξ and σ are the input and output angles of the four-bar equations
[29]; δ is the angle between r2B and r2C, depending on the robot’s pose; γ ′ is the constant angle between
r3B and r3C; R2C derives from (M5); φE is a constant adjustment angle, as in Table II in Appendix.

Assuming as knowns the active angles θ1K|K=(A,B,C), δ can be computed online. On the other hand, ξ
can be computed, with great computational gains, by adding an additional encoder measuring θ2C. The
Euler angles triplet (ψ , θ , φ) can then be computed from (7) with reference to the Euler zxz construction
formulas.

2.6. Haptic feedback
An haptic feedback system can then be built through the FKM, as in Section 2.5, providing the online
computation of the Jacobian J, and (8).

τ
def=

⎡
⎢⎢⎣
τ1A

τ1B

τ1C

⎤
⎥⎥⎦ = Jt · T + τ ctrl + τ comp (8)
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Figure 7. Robot workspace Wop, defined in (9) on plane ψrθr, defined in (11). The red circle represents
the workspace center, defined by (10).

In which, τ1K|K=(A,B,C) are the active torques acting on the active angles θ1K|K=(A,B,C); T are the operational
torques acting on the slave robot’s tool and received by the master’s control algorithm; τ ctrl are additional
control torques that can be applied directly on the master device; and τ comp are static compensation
torques due to gravity acting on the qSPM mechanical elements.

3. Dominion analysis
3.1. Operative workspace definition
As mentioned in Section 1, the slave robot must operate on an RCM conic workspace built through a
parametric cone demi-angle δC, as in Figure 2b. The operative workspace can be expressed in function
of the Euler angles triplet (ψ , θ , φ) as in (9):

Wop =

⎧⎪⎪⎨
⎪⎪⎩

sin (ψ) − cos (ψ) · sin (θ ) + cos (θ ) ≥ √
3 · cos (δ/2)

(ψ , θ , φ)

∣∣∣∣∣ −50◦ ≤ φ ≤ 50◦

δ = 50◦

⎫⎪⎪⎬
⎪⎪⎭

(9a)

(9b)

(9c)

In which, δC is the cone demi-angle as in Figure 7; (9a) does not depend on the self-rotation angle φ
due to conic symmetry of the workspace, and thus (9b) on φ is imposed; we assume, due to the geometric
description presented in the previous paragraphs, a central workspace position wc as in (10).

rwc = 1√
3

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψwc ≈ 135◦

θwc ≈ 54.7◦

φwc = 0◦
(10)

For the sake of brevity, we introduce the relative Euler angles triplet (ψr, θr, φr) in (11). Workspace
Wop can be represented on the offset plane ψrθr independently from angle φ as in Figure 7.
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψr(ψ) =ψ −ψwc

θr(θ ) = θ − θwc

φr(φ) = φ − φwc

(11)

We define δE as the angle between workspace center vector rwc (10), and the EE orientation vector
rE(ψr, θr, φr) (1) (11), as in (12). Inside the workspace, δE ≤ δC due to (9).

δE(ψr, θr, φr) = atan2(||rwc × rE||, rwc · rE) (12)

3.2. Dexterity maps
To enhance the analysis of singularities within the operative workspace, described in Section 3.1, for
each working mode mi|i=(1,...,8) (3), we introduce the dexterity parameter η(J), defined as in (13).

η(J) = 1

||J|| · ||J−1|| , 0<η(J)< 1 (13)

By imposing geometrical angles values as in Table II in Appendix, and a minimum dexterity threshold
ηthr = 0.02, singularity areas SJ can be defined by (14).

SJ = {(ψr, θr, φr) | η(J(ψ , θ , φ))<ηthr = 0.02} (14)

Map results, depending on working modes mi|i=(1,...,8), are shown inside the Euler zxz space (ψr, θr, φr)
by varying discretely the Euler angle φr and analyzing planes ψrθr.

It can be demonstrated that, due to Assumptions (M1) and (M2) on the overall description of the
architecture and (3), leg A’s configuration does not influence in any way the dexterity of the manipulator
inside Wop. Therefore, pairs of working modes mi,i+4|i=1,...,4 produce the same dexterity maps. Figure 8
shows discrete results for m1,5 and Figure 22 in Appendix for the other solutions.

3.3. Dexterity performance index and reachable workspace
As a mean to assess and compare working modes’ performances on dexterity, we introduce the per-
formance index δE,min,SJ (φr). Said index corresponds to the partial minimization on planes ψrθr of all
possible δE (12) corresponding to critical points (ψr, θr, φr) ∈ SJ (14). Therefore, the index corresponds
to the angular distance from workspace center to the nearest singularity point in the cartesian space. The
index is expressed in (15) and is portrayed in Figure 9 for all working modes.

δE,min,SJ (φr) = min
ψr ,θr

δE(ψr, θr, φr) (ψr, θr, φr) ∈ SJ (15)

Focusing, for example, on m1,5 and thus Figure 8, note that, for φr = 50◦, there are parts of the
workspace that are unreachable due to singularity crossings. The defined reachable workspace thus
restricts according to the expression (16).

Wreach = {P = (ψ , θ , φ) ∈ Wop | ∃s(wc, P) ∈ C0 : s(wc, P) ∩ SJ = ∅} (16)

In which, s(wc, P) is a random continuous path between point P and the operative workspace center wc

(10); Wreach implicitly depends on to working modes mi|i=(1,...,8) through SJ due to the Jacobian defined in
Section 2.3.
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Figure 8. Dexterity map in the Euler angles space for m1,5. Planes ψrθr range with a discrete step of
φr,step = 12.5◦. Relative angles defined in (11). Red areas correspond to singularity areas SJ (14) inside
the operative workspace Wop (9).

Figure 9. Performance index δE,min,SJ (φr) of working modes mi,i+4|i=(1,...,4) (red, green, blue, and cyan).
Black dashed line is δC (9).

3.4. Configuration space and aspects
Inside the configuration space, we define the Aspects Ai|i=(1,...,8) as the images of the IKM function fIKM

in the workspace Wreach according to working modes mi|i=(1,...,8) as in (17) and Figure 10a.

Ai|i=(1,...,8) = {�= (θ1A, θ1B, θ1C) | ∃(ψ , θ , φ) ∈ Wreach : fIKM(ψ , θ , φ) =�} (17)
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Figure 10. Aspects Ai|i=(1,...,8) (red, green, blue, and cyan) defined in (17) inside the configuration space
(θ1A, θ1B, θ1C). Point-symmetry virtual center, to be discussed in Section 5.2, is a black dot highlighted
by an arrow (a); Intersections (red) and tangential zones (blue) among aspects (b).

Figure 11. Parameters involved in the definition of a general link, with a generic point P, as in (20):
generic view (a); View on plane (ri,K , ri+1,k) (b).

As a direct product of the dexterity maps portrayed in Section 3.2, also Aspects Ai,i+4|i=1,...,4 are paired,
providing the same results inside the configuration space.

4. Self-collision
4.1. Self-collision architecture assumptions
The self-collision phenomenon can involve either the legs, either, and possibly, the platform. To
efficiently analyze the said phenomenon between legs, the following assumptions are needed:

A8) Every link in legs B and C can be defined, as in Figure 11, by the following parameters (K =
(B, C), i = (1, 2), j = (p, d) stands for “proximal” and “distal”):

• ε = (α, β) is the geometrical angle of the link (M3);
• ε̃ is the angular span which involves the non-lumped rotational joint;
• ri,K and ri+1,K are the axes of its rotational joints;
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Figure 12. Parameters involved in the definition of a general cylinder, with a generic point P, as in
(20): contextual view (in m3, (ψr, θr, φr) = (0, 0, 0)) (a); detailed view (b).

• rj,K is the radial distance between the link’s geometrical center and the fixed RF origin;
• lj,K , hj,K are, respectively, the tangential and radial dimensions of the link.
• Vd,K|K=(A,B) is the portion of space occupied by the link, function of the aforementioned

parameters and the pose of the manipulator, that is, the active angles � and mi|i=(1,...,8);
• cd,K|K=(A,B) is the set of points defining the contour of the link lying in the spherical sector

identified by rj,d.
A9) Due to the involved rotational joint, the proximal and distal links of the same leg K do not lie

within the same spherical sectors. Nevertheless, for simplicity, symmetry, system robustness,
and manufacturing, it is assumed that rp,B = rp,C and rd,C = rd,C;

A10) It is assumed that, in the qSPM, self-collision between legs happens only between distal links.
Proximal links can collide only with working modes m2,6 and values of α + α̃ ≥ 45◦. Having
imposed, as in Table II in Appendix, α+ α̃ ≈ 42◦, from now on we will focus only on distal
links.

In addition with the legs’ self-collision phenomenon, in prospect of a future axial displacement actu-
ation along rE, this article also analyzes the self-collision phenomenon between the legs and a cylindric
volume having as axis rE, as in Figure 12a. Additional assumptions are then required:

A11) Said cylinder can be defined with the following parameters, as in Figure 12b:

• rcyl and hcyl are the radius and the height of the cylinder, reported in Table II in Appendix;
• Vcyl is the portion of space occupied by the cylinder;
With such formulation, the cylinder develops from point O (origin of the absolute RF) to point
hcylrE;

A12) It can be demonstrated that the cylindric volume can collide only with the distal links inside the
reachable workspace enriched with the collision phenomenon, to be presented in (25). Therefore,
for the sake of brevity, collision between said volume and the proximal links is not analyzed.

Due to the superposition principle, the self-collision problem can then be divided in three subprob-
lems, which can be analyzed separately: the collisions between distal links Vd,B and Vd,C; between distal
link Vd,B and cylinder Vcyl; between distal link Vd,C and cylinder Vcyl.
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4.2. Self-collision description
4.2.1. Self-collision between distal links
With the premises made in the first part of Section 4.1, we can note that collision between distal links,
labeled for brevity as C1, happens with the expression (18):

C1 ⇐⇒ ∃P : P ∈ Vd,B ∩ Vd,C (18)

From the perspective of logical computation, this condition can be reduced, with great computational
gains, in the expression (19):

C1 ⇐⇒ ∃P1 : (P1 ∈ cd,B ∩ Vd,C) ∨ ∃P2 : (P2 ∈ cd,C ∩ Vd,B) (19)

The problem then translates in identifying the logical conditions for which a general point P is inside
the dominion Vd,K (20) and apply said conditions to a discrete number of points in the contour cd,K of
the other link.

P ∈ Vd,K ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|βPt| ≤ β

2
+ β̃

rd,K − hd,K

2
≤ |Pt| ≤ rd,K + hd,K

2

|Pn| ≤ ld,K

2

(20)

In which: P = Pt + Pn, being Pt and Pn the tangential and normal projection vectors of P on the plane
identified by vectors r2K , r3K ; βPt is the angle between rd,K r̂ and Pt, as portrayed in Figure 11.

4.2.2. Self-collision between distal links and cylinder
With the premises made in the second part of Section 4.1, we can note that collisions between the
cylindric volume and the distal links, labeled for brevity as C2 and C3, happens only when (21) is
satisfied.

C2 ⇐⇒ ∃P : P ∈ Vd,B ∩ Vcyl, C3 ⇐⇒ ∃P : P ∈ Vd,C ∩ Vcyl (21)

From the computational point of view, as previously done with C1, the problem can be reduced by
identifying the logical conditions for which a general point P is inside the dominion Vcyl (22) and apply
them to a discrete number of points of the contours cd,B and cd,C, respectively, identifying C2 and C3.

P ∈ Vd,K ⇐⇒
⎧⎨
⎩

|Pr| ≤ rcyl

|Pa| ≤ hcyl

hcyl≡rp=⇒ |Pr| ≤ rcyl (22)

In which: P = Pr + Pa, being Pr and Pa the radial and axial projection vectors of P on axis rE, as
in Figure 12b; rP is the actual distance between the EE center and the origin, reported in Table II in
Appendix. Note that, imposing hcyl ≡ rP, the condition on Pa is always satisfied for every point inside
Vd,K|K=(B,C), and therefore can be simplified.

Experimental evaluation of this kind of collision is presented in Section 5.5.

4.3. Reachable workspace, dexterity maps, and performance index with collision
We can then enrich the reachable workspace introduced in (16) and the dexterity maps of Section 3.2
with the self-collision phenomenon between the two distal links and the cylindric volume. The result-
ing collision dominion CV , the reduced collision dominion C̃V , considering only C1, and the reachable
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Figure 13. Dexterity map in the Euler angles space for m1,5. Planes ψrθr with a discrete-step of
φr,step = 12.5◦. Relative angles defined in (11). Colored areas correspond, respectively, to singularity
areas SJ (red) (14) and collision areas CV (blue: C1, cyan: C2, magenta: C3 as in Section 4.2) (23)
inside the operative workspace Wop (9).

workspace Wreach,c are described by (23) and (25), and discretely shown in Figure 13.

CV =

⎧⎪⎨
⎪⎩

C1: Vd,B ∩ Vd,C �= ∅
(ψr, θr, φr)

∣∣∣∣∣ C2: Vd,B ∩ Vcyl �= ∅
C3: Vd,C ∩ Vcyl �= ∅

⎫⎪⎬
⎪⎭

(23a)

(23b)

(23c)

C̃V = {(ψr, θr, φr) | C1: Vd,B ∩ Vd,C �= ∅} (24)

Wreach,c = {P ∈ Wop | ∃s(wc, P) ∈ C0 : s(wc, P) ∩ (SJ ∪ CV) = ∅} (25)

In a similar manner of Section 3.3, we can define two other performance indices, considering CV

(23) and C̃V (24), as in (26) and (27). Figure 14 shows the two indices for all possible working modes
mi|i=(1,...,8).

δE,min,CV (φr) = min
ψr ,θr

δE(ψr, θr, φr) (ψr, θr, φr) ∈ CV (26)

δE,min,C̃V
(φr) = min

ψr ,θr

δE(ψr, θr, φr) (ψr, θr, φr) ∈ C̃V (27)
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Figure 14. Performance indices δE,min,CV (φr) (continuous lines) and δE,min,C̃V
(φr) (dashed lines) of

working modes mi,i+4|i=(1,...,4) (red, green, blue, and cyan) with collision. Black dashed line is δC (9).

4.4. Aspects enriched with collision
The knowledge of the workspace Wreach,c (25), enriched with the collision phenomenon, allows for
the updated definition of the Aspects Ai|i=(1,...,8),c according to working modes mi|i=(1,...,8) inside the
configuration space (28).

Ai|i=(1,...,8),c = {�= (θ1A, θ1B, θ1C) | ∃(ψ , θ , φ) ∈ Wreach,c : fIKM(ψ , θ , φ) =�} (28)

5. Discussion
5.1. Observations on dexterity maps
Focusing on Sections 3.2 and 3.3, the following observations on Wreach (16), the dexterity maps, in
Figures 8 and 22, and the performance index δE,min,SJ (15) in Figure 9, can be made:

D1) As expected by the geometrical structure of the system, and by the symmetry of Assumption
(M3), making both the proximal and the distal links equal with each other, working modes m2,6

and m3,7 are self-symmetric with respect to the workspace center, while m1,5 and m4,8 are sym-
metric with each other. The symmetry can be observed from both the dexterity maps and the
euclidean distance plot;

D2) Even if working modes m1,5 and m4,8 share the lowest δE,min,SJ , working modes m3,7 can be
considered, with only these premises, the worst modes, having singularity areas SJ even for
|φr| ≤ 31◦;

D3) Given Observation (D2), working modes m2,6 are the best configuration for the device’s dexterity.

5.2. Observations on aspects
Focusing on Section 3.4, the following observations on Ai|i=(1,...,8) (17) can be made:

E1) Due to their symmetric structure of the system, explained in Observation D1, A1,5 and A4,8 are
point-symmetric toward a virtual center, highlighted by a black dot and an arrow in Figure 10a;

E2) As portrayed by Figure 10b, A3,7 intersect both A1,5 and A4,8 in two tangential surface areas, that
is, the singularity zones in which one 3-RRR leg is extended;
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Figure 15. Aspects Ai|i=(1,...,8),c (red, green, blue, and cyan) (28), enriched with the collision phenomenon,
inside the configuration space (θ1A, θ1B, θ1C) (a)(b).

E3) Couples (A1,5, A4,8) and (A2,6, A4,8) do not intersect nor touch each other. This is because it is not
physically feasible to directly transition between the mentioned couple dominions, as the two
3-RRR legs can only extend one at a time;

E4) Aspects A2,6 intersect both A1,5 and A4,8 in two sub-dominions, evidencing how the FKM admits
more than one solution, that is, working mode, which is a general peculiarity for parallel robots.
An example is reported in Figure 16.

5.3. Observations on dexterity maps enriched with collision
Focusing on Section 4.3, the following observations on Wreach,c (25), the dexterity maps, in Figures 13
and 23, and the performance indices δE,min,CV (26) and δE,min,C̃V

(27) in Figure 14, can be made:

D4) Due to Assumption (M3), the self-collision phenomenon does not break symmetry;
D5) δE,min,C̃V

< δE,min,SJ for all working modes with the exception of m3,7, which is unaffected of any C̃V

addition. This is because the working mode’s architecture does not allow any collision of distal
links in the operative workspace Wop, as shown in Figure 4g;

D6) As expected, δE,min,CV ≤ δE,min,C̃V
for all working modes. The equality happens:

• In parts of m1,5 and m4,8 where the collision phenomenon of the arms and the cylindric volume
cannot happen;

• In m2,6, in which, as shown in Figure 23, the additional contribution of CV with respect to C̃V

does not modify the reachable workspace.;
• In m3,7 for |φr| ≤ 16◦, in which the collision phenomenon between the cylindric volume and

the legs happens outside the operative workspace Wop.
D7) Regarding the overall dexterity in the operative workspace Wop (9), working modes m2,6, consid-

ered the best without collision by Observation (D2), show the worst performance. This is because
the working mode’s architecture is particularly sensitive to self-collision between RRR legs, as
shown in Figure 4f;
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Figure 16. An example of intersection between A1 and A2 in (θ1A, θ1B, θ1C) = ( − 48, −77, −49)◦.
Therefore, same active angles admit more than one (distinct) working mode: m1, m2. The resulting con-
figurations are with continuous line for m1 and dashed lines for m2. Measures are in (m/m) due to
scalability described in (M4).

D8) Considering the previous observations, the best working modes are m3,7. This is because, as
shown in Figure 14, m3,7 are not only symmetrical (D1) (D4) but also record greater distance from
singularity regions compared to other modes. In fact, the collision phenomenon only interests
the cylindric volume (D5) and for a limited angular range (D6). Consequently, they demonstrate
enhanced dexterity and possess the widest reachable workspace.

5.4. Observations on aspects enriched with collision
Focusing on Section 4.4, the following observations on Ai|i=(1,...,8),c (28) can be made:

E5) Due to Observation (D4), Observation (E1) is still true. In a similar fashion, being the self-
collision just an enrichment, the kinematic architecture is not modified and Observation (E3) is
still true;

E6) A3,7 still intersect both A1,5 and A4,8 in two tangential surface areas, that is, the singularity zones
in which one 3-RRR leg is extended;

E7) Being greatly reduced as a consequence of Observation (D7), A2,6 do not intersect A1,5 nor A4,8.
In fact, the example is reported in Figure 16 is not admissible for the self-collision phenomenon.

5.5. Experimental evaluation of the self-collision mathematical model
Focusing on the prototype presented in ref. [20], we have implemented on the architecture the forward
kinematic model as in Section 2.5 on the best working mode m3 as concluded in Observation (D8).
The self-collision mathematical model presented in Section 4 can be efficiently validated by designing a
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Figure 17. Cylindric object (in blue, highlighted with an arrow) mounted on the platform of the pro-
totype [20] (a); reachable workspace within the Euler dominion Wreach,c for m3 (in green) with four
self-colliding trajectories (in red, with blue O marker pointing the referenced trajectory final points
inside CV , and red × markers pointing the collision) (b).

suitable self-colliding trajectory control between the workspace center rwc (10) and unreachable points
Pf = (ψrf , θrf , φrf ) ∈ CV (23). Therefore, the prototype is made to collide with a proper 3D-printed
cylindric volume mounted on the platform, as in Figure 17a.

Registering the absorbed current on the actuated motors (Simplex Motion, SC040B), as defined in
Section 2.1, the collision is checked by monitoring the feedback torques and is demonstrated to happen
on the threshold surface of Wreach,c, as shown in Figure 17b. Four tested self-colliding trajectories, each
one tested five times, are presented in Table I with their averaged collision points P̄C = (ψ̄rC, θ̄rC, φ̄rC)
and their respective euclidean distance from Wreach,c threshold surface dwrs.

A discrete frame-by-frame photographic representation of the first trajectory is exemplified in
Figure 24 in Appendix.

5.6. Self-collision avoidance algorithm
In order to implement a self-collision avoidance algorithm, we must act on τ ctrl defined in (8), that is,
the torque on the active angles regulating control actions which involve only the master device. This
article proposes a segmented spring-like avoidance algorithm, acting on Wreach,c, as in (29), (30), (31),
and Figure 18.

FE =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 δE ≤ δthr,1

−kδ · (δE − δthr,1) · tE δthr,1 < δE ≤ δthr,2

−kδ · (δthr,2 − δthr,1) · tE δE ≥ δthr,2

(29)

ME =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 |φr| ≤ φthr,1

−kφ · (φr − φthr,1) · rE φthr,1 < |φr| ≤ φthr,2

−kφ · (φthr,2 − φthr,1) · rE |φr| ≥ φthr,2

(30)

τ ctrl = Jt · Tctrl = Jt · (rprE × FE + ME) (31)
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Table I. Four tested self-colliding trajectories specifications (all values in [◦]).

ψrf θrf φrf ψ̄rC θ̄rC φ̄rC dwrs

12.00 17.50 −40.00 13.12 13.41 −30.13 0.347
13.50 19.00 −30.00 14.82 16.00 −24.63 0.214
−13.50 18.50 30.00 −15.69 15.43 25.28 0.174
−8.00 20.00 40.00 −10.43 15.29 30.00 0.488

Figure 18. FE(δE) segmented spring-like behavior (12) (29). A similar behavior is imposed on ME(φr)
(11) (30).

Figure 19. Graphical definition of FE, δE, and tE (29)(12)(32) in m3, (ψr, θr, φr) = (44, 0, 0)(◦).

In which, as in Figure 19: TE and ME are the requested force and torque acting on the device in order
to control, respectively, its angular distance δE from the workspace center rwc (10) (12) and its self-
rotation angle φ; kδ and kφ are suitable spring constants; δthr,1,2 and φthr,1,2 are suitable threshold values;
tE is the unitary vector perpendicular to rE lying on the plane (rwc, rE) to maximize FE work (32); rp (m)
is the actual distance between the EE center of mass and the RF origin, reported in Table II.

tE = rE × (rE × rwc) (32)

While φthr,1,2 can be directly imposed considering Wop (9), δthr,1,2 cannot be set a-priori, since they
are directly influenced by Wreach,c (25). The proposed solution relies on the a-priori computation of a
normalized force map in every point of Wreach,c in the Euler space, as in (33) and Figure 20.

FE = |FE,max|fE,map(ψr, θr, φr) · tE (33)

https://doi.org/10.1017/S0263574724001449 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001449


Robotica 19

Table II. Parameter values used for the IKM, FKM, and the self-collision phenomenon.

Symbol Description Value Unit
α Proximal link geometrical angle 39.3 [◦]
β Distal link geometrical angle 34.1 [◦]
γ Angle between distal link-platform joint and platform center 18.2 [◦]

γ ′ Angle between adjacent distal link-platform joints 31.5 [◦]
φE Adjustment angle for the FKM 61.2 [◦]

α̃ Angular span for the rotational joints in the proximal links 2.7 [◦]
β̃ Angular span for the rotational joints in the distal links 2.7 [◦]
rKd radial distance between distal links K = (B,C) and origin 0.203 [m]
lKd tangential dimension of the distal links K = (B,C) 0.020 [m]
hKd radial dimension of the distal links K = (B,C) 0.010 [m]
rp radial distance between EE center and origin 0.208 [m]

rcyl radius of the cylindric volume 0.035 [m]
hcyl height of the cylindric volume 0.208 [m]

Figure 20. Normalized force map fE,map(ψr, θr, φr) in the plane ψrθr for m3,7 and φr = −35◦ (a) and in
the overall Euler space (b). Offset δthr,2 − δthr,1 = 3◦.

In which: |FE,max| is the imposed maximum spring-like force; 0 ≤ fE,map(ψr, θr, φr) ≤ 1 is the normalized
force map, unitary outside of Wreach,c (25), and null inside a proper subset of it, as to implement δthr,1,2

in (29).
Once fE,map(ψr, θr, φr) is computed offline, it can directly implement a collision avoidance control

action through the use of the FKM, as in Section 2.5, and the computation of (8), (30), (31), (32), and
(33), as schematized in Figure 21. Having an offline force map means that singularity areas SJ (14) and
self-collision points CV (23) are detected a priori, generating a suitable control action for the motors to
keep the EE inside the reachable workspace (25).

6. Conclusions
This article was devoted to a comprehensive analysis of the qSPM, a three-legged parallel robot with
two spherical RRR legs and one nonspherical URU leg.
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Figure 21. Overall control scheme of the qSPM, including the collision avoidance action. All numbered
labels refer to the respective equations presented in the article.

After presenting the mathematical definition of the prototype, laying out insights on inverse and for-
ward kinematics, the Jacobian matrix, and the haptic feedback, the research has focused on the dominion
analysis of the operative and reachable workspaces due to singularity areas, and introducing the concept
of aspects within its joint space. All presented dominions were enriched by considering the phenomenon
of self-collision, which was analytically presented, delineating a restricted reachable workspace by iden-
tifying self-collision critical points. The article has then discussed the differences among the dominions.
In fact, working modes m2,6, appearing as the most suitable ones without the self-collision phenomenon
description, were discarded in favor of m3,7, left unbiased by the phenomenon due to their peculiar
architecture.

The self-collision phenomenon was experimentally evaluated on working mode m3, proposing a
segmented spring-like avoidance algorithm in order to always remain inside the reachable workspace.

Future developments will revolve around haptic feedback control validation and the self-collision
avoidance algorithm optimization, partaken on a prototype within a test-bench framework and a
simulation environment implementing digital twins of both the master and slave robots.
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A. Appendix
For sake of clarity, notation (cos(x) = cx , sin(x) = sx) has been adopted.⎧⎪⎪⎨

⎪⎪⎩

A1 = cγ sψsθ − sγ (cψsφ + sψcθcφ)

A2 = −cγ cψsθ − sγ (sψsφ − cψcθcφ)

A3 = 0

(34)
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(a)

(b)

Figure 22. Dexterity map in the Euler angles space for m2,6, m3,7, m4,8. Planes ψrθr range with a dis-
crete-step of φr,step = 12.5◦. Relative angles defined in (11). Red areas correspond to singularity areas SJ

(14) inside the operative workspace Wop (9).https://doi.org/10.1017/S0263574724001449 Published online by Cambridge University Press
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(c)

Figure 22. Continued.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B1 = sα[cγ cθ − 1
2
sγ sθ (cφ + √

3sφ)]

B2 = sα{cγ cψsθ + 1
2
sγ [cφ(cψcθ + √

3sψ ) + sφ( − sψ + √
3cψcθ )]}

B3 = cα{cγ sψsθ + 1
2
sγ [cφ(sψcθ − √

3cψ ) + sφ(cψ + √
3sψcθ )]} − cβ

(35)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1 = sα{cγ sψsθ + 1
2
sγ [cφ(sψcθ + √

3cψ ) + sφ(cψ − √
3sψcθ )]}

C2 = sα[ − cγ cθ + 1
2
sγ sθ (cφ − √

3sφ)]

C3 = cα{−cγ cψsθ + 1
2
sγ [cφ( − cψcθ + √

3sψ ) + sφ(sψ + √
3cψcθ )] − cβ

(36)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xKi|K=(B,C),i=(1,2) = − 1

K1

· (K3 ∓ (K2 · K1 · √K2
1 + K2

2 − K2
3 ± K2 · K3

K2
1 + K2

2

))

yKi|K=(B,C),i=(1,2) = ∓K1 · √K2
1 + K2

2 − K2
3 ± K2 · K3

K2
1 + K2

2

(37)
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(a)

(b)

Figure 23. Dexterity map in the Euler angles space for m2,6, m3,7, m4,8. Planes ψrθr range with a dis-
crete-step of φr,step = 12.5◦. Relative angles defined in (11). Colored areas correspond, respectively, to
singularity areas SJ (red) (14) and collision areas CV (blue: C1, cyan: C2, magenta: C3 as in Section
4.2) (23) inside the operative workspace Wop (9).
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(c)

Figure 23. Continued.
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Figure 24. Discrete frame-by-frame photographic representation of the first collision trajectory adopted
in Section 5.5.
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