A NOTE ABOUT LOCALLY SPHERICAL SPHERES

W. T. EATON

1. Introduction. A 2 -sphere S in E^{3} is said to be locally spherical if for each point p in S and each $\epsilon>0$ there is a 2 -sphere S^{\prime} such that $p \in \operatorname{Int} S^{\prime}, S^{\prime} \cap S$ is a continuum, and Diam $S^{\prime}<\epsilon$. It is not known whether locally spherical spheres are tame; however, there are several partial results. Burgess (2) showed that S is tame if $S^{\prime} \cap S$ is a simple closed curve and Loveland (3) proved that S is tame if S can be side approximated missing the continuum $S \cap S^{\prime}$. In this paper we demonstrate that S is tame if the continuum $S \cap S^{\prime}$ is irreducible with respect to separating S. This result is stated more precisely in Theorem 3. Theorem 2, which is used in the proof of Theorem 3, is a generalization of a theorem recently proved by Loveland (4).
2. Preliminary definitions. A 2 -sphere S in E^{3} is said to be strongly locally spherical at point p if for each $\epsilon>0$ there is a 2 -sphere S^{\prime} such that $p \in \operatorname{Int} S^{\prime}, S \cap S^{\prime}$ is a continuum irreducible with respect to separating S, and Diam $S^{\prime}<\epsilon$. A 2 -sphere S is said to be strongly locally spherical if S is strongly locally spherical at each of its points.

3. Strongly locally spherical spheres are tame.

Lemma 1. If D is a disk, f is a map from D into $E^{3},\left\{D_{i}\right\}_{i=1}^{n}$ is a finite collection of disjoint disks such that $f(\operatorname{Bd} D) \cap\left(\cup_{i=1}^{n} D_{i}\right)=\emptyset$, and C is the component of $D-f^{-1}\left(\cup_{i=1}^{n} D_{i}\right)$ that contains $\operatorname{Bd} D$, then there is a map g from D into E^{3} such that
(1) $g(x) \in \bigcup_{i=1}^{n} D_{i}$ if $x \in D-C$,
(2) $g(x)=f(x)$ if $x \in C$.

Proof. This follows from the Tietze Extension Theorem as indicated in (2, Lemma 1).
Theorem 2. If a 2 -sphere S in E^{3} is locally spherical and $E^{3}-S$ is simply connected, then S is tame.

Proof. We show that each complementary domain of S is 1-ULC (uniformly locally simply connected) and use Bing's (1) characterization of tame spheres. Suppose that $\epsilon>0$; then we may cover $S \cup \operatorname{Int} S$ with interiors of 2 -spheres as follows:
(1) if $p \in \operatorname{Int} S$, there is a 2 -sphere S^{\prime} such that $p \in \operatorname{Int} S^{\prime}, S^{\prime} \subset \operatorname{Int} S$, and Diam $S^{\prime}<\epsilon$,
(2) if $p \in S$, there is a 2 -sphere S^{\prime} such that $p \in \operatorname{Int} S^{\prime}, S \cap S^{\prime}$ is a continuum, and Diam $S^{\prime}<\epsilon$.

Let δ be a Lebesgue number for this covering. If f is a map of the boundary of a disk D such that $\operatorname{Diam} f(\operatorname{Bd} D)<\delta$ and $f(\operatorname{Bd} D) \subset \operatorname{Int} S$, then $f(\operatorname{Bd} D)$ is contained in the interior of a sphere of type (1) or type (2). If $f(\operatorname{Bd} D)$ is contained in the interior of a 2 -sphere S^{\prime}, where S^{\prime} satisfies (1), then, since $S^{\prime} \cup \operatorname{Int} S^{\prime}$ is simply connected, f can be extended over D so that $f(D) \subset \mathrm{Cl}$ (Int S^{\prime}). If $f(\operatorname{Bd} D)$ is contained in the interior of S^{\prime}, where S^{\prime} satisfies (2), then, since Int S is simply connected, f may be extended over D so that $f(D) \subset$ Int S. Since $S^{\prime} \cap S$ is a continuum, we may cover $f(D) \cap S^{\prime}$ with a finite collection of disjoint disks $\left\{D_{i}\right\}_{i=1}^{n}$ such that $D_{i} \subset\left(S^{\prime} \cap\right.$ Int $\left.S\right)$. It follows from Lemma 1 that there is a map g such that $g(x)=f(x)$ for $x \in \operatorname{Bd} D$ and

$$
g(D) \subset\left(\operatorname{Int} S \cap \mathrm{Cl}\left(\operatorname{Int} S^{\prime}\right)\right)
$$

In each case, Diam $\mathrm{Cl}\left(\operatorname{Int} S^{\prime}\right)<\epsilon$, thus Int S is 1-ULC. Similarly, the exterior of S is 1-ULC.

Theorem 3. A strongly locally spherical 2-sphere S in E^{3} is tame.
Proof. We show that Int S and Ext S are simply connected and then use Theorem 2. Let D be a disk and let f be a map of $\operatorname{Bd} D$ into Int S. Since $\mathrm{Cl}(\operatorname{Int} S)$ is simply connected, there is a map f_{0} from D into Cl (Int S) such that $f=f_{0} \mid \operatorname{Bd} D$. Since $S \cap f_{0}(D)$ is compact and S is strongly locally spherical, there is a finite collection of 2 -spheres $\left\{S_{i}\right\}_{i=1}^{n}$ and a finite collection of sets $\left\{R_{i}\right\}_{i=1}^{n}$ such that
(1) R_{i} is a component of $S \cap \operatorname{Int} S_{i}$,
(2) $\left\{R_{i}\right\}_{i=1}^{n}$ covers $f_{0}(D) \cap S$,
(3) $S_{i} \cap S$ is a continuum irreducible with respect to separating S, and
(4) $f(\operatorname{Bd} D) \subset \operatorname{Ext} S_{i}$.

We complete the proof by constructing a finite sequence of maps $\left\{f_{i}\right\}_{i=1}^{n}$ from D into $\mathrm{Cl}(\operatorname{Int} S)$ such that $f_{i} \mid \operatorname{Bd} D=f$ and $f_{i}(D) \cap S \subset \cup_{j=i+1}^{n} R_{j}$. The map f_{n} will then be an extension of f over D such that $f_{n}(D) \subset \operatorname{Int} S$.

Loveland has shown, in the proof of (4, Lemma 1), that there is a component $R_{i}{ }^{\prime}$ of $S_{i}-S$ such that $\mathrm{Cl} R_{i}{ }^{\prime}$ separates R_{i} from $f_{0}(\operatorname{Bd} D)$ in $\mathrm{Cl}(\operatorname{Int} S)$. We assume that $S \not \subset f_{0}(D)$ and that the subscripts on the S_{i} 's have been chosen so that $S_{1} \cap S$ is not a subset of $f_{0}(D)$. Consequently, since $S_{1} \cap S$ is irreducible with respect to separating S, the components of $f_{0}(D) \cap S_{1} \cap S$ do not separate S; furthermore, we have $\mathrm{Bd} R_{1}=\operatorname{Bd} R_{1}{ }^{\prime}=S_{1} \cap S$. Applying the techniques of the topology of E^{2}, we cover $f_{0}(D) \cap \operatorname{Bd} R_{1}$ with the interiors of a finite collection $\left\{D_{i}\right\}_{i=1}^{m}$ of disjoint disks in S such that $\cup_{i=1}^{m} D_{i} \subset \cup_{i=2}^{n} R_{i}$. Let e be a point of $S_{1}-\mathrm{Cl} R_{1}{ }^{\prime}$. Since the components of $f_{0}(D) \cap \mathrm{Bd} R_{1}{ }^{\prime}$ do not separate S_{1}, we can cover $f_{0}(D) \cap \operatorname{Bd} R_{1}{ }^{\prime}$ with the interiors of a finite collection $\left\{E_{i}\right\}_{i=1}^{k}$ of disjoint disks in S_{1} so that $\left(\cup_{i=1}^{k} E_{i}\right) \cap S \subset \cup_{i=1}^{m} D_{i}$ and $e \notin\left(\cup_{i=1}^{k} E_{i}\right)$.

Since $A=\left(f_{0}(D) \cap \mathrm{Cl} R_{1}{ }^{\prime}\right)-\bigcup_{i=1}^{k} \operatorname{Int} E_{i}$ is a compact subset of $R_{1}{ }^{\prime}$, there is a $\operatorname{disk} E$ in $R_{1}{ }^{\prime}$ which contains A in its interior. We assume, without loss of generality, that $\mathrm{Bd} E$ and $\bigcup_{i=1}^{k} \mathrm{Bd} E_{i}$ are in general position so that $E \cup\left(\cup_{i=1}^{k} E_{i}\right)=F$ is a disk with a finite number of holes. Note that $F \cap S \subset \cup_{i=1}^{m} D_{i}$, $f_{0}(D) \cap \mathrm{Cl} R_{1}^{\prime} \subset$ Int $F, F \subset S_{1}$, and $e \notin F$.

We now adjust F so that it becomes a disk. Let H be the component of $S_{1}-F$ that contains e and suppose that there is another component K of $S_{1}-F$. If $K \cap S=\emptyset$, then adjust F by adding K to it. If $K \cap S \neq \emptyset$, then, since $S \cap S_{1}$ is the boundary of each component of $S_{1}-S, K$ intersects the component, L, of $S_{1}-S$ that contains e. Let q be a point of $K \cap L$ and $q e$ an arc from q to e in L that is in general position with $\mathrm{Bd} F$. Let b be that last point of $q e \cap \operatorname{Bd} K$ and c the first point of $b e \cap(\operatorname{Bd} F-\operatorname{Bd} K) . F$ is now adjusted by thickening the arc $b c$ slightly and subtracting this open neighbourhood of $b c$ from F. In each case, the adjusted F has one less hole than F. This process is continued until all holes have been eliminated. If G is the resulting disk, then $G \cap S \subset \cup_{i=1}^{m} D_{i}$ and $f_{0}(D) \cap \mathrm{Cl}_{1}{ }^{\prime} \subset G$.

We now adjust the map f_{0} in two steps to obtain map f_{1}. Since $\mathrm{Cl} R_{1}{ }^{\prime}$ separates R_{1} from $f_{0}(\operatorname{Bd} D)$ in $\mathrm{Cl}(\operatorname{Int} S), f_{0}(D) \cap \mathrm{Cl} R_{1}{ }^{\prime} \subset G$, and

$$
G \cap\left(R_{1}-\left(\cup_{i=2}^{n} R_{i}\right)\right)=\emptyset,
$$

it follows that G separates $f_{0}(D) \cap\left(R_{1}-\left(\bigcup_{i=2}^{n} R_{i}\right)\right)$ from $f_{0}(\operatorname{Bd} D)$ in $f_{0}(D)$. Let C be the component of $D-f_{0}{ }^{-1}(G)$ that contains $\operatorname{Bd} D$. It follows from Lemma 1 that there is a map g from D into E^{3} such that $g(x)=f_{0}(x)$ for $x \in C$ and $g(x) \in G$ for $x \in D-C$. The exterior of S may intersect $g(D)$; however, $\cup_{i=1}^{m} D_{i}$ separates $g(D) \cap \operatorname{Ext} S$ from $g(\operatorname{Bd} D)$ in $g(D)$. If J is the component of $D-g^{-1}\left(\cup_{i=1}^{m} D_{i}\right)$ that contains $\operatorname{Bd} D$, then by Lemma 1 there is a map f_{1} from D into E^{3} such that $f_{1}(x)=g(x)$ for $x \in J$ and $f_{1}(x) \in \cup_{i=1}^{m} D_{i}$ for $x \in D-J$. Now $f_{1}(x)=f_{0}(x)$ for $x \in \operatorname{Bd} D, f_{1}(D) \subset \mathrm{Cl}$ (Int $\left.S\right)$, and $f_{1}(D) \cap S \subset \bigcup_{j=2}^{n} R_{j}$ since $\bigcup_{i=1}^{m} D_{i} \subset \bigcup_{i=2}^{n} R_{i}$.

Repeating the above procedure we obtain, inductively, maps f_{2}, \ldots, f_{n} from D into $\mathrm{Cl}(\operatorname{Int} S)$ such that $f_{i} \mid \operatorname{Bd} D=f$ and $f_{i}(D) \cap S \subset \cup_{j=i+1}^{n} R_{j}$. The map f_{n} is an extension of f over D such that $f_{n}(D) \subset \operatorname{Int} S$.

References

1. R. H. Bing, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305.
2. C. E. Burgess, Characterizations of tame surfaces in E^{3}, Trans. Amer. Math. Soc. 114 (1965), 80-97.
3. L. D. Loveland, Tame surfaces and tame subsets of spheres in E^{3}, Trans. Amer. Math. Soc. 123 (1966), 355-368.
4. -_ Piercing locally spherical spheres with tame arcs (to appear in Illinois J. Math.).

The University of Tennessee, Knoxville, Tennessee

