A NOTE ABOUT LOCALLY SPHERICAL SPHERES

W. T. EATON

1. Introduction. A 2-sphere S in E^3 is said to be locally spherical if for each point p in S and each $\epsilon > 0$ there is a 2-sphere S' such that $p \in \text{Int } S', S' \cap S$ is a continuum, and Diam $S' < \epsilon$. It is not known whether locally spherical spheres are tame; however, there are several partial results. Burgess (2) showed that S is tame if $S' \cap S$ is a simple closed curve and Loveland (3) proved that S is tame if S can be side approximated missing the continuum $S \cap S'$. In this paper we demonstrate that S is tame if the continuum $S \cap S'$ is irreducible with respect to separating S. This result is stated more precisely in Theorem 3. Theorem 2, which is used in the proof of Theorem 3, is a generalization of a theorem recently proved by Loveland (4).

2. Preliminary definitions. A 2-sphere S in E^3 is said to be strongly locally spherical at point p if for each $\epsilon > 0$ there is a 2-sphere S' such that $p \in \text{Int } S', S \cap S'$ is a continuum irreducible with respect to separating S, and Diam $S' < \epsilon$. A 2-sphere S is said to be strongly locally spherical if S is strongly locally spherical at each of its points.

3. Strongly locally spherical spheres are tame.

LEMMA 1. If D is a disk, f is a map from D into E^3 , $\{D_i\}_{i=1}^n$ is a finite collection of disjoint disks such that $f(\operatorname{Bd} D) \cap (\bigcup_{i=1}^n D_i) = \emptyset$, and C is the component of $D - f^{-1}(\bigcup_{i=1}^n D_i)$ that contains Bd D, then there is a map g from D into E^3 such that

(1) $g(x) \in \bigcup_{i=1}^{n} D_i$ if $x \in D - C$,

(2) g(x) = f(x) if $x \in C$.

Proof. This follows from the Tietze Extension Theorem as indicated in (2, Lemma 1).

THEOREM 2. If a 2-sphere S in E^3 is locally spherical and $E^3 - S$ is simply connected, then S is tame.

Proof. We show that each complementary domain of *S* is 1-ULC (uniformly locally simply connected) and use Bing's (1) characterization of tame spheres. Suppose that $\epsilon > 0$; then we may cover $S \cup \text{Int } S$ with interiors of 2-spheres as follows:

(1) if $p \in \text{Int } S$, there is a 2-sphere S' such that $p \in \text{Int } S'$, $S' \subset \text{Int } S$, and Diam $S' < \epsilon$,

Received March 11, 1968. This research was supported in part by grant NSF GP-5420.

(2) if $p \in S$, there is a 2-sphere S' such that $p \in \text{Int } S', S \cap S'$ is a continuum, and Diam $S' < \epsilon$.

Let δ be a Lebesgue number for this covering. If f is a map of the boundary of a disk D such that $\operatorname{Diam} f(\operatorname{Bd} D) < \delta$ and $f(\operatorname{Bd} D) \subset \operatorname{Int} S$, then $f(\operatorname{Bd} D)$ is contained in the interior of a sphere of type (1) or type (2). If $f(\operatorname{Bd} D)$ is contained in the interior of a 2-sphere S', where S' satisfies (1), then, since $S' \cup \operatorname{Int} S'$ is simply connected, f can be extended over D so that $f(D) \subset \operatorname{Cl}(\operatorname{Int} S')$. If $f(\operatorname{Bd} D)$ is contained in the interior of S', where S' satisfies (2), then, since Int S is simply connected, f may be extended over D so that $f(D) \subset \operatorname{Cl}(\operatorname{Int} S)$. Since $S' \cap S$ is a continuum, we may cover $f(D) \cap S'$ with a finite collection of disjoint disks $\{D_i\}_{i=1}^n$ such that $D_i \subset (S' \cap \operatorname{Int} S)$. It follows from Lemma 1 that there is a map g such that g(x) = f(x) for $x \in \operatorname{Bd} D$ and

 $g(D) \subset (\operatorname{Int} S \cap \operatorname{Cl}(\operatorname{Int} S')).$

In each case, Diam Cl(Int S') $< \epsilon$, thus Int S is 1-ULC. Similarly, the exterior of S is 1-ULC.

THEOREM 3. A strongly locally spherical 2-sphere S in E³ is tame.

Proof. We show that Int S and Ext S are simply connected and then use Theorem 2. Let D be a disk and let f be a map of Bd D into Int S. Since $\operatorname{Cl}(\operatorname{Int} S)$ is simply connected, there is a map f_0 from D into $\operatorname{Cl}(\operatorname{Int} S)$ such that $f = f_0 | \operatorname{Bd} D$. Since $S \cap f_0(D)$ is compact and S is strongly locally spherical, there is a finite collection of 2-spheres $\{S_i\}_{i=1}^n$ and a finite collection of sets $\{R_i\}_{i=1}^n$ such that

- (1) R_i is a component of $S \cap \operatorname{Int} S_i$,
- (2) $\{R_i\}_{i=1}^n$ covers $f_0(D) \cap S$,
- (3) $S_i \cap S$ is a continuum irreducible with respect to separating S, and
- (4) $f(\operatorname{Bd} D) \subset \operatorname{Ext} S_i$.

We complete the proof by constructing a finite sequence of maps $\{f_i\}_{i=1}^n$ from D into $\operatorname{Cl}(\operatorname{Int} S)$ such that $f_i|\operatorname{Bd} D = f$ and $f_i(D) \cap S \subset \bigcup_{j=i+1}^n R_j$. The map f_n will then be an extension of f over D such that $f_n(D) \subset \operatorname{Int} S$.

Loveland has shown, in the proof of (4, Lemma 1), that there is a component R_i' of $S_i - S$ such that $\operatorname{Cl} R_i'$ separates R_i from $f_0(\operatorname{Bd} D)$ in $\operatorname{Cl}(\operatorname{Int} S)$. We assume that $S \not\subset f_0(D)$ and that the subscripts on the S_i 's have been chosen so that $S_1 \cap S$ is not a subset of $f_0(D)$. Consequently, since $S_1 \cap S$ is irreducible with respect to separating S, the components of $f_0(D) \cap S_1 \cap S$ do not separate S; furthermore, we have $\operatorname{Bd} R_1 = \operatorname{Bd} R_1' = S_1 \cap S$. Applying the techniques of the topology of E^2 , we cover $f_0(D) \cap \operatorname{Bd} R_1$ with the interiors of a finite collection $\{D_i\}_{i=1}^m$ of disjoint disks in S such that $\bigcup_{i=1}^m D_i \subset \bigcup_{i=2}^n R_i$. Let e be a point of $S_1 - \operatorname{Cl} R_1'$. Since the components of $f_0(D) \cap \operatorname{Bd} R_1'$ do not separate S_1 , we can cover $f_0(D) \cap \operatorname{Bd} R_1'$ with the interiors of a finite collection $\{E_i\}_{i=1}^k$ of disjoint disks in S such that $\bigcup_{i=1}^m D_i$ and $e \notin (\bigcup_{i=1}^k E_i)$.

1002

Since $A = (f_0(D) \cap \operatorname{Cl} R_1') - \bigcup_{i=1}^k \operatorname{Int} E_i$ is a compact subset of R_1' , there is a disk E in R_1' which contains A in its interior. We assume, without loss of generality, that $\operatorname{Bd} E$ and $\bigcup_{i=1}^k \operatorname{Bd} E_i$ are in general position so that $E \cup (\bigcup_{i=1}^k E_i) = F$ is a disk with a finite number of holes. Note that $F \cap S \subset \bigcup_{i=1}^m D_i$, $f_0(D) \cap \operatorname{Cl} R_1' \subset \operatorname{Int} F, F \subset S_1$, and $e \notin F$.

We now adjust F so that it becomes a disk. Let H be the component of $S_1 - F$ that contains e and suppose that there is another component K of $S_1 - F$. If $K \cap S = \emptyset$, then adjust F by adding K to it. If $K \cap S \neq \emptyset$, then, since $S \cap S_1$ is the boundary of each component of $S_1 - S$, K intersects the component, L, of $S_1 - S$ that contains e. Let q be a point of $K \cap L$ and qe an arc from q to e in L that is in general position with Bd F. Let b be that last point of $qe \cap$ Bd K and c the first point of $be \cap (\text{Bd } F - \text{Bd } K)$. F is now adjusted by thickening the arc bc slightly and subtracting this open neighbourhood of bc from F. In each case, the adjusted F has one less hole than F. This process is continued until all holes have been eliminated. If G is the resulting disk, then $G \cap S \subset \bigcup_{i=1}^m D_i$ and $f_0(D) \cap \operatorname{Cl} R_1' \subset G$.

We now adjust the map f_0 in two steps to obtain map f_1 . Since $\operatorname{Cl} R_1'$ separates R_1 from $f_0(\operatorname{Bd} D)$ in $\operatorname{Cl}(\operatorname{Int} S), f_0(D) \cap \operatorname{Cl} R_1' \subset G$, and

$$G \cap (R_1 - (\bigcup_{i=2}^n R_i)) = \emptyset,$$

it follows that G separates $f_0(D) \cap (R_1 - (\bigcup_{i=2}^n R_i))$ from $f_0(\operatorname{Bd} D)$ in $f_0(D)$. Let C be the component of $D - f_0^{-1}(G)$ that contains Bd D. It follows from Lemma 1 that there is a map g from D into E^3 such that $g(x) = f_0(x)$ for $x \in C$ and $g(x) \in G$ for $x \in D - C$. The exterior of S may intersect g(D); however, $\bigcup_{i=1}^m D_i$ separates $g(D) \cap \operatorname{Ext} S$ from $g(\operatorname{Bd} D)$ in g(D). If J is the component of $D - g^{-1}(\bigcup_{i=1}^m D_i)$ that contains Bd D, then by Lemma 1 there is a map f_1 from D into E^3 such that $f_1(x) = g(x)$ for $x \in J$ and $f_1(x) \in \bigcup_{i=1}^m D_i$ for $x \in D - J$. Now $f_1(x) = f_0(x)$ for $x \in \operatorname{Bd} D$, $f_1(D) \subset \operatorname{Cl}(\operatorname{Int} S)$, and $f_1(D) \cap S \subset \bigcup_{i=2}^n R_i$ since $\bigcup_{i=1}^m D_i \subset \bigcup_{i=2}^n R_i$.

Repeating the above procedure we obtain, inductively, maps f_2, \ldots, f_n from D into Cl(Int S) such that $f_i | \text{Bd } D = f$ and $f_i(D) \cap S \subset \bigcup_{j=i+1}^n R_j$. The map f_n is an extension of f over D such that $f_n(D) \subset \text{Int } S$.

References

- 1. R. H. Bing, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305.
- C. E. Burgess, Characterizations of tame surfaces in E³, Trans. Amer. Math. Soc. 114 (1965), 80-97.
- 3. L. D. Loveland, Tame surfaces and tame subsets of spheres in E³, Trans. Amer. Math. Soc. 123 (1966), 355-368.
- 4. —— Piercing locally spherical spheres with tame arcs (to appear in Illinois J. Math.).

The University of Tennessee, Knoxville, Tennessee