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Abstract

Background. The brain can be represented as a network, with nodes as brain regions and
edges as region-to-region connections. Nodes with the most connections (hubs) are central
to efficient brain function. Current findings on structural differences in Major Depressive
Disorder (MDD) identified using network approaches remain inconsistent, potentially due
to small sample sizes. It is still uncertain at what level of the connectome hierarchy differences
may exist, and whether they are concentrated in hubs, disrupting fundamental brain
connectivity.
Methods. We utilized two large cohorts, UK Biobank (UKB, N = 5104) and Generation
Scotland (GS, N = 725), to investigate MDD case–control differences in brain network prop-
erties. Network analysis was done across four hierarchical levels: (1) global, (2) tier (nodes
grouped into four tiers based on degree) and rich club (between-hub connections), (3)
nodal, and (4) connection.
Results. In UKB, reductions in network efficiency were observed in MDD cases globally
(d =−0.076, pFDR = 0.033), across all tiers (d =−0.069 to −0.079, pFDR = 0.020), and in
hubs (d =−0.080 to −0.113, pFDR = 0.013–0.035). No differences in rich club organization
and region-to-region connections were identified. The effect sizes and direction for these asso-
ciations were generally consistent in GS, albeit not significant in our lower-N replication
sample.
Conclusion. Our results suggest that the brain’s fundamental rich club structure is similar in
MDD cases and controls, but subtle topological differences exist across the brain. Consistent
with recent large-scale neuroimaging findings, our findings offer a connectomic perspective
on a similar scale and support the idea that minimal differences exist between MDD cases
and controls.

Introduction

Brain regions are linked together by white matter tracts formed from bundles of axonal fibers
that facilitate information transfer from one region to another (Sporns, 2011). As brain func-
tion is constrained to a certain extent by anatomical connections (Suárez, Markello, Betzel, &
Misic, 2020), variations in these pathways may contribute to changes in brain function. Studies
have reported subtle reductions in the fractional anisotropy (FA; a measure of the coherence of
axonal fibers) of multiple individual white matter tracts in Major Depressive Disorder (MDD;
Chen et al., 2016; van Velzen et al., 2020), thus hinting at reduced structural connectivity.
However, since the brain is organized as a network (regions as nodes, connections as
edges), the use of network approaches, such as graph theory (Sporns, 2018) and network-
based statistics (Zalesky, Fornito, & Bullmore, 2010), is better suited to study structural
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differences present in MDD as they can provide information on
topological organization in addition to connectivity strength.
This will add to the insights that can be gained by studying indi-
vidual regions in isolation.

Multiple studies have since examined MDD case–control dif-
ferences in brain network architecture across different scales, at
the global (network-wide), nodal (individual nodes), and connec-
tion (individual edges) levels (Gong & He, 2015; Yun & Kim,
2021). Differences were generally not found at the global level
but at the nodal and connection levels (Sacchet, Prasad,
Foland-Ross, Thompson, & Gotlib, 2015; Xu et al., 2021). For
example, MDD cases had lower clustering coefficient (i.e. the
extent to which nodes are clustered together) for regions involved
in the cognitive-emotion circuitry (Qin et al., 2014) and reduced
connectivity in subnetworks involving regions in the default mode
network (DMN; Korgaonkar, Fornito, Williams, & Grieve, 2014).
While there is a consensus that connectomic differences do exist
in MDD, there is currently no unanimity regarding specific differ-
ences due to lack of replication. Large sample sizes are needed to
ensure the accurate estimation of effect sizes (Button et al., 2013;
Grady, Rieck, Nichol, Rodrigue, & Kennedy, 2021; Marek et al.,
2022; Poldrack et al., 2017) but previous studies were limited by
small sample sizes (mostly N < 100; Xu et al., 2021). In the context
of a highly prevalent and heterogeneous disorder like MDD (Fried
& Nesse, 2015), results from small-scale studies may not be gen-
eralizable to the wider population too. As with large neuroima-
ging studies (e.g. UK Biobank) that have contributed robust
findings on brain structural differences associated with MDD
(Anderson et al., 2020; van Velzen et al., 2020), it is of interest
to leverage these large cohorts for connectomic studies as well.

One of the features that differentiates brain networks from ran-
dom networks is the presence of hubs (regions with high degree of
connectivity). The concept of rich club organization suggests that
hubs are densely interconnected with one another to form a rich
core that functions as the central backbone of brain communica-
tion (van den Heuvel & Sporns, 2011; van den Heuvel & Sporns,
2013; van den Heuvel, Kahn, Goñi, & Sporns, 2012). It has been
proposed that aberrant functioning of the network, as seen in
neurological and psychiatric disorders (Crossley et al., 2014;
Warren et al., 2014), is due to disruptions in the connectivity of
hubs. For instance, computationally simulated attacks on rich
club connections were shown to impair global network efficiency
(i.e. efficiency of information exchange) to a greater extent as
compared to random attacks on non-rich club connections (van
den Heuvel & Sporns, 2011). Given the global impact that the dis-
ruption of the rich core has, it is possible that the rich core may be
affected in MDD, which is characterized by a wide range of cog-
nitive, affective, and somatic symptoms. At the same time, the
importance of non-hubs was highlighted in a study investigating
the complexity of connectivity patterns of nodes (i.e. how similar
were the connections established by nodes of the same degree, in
terms of the degrees of nodes they were connected to; Smith et al.,
2019). Nodes were divided into node tiers based on node degrees,
with the first tier comprising nodes in the top 25% of degrees, and
so on. It was reported that the most complex nodes were found in
the lower tiers, while nodes in the highest tier (hubs) were the
least complex. The wide variability in connectivity patterns of
non-hubs play an important role in bridging nodes across differ-
ent tiers, which is needed to support the diverse functional roles
of the brain. As such, disruptions at non-hubs may affect cross-
tier connectivity and play a significant role in disease etiology,
possibly even more so than disruption of hubs. This, however,

requires further testing. Given the above, it is of benefit to inves-
tigate the differences in the connectivity of hubs alongside non-
hubs to determine key associations with MDD.

In summary, MDD is a complex disorder that is associated
with structural differences in the brain network. To date, attempts
to understand these associations from a connectomic perspective
have been limited by small sample sizes and consequent low stat-
istical power. Due to the lack of consensus on the regions impli-
cated in MDD, specifically the involvement of hubs and
non-hubs, the neurobiological associations of MDD remain
uncertain. Thus, the goal of this study is to utilize two large
adult population samples to investigate MDD case–control differ-
ences in the structural connectome using network-based methods.
To this end, we adopted a comprehensive approach of making
comparisons at the global, tier, nodal, and connection level to
tease out MDD-associated differences at each hierarchical level
of the connectome (Fig. 1).

Methods

Participants

The discovery sample consisted of participants that were part of
the first 10 000 brain imaging datasets from the UK Biobank
(UKB) study (Sudlow et al., 2015). The study was approved by
the National Health Service Research Ethics Service (No. 11/
NW/0382) and the UK Biobank Access Committee (Project No.
4844 and 10279). All participants provided informed consent.
Participants were excluded if they had (1) neurological conditions
including multiple sclerosis and Parkinson’s disease, (2) other
mental health conditions including bipolar disorder and post-
traumatic stress disorder, and (3) failed neuroimaging quality
control as detailed in an earlier publication (Buchanan et al.,
2020). The final sample comprised N = 5104 subjects with both
MDD and imaging data (Table 1). The replication sample con-
sisted of participants from the imaging subsample of the
Generation Scotland: the Scottish Family Health Study (GS;
Habota et al., 2021). GS received ethical approval from the
NHS Tayside research ethics committee. All participants provided
informed consent (reference 14/SS/0039). The same exclusion cri-
teria as UKB were applied, and the final sample comprised N =
725 subjects with both MDD and imaging data (Table 1).
Details on recruitment and assessments for both samples have
been provided elsewhere (Alfaro-Almagro et al., 2018; Miller
et al., 2016) and in the supplementary materials.

Derivation of structural connectomes

Structural connectome processing was done locally and harmo-
nized across UKB and GS using the same procedure published
previously (Buchanan et al., 2020). Each T1-weighted image was
parcellated into 85 neuroanatomical regions-of-interest (ROI).
Eight subcortical structures per hemisphere (accumbens area,
amygdala, caudate nucleus, hippocampus, pallidum, putamen,
thalamus, and ventral diencephalon), and the brainstem were
extracted with FreeSurfer v5.3.0, and 34 cortical structures per
hemisphere were identified using the Desikan-Killany atlas
(Desikan et al., 2006). Probabilistic tractography (BEDPOSTX/
ProbtrackX; Behrens, Berg, Jbabdi, Rushworth, & Woolrich,
2007; Behrens et al., 2003) was performed and streamlines were
seeded from all white matter voxels. Networks were constructed
by identifying pairwise connections between the 85 ROIs and
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represented in the form of 85 × 85 matrices. FA-weighted matrices
were derived by recording the mean FA along interconnecting
streamlines between each pair of nodes. Given that raw networks
contain many false-positive connections (Thomas et al., 2014),
density-based thresholding was used to retain the top x% of stron-
gest edges for each subject’s connectome (Rubinov & Sporns,
2010), on the assumption that connections with the lowest
weights are spurious and differ according to individuals. Seven
thresholds ranging from 10% to 40% were applied. To select the
main threshold, we took the case–control Cohen’s d for all global,
tier, and nodal network measures, and calculated the correlation
between those derived in UKB and those derived in GS. A higher
correlation coefficient implies that the results between both
cohorts are more agreeable, vice versa. The threshold of 35%
with the strongest correlation (rs = 0.37, p = 7.1 × 10−7) was
selected to be reported here. Of note, the correlation coefficient
at other thresholds was also similar (online Supplementary
Fig. S1), suggesting that the replication results were consistent
and there is no bias in the selection of the main threshold. This
is in line with previous studies which considered similar thresh-
olds (Buchanan et al., 2020).

MDD status

Lifetime MDD status in UKB and GS was determined using
online questionnaires based on the Composite International
Diagnostic Interview Short Form (CIDI; Kessler, Andrews,
Mroczek, Ustun, & Wittchen, 1998). To fulfil criteria for MDD,
cases were defined as ever having at least one core symptom of
depression (prolonged sadness, loss of interest) for the majority
or all days over a two-week period, and at least four non-core
depressive symptoms (tiredness, weight change, sleep change,
concentration difficulty, feeling worthless, thoughts of death)

during the same period. Controls were subjects who did not
endorse depression and did not screen positive for CIDI.
Further details on how the case–control status was defined can
be found here (Davis et al., 2020).

Network measures (L1: global; L3: nodal)

Four edge-weighted measures (two global, two nodal) focusing on
clustering and efficiency were derived for each subject. The clus-
tering coefficient (CC) measures the fraction of neighbors of the
node that are also connected with each other. The weighted CC is
the geometric average of the weights of the links forming all
closed triplets centered on the node (Onnela, Saramäki, Kertész,
& Kaski, 2005). The global clustering coefficient (GCC) gives
an overall indication of the clustering in the network and is
defined as the average of all CCs. The nodal efficiency (NEFF)
measures how well a node is integrated within the network via
its shortest paths. It is the sum of the reciprocals of the shortest
path lengths from the node to all other nodes of the network
(Latora & Marchiori, 2001). The global efficiency (GEFF) mea-
sures the efficiency of information exchange in which nodes con-
currently exchange information via their shortest paths. It is
defined as the average of all NEFFs.

The focus on CC and efficiency measures is because the
human brain is postulated to be a ‘small-world’ network charac-
terized by high CC and short path lengths. In other words,
nodes are highly connected together through a small number
of steps to ensure a high rate of information transfer to support
complex brain functions at a low energy cost. Given that the
small-network topology is already evident during the early
developmental years (Fan et al., 2011), it is thus of interest to
see if these fundamentally important network measures are
affected in MDD.

Figure 1. An overview of how the hierarchical order was established. We compared the structural connectomes of MDD cases and healthy controls in a hierarchical
manner from levels 1 to 4 (L1–L4), in the order of increasing specificity. At the global network-wide level at L1, network measures including global clustering coef-
ficient (GCC) and global efficiency (GEFF) were derived. At L2, the nodes were then grouped into four tiers based on their node degrees and tier-level network
measures were compared. The presence of rich club organization looking at hub-to-hub connections was also separately studied at L2. At L3, network measures
including clustering coefficient (CC) and nodal efficiency (NEFF) for each individual node were derived. At L4, Network-Based Statistics (NBS) was used to identify
case–control group differences at the level of individual region-to-region connections.
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Tier-based network measures (L2)

For each individual network, four node tiers were defined based
on node degrees, using the method by Smith et al. (2019). Tier
1 (T1) comprised nodes in the top 25% according to their degrees
(i.e. hubs), Tier 2 (T2) comprised nodes in the next 25%, and so
on for Tier 3 (T3) and Tier 4 (T4). The tiers were defined separ-
ately for each subject, as nodes may have different degrees and
belong to different tiers in different subjects. For each subject
and each nodal measure, measures for each tier (e.g. T1_CC,
T1_NEFF) were derived by averaging the measure values of all
nodes in the respective tiers.

This tier-based analysis is particularly interesting given that
earlier studies showed that both neonatal and adult structural
connectomes are composed of distinct hierarchical tiers, with dif-
ferent tiers comprising different categories of functional process-
ing (Blesa et al., 2021). By dividing nodes into tiers, we are able to
assess if there are any tiers that are particularly affected in MDD
(e.g. hubs in T1 v. non-hubs in other tiers) and are possibly driv-
ing the effects observed at the global level.

Rich club organization (L2)

A rich club organization is present when high degree nodes are
more likely to be interconnected and have stronger connection
among themselves than would occur by chance (Opsahl,
Colizza, Panzarasa, & Ramasco, 2008). Group-averaged networks
were used to calculate the weighted rich club coefficient, Φ(k). All
non-zero connections were first ranked according to their weight
(Wrank). For each degree k, a sub-graph comprising nodes with a
degree larger than k was selected. The number of connections
(E>k) present between nodes in the sub-graph and the sum of
their weights (W>k) were determined. Φ(k) was then defined as
the ratio between W>k and the sum of the top E>k links in the
entire network (Equation 1).

F(k) = W.k
∑E.k

l=1 w
rank
l

(1)

To ensure that these high degree nodes are not interconnected
due to chance, 1000 random networks (with weights randomly

Table 1. Demographic information of participants from UKB and GS

UKB GS

Cases Controls p Value Cases Controls p Value

Sample size (% of cohort) 1505 (29%) 3599 (71%) – 132 (18%) 593 (82%) –

Age 60 ± 7 63 ± 7 <0.0001 57 ± 10 60 ± 10 0.004

Sex (% female) 67.1 47.3 <0.0001 80.3 56.3 <0.0001

Education (% of group) 0.651 0.844

College or university 78 (6%) 197 (6%) – –

A-levels or AS levels or equivalent 74 (5%) 195 (6%) – –

O-levels or GCSEs or equivalent 82 (6%) 125 (4%) – –

CSEs or equivalent 294 (21%) 691 (21%) – –

NVQ or HND or HNC or equivalent 216 (15%) 487 (15%) – –

Other professional qualifications (e.g. nursing, teaching) 660 (47%) 1605 (48%) – –

Compulsory – – 24 (18%) 138 (23%)

More than compulsory – – 57 (43%) 204 (35%)

Post secondary – – 51 (39%) 251 (42%)

Household income (% of group) <0.001 0.003

Greater than £100 000 211 (15%) 348 (11%) – –

£52 000 to £100 000 326 (24%) 752 (23%) – –

£31 000 to £51 999 422 (31%) 992 (31%) – –

£18 000 to £30 999 342 (25%) 893 (28%) – –

Less than £18 000 69 (5%) 228 (7%) – –

More than £70 000 – – 11 (10%) 92 (18%)

Between £50 000 and £70 000 – – 7 (6%) 99 (19%)

Between £30 000 and £50 000 – – 36 (33%) 154 (30%)

Between £10 000 and £30 000 – – 48 (44%) 161 (31%)

Less than £10 000 – – 8 (7%) 15 (2%)

GCSE, General Certificate of Secondary Education; CSE, Certificate of Secondary Education; NVQ, National Vocational Qualification; HND, Higher National Diploma; HNC, Higher National
Certificate.
Note: p values represent differences between cases and controls.
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reassigned while preserving the binary topology) were generated
for each k and a corresponding Φrand(k) was calculated by aver-
aging all 1000 random networks. A normalized rich club coeffi-
cient Φnorm(k) was derived as the ratio of Φ(k) over Φrand(k).
A Φnorm(k) of greater than 1 over a continuous range of k
would suggest the existence of rich club organization.

Network-based statistics (NBS; L4)

NBS (v1.2; Zalesky et al., 2010) was used to test for differences in
strength of each region-to-region connection. It evaluates the null
hypothesis at the level of subnetworks instead of individual con-
nections, with the assumption that connections associated with
the effect of interest are likely to be connected. A two-sample t
test was first performed to test for reduced connectivity in
MDD cases at every connection, controlling for age and sex
(and site for GS). A component-forming threshold of p < 0.05
was used to select a set of suprathreshold edges, and all connected
subnetworks at this level were identified. To evaluate the signifi-
cance of the subnetwork, permutation testing was done by shuf-
fling group membership (5000 permutations) to obtain a null
distribution of maximal subnetwork sizes. The p value was
defined as the proportion of permutations for which the largest
subnetwork was of the same size or greater ( p < 0.05,
FWE-corrected for comparison of multiple subnetworks).

Statistical analysis

The significance of (1) rich club curves for MDD cases and con-
trols, and (2) case–control differences in rich club organization
were tested using permutation testing. (1) For each degree k, the
1000 generated random networks produced a null distribution of
rich club coefficients. Using this distribution, a p value was assigned
to the Φnorm(k) as the proportion of Φrand(k) that exceeded
Φnorm(k). (2) For each degree k, the differences in Φrand(k) between
cases and controls produced a null distribution of 1000 differences.
Using this distribution, a p value was assigned to each case–control
difference in Φnorm(k) as the proportion of random differences that
exceeded the observed difference. FDR correction was applied and
significance was determined at pFDR<0.05.

Linear regression was used to assess case–control differences in
network measures, controlling for age, sex, and site (for GS only
which had two sites; UKB had one site). The t-values for the
group factor were used to compute Cohen’s d effect sizes
(Nakagawa & Cuthill, 2007). Permutation testing used to assess sig-
nificance was done by shuffling group membership to obtain a null
distribution of t-values for the group factor (1000 permutations).
The p value was defined as the proportion of permutations for
which the unsigned t-value was greater than the original unsigned
t-value. Given the hierarchical structure of the data (Fig. 1), hier-
archical FDR correction (Yekutieli, 2008) was performed. FDR cor-
rection was first applied across all global measures. For measures
that remained significant, FDR correction was then applied across
all measures at next level belonging to the same family (e.g. if GEFF
remains significant, FDR correction will then be applied across all
tier-based NEFFs). This process was repeated for the last level
(nodal). Significance was determined at pFDR<0.05.

As sensitivity analysis, we controlled for additional covariates,
including education level, household income, and body mass
index. To ensure that the effects were not driven by antidepressant
exposure, we also tested for differences between (1) MDD cases
with and without antidepressant use, and (2) MDD cases without

antidepressant use and controls. The list of antidepressants is
listed in online Supplementary Table S2.

Results

Global level

GEFF (d =−0.076, pFDR = 0.033) was significantly lower in
MDD cases in UKB (Fig. 2a, online Supplementary Table S3).
The effect size was similar in GS and in the same direction, how-
ever differences did not reach significance after FDR correction
potentially due to reduced power on basis of smaller sample
size (d =−0.108, p = 0.246, pFDR = 0.737; online Supplementary
Table S4). GCC in UKB was non-significant after FDR correction
(d =−0.058, pFDR = 0.051) and the effect size was not replicated
in GS (d =−0.007, p = 0.937, pFDR = 0.937). As post-hoc analysis,
we looked at case–control differences in (1) mean FA which repre-
sents the mean weight used to construct the weighted network
measures, and (2) GEFF after controlling for mean FA. No signifi-
cant differences in mean FA were observed (UKB: d = −0.012, p =
0.704; GS: d = −0.033, p = 0.734), and GEFF remained significant
with similar effect sizes after controlling for mean FA (UKB: d =
−0.076, p = 0.014; GS: d =−0.104, p = 0.283).

Tier level

Tier membership of nodes was highly consistent between cases and
controls within each cohort (UKB: rs = 0.991; GS: rs = 0.740) and
were similar between cohorts (cases: rs = 0.842; controls: rs =
0.842) (Fig. 2b). T1 corresponds to the rich club and it consists of
regions involved in higher-order brain functions such as the thal-
amus, putamen, precuneus, superior frontal gyrus, and superior par-
ietal cortex (based on results in UKB). NEFF of all tiers were
significantly lower in MDD cases (T1: d =−0.076, pFDR = 0.020;
T2: d =−0.069, pFDR = 0.020; T3: d =−0.075, pFDR = 0.020; T4:
d =−0.079, pFDR = 0.020; Fig. 2c) and the above effect sizes were
well-replicated in GS, albeit non-FDR-significant (T1: d =−0.108,
p = 0.312, pFDR = 0.416; T2: d =−0.097, p = 0.306, pFDR = 0.416;
T3: d =−0.075, p = 0.429, pFDR = 0.429; T4: d =−0.123, p = 0.205,
pFDR = 0.416; Fig. 2c). Effect sizes for CC tier-based measures
were less consistent between cohorts. Given the hierarchical struc-
ture of the data, significance of CC tier-based measures after mul-
tiple correction was not tested due to GCC not reaching significance.

Rich club organization

Both cases and controls in UKB exhibited rich club organization,
as Φnorm(k) were greater than one over a range of degree k (k = 13
to k = 63, pFDR<0.005) (Fig. 3a and 3b). Similar results were
observed in GS (online Supplementary Fig. S2). In UKB, signifi-
cant case–control differences were observed at k = 16, k = 23,
and k = 24 (pFDR = 0.017–0.027; Fig. 3c). However, these degree
thresholds do not implicate the rich club and the absence of sig-
nificant findings at the highest degrees suggests that there are no
case–control differences in rich club organization. Likewise, no
significant case–control differences were found in GS at all values
of degree k (pFDR<0.05, online Supplementary Fig. S2).

Nodal level

The effect sizes for CC and NEFF of all nodes were generally con-
sistent across cohorts (rs = 0.30), with cases consistently having
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Figure 2. (a) Effect sizes for MDD case–control differences for the global network measures (GCC: global clustering coefficient; GEFF: global efficiency) for UKB and
GS. The error bars represent the standard error of the estimate derived from the regression analysis. (b) All 85 nodes were ranked according to their node degree
and sorted into four node tiers. T1 consists of nodes that are in the top 25% according to their degrees, and so on. To assess tier membership of nodes within each
cohort, each node is assigned to the node tier that is the most dominant across all subjects in the subject group (cases or controls). (c) Effect sizes for MDD case–
control differences for the tier-level network measures (tier-based CC; tier-based NEFF) for UKB and GS. The error bars represent the standard error of the estimate
derived from the regression analysis. The list of nodes along with their abbreviations can be found in online Supplementary Table S1.
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lower values than controls (Fig. 4a and 4b). In UKB, the NEFF of
nodes belonging predominantly to T1 were significantly lower in
cases. These include the right thalamus (d =−0.085, pFDR =
0.035), right and left putamen (right: d = −0.094, pFDR = 0.013;

left: d = −0.099, pFDR = 0.013), right and left pallidum (right: d
=−0.113, pFDR = 0.013; left: d =−0.079, pFDR = 0.035), left pre-
cuneus (d =−0.080, pFDR = 0.035), left ventral diencephalon (d
=−0.080, pFDR = 0.033), and the left insula (d =−0.099, pFDR

Figure 3. We tested for the presence of rich club organ-
ization (i.e. whether hubs are more likely to be intercon-
nected and have stronger connection among
themselves than would occur by chance) in (a) cases
and (b) controls in UKB. For (a) and (b), the x-axis repre-
sents the range of degree (k) tested, the primary y-axis
represents the rich club coefficients derived from the
original network (Φ(k); black line) and the randomly
generated networks (Φrand(k); grey line), and the sec-
ondary y-axis represents the normalized rich-club coef-
ficients (Φnorm(k); red line in (a), blue line in (b)). The
shaded area represents the range of degree that showed
significant rich club organization, which is indicated by
a Φnorm(k) of greater than 1 over a continuous range of
k. A comparison of Φnorm(k) for cases and controls is
shown in (c).
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Figure 4. (a) Effect sizes for MDD case–control differences in nodal network measures (CC: clustering coefficient; NEFF: nodal efficiency) in UKB and GS. For each
network measure, segmentation maps representing cortical (left) and subcortical (right) regions are shown. (b) Correlation of the effect sizes for CC and NEFF of all
regions in UKB and GS. (c) FDR-corrected p values for the NEFF of all nodes in UKB, grouped according to their tier membership. The blue dashed line represents
the significance threshold at pFDR<0.05. Filled and labelled circles represent regions that survived FDR correction.
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= 0.016) belonging to T3 (Fig. 4c). No CC measures were signifi-
cantly different in both cohorts.

Connection level

No significant subnetworks were identified at the component-
forming threshold of p < 0.05 in either UKB or GS. As recom-
mended by the authors of NBS, the analysis was repeated at
other component-forming thresholds ( p < 0.005, p < 0.01, p <
0.1) but still no significant subnetworks were identified. As sup-
plementary analysis, mass univariate testing for case–control dif-
ferences at every connection was performed with permutation
testing (50 000 times) and FDR correction applied across all
tests. Again, no significant differences were found (pFDR>0.05).

Sensitivity analysis

Results at the global, tier, and nodal levels remained largely
unchanged after additionally controlling for education level,
household income, and body mass index (online Supplementary
Tables S5–S6). Additionally, there were no significant differences
between MDD cases with and without antidepressant use, sug-
gesting that the effects of antidepressants on network measures
are minimal in this sample (online Supplementary Table S7).
There were no significant differences between MDD cases without
antidepressant use and controls (online Supplementary Table S8),
but the correlation of the effect sizes obtained here with those
obtained in the main analysis was high (rs = 0.934, p < 0.001).
Given that more severe cases are likely to take medication and
our samples were community-based, it is possible that the
removal of cases with antidepressant use may have simultaneously
removed the more severe MDD cases, thus eliminating the signifi-
cance of effects. Collectively, these results show that our main
findings are related to the features of MDD and not driven by
antidepressant exposure.

Null results

For null findings in the main analysis and sensitivity analysis, we
additionally conducted Bayes factor (BF) analysis to better under-
stand the strength of these findings (Keysers, Gazzola, &
Wagenmakers, 2020). Further information and discussion of the
results derived from the BF analysis can be found in the online
Supplementary Tables S9 and S10.

Discussion

This study examined the connectomic differences between MDD
cases and controls in a hierarchical manner. In the discovery sam-
ple, reduction in network efficiency in MDD cases was observed
globally, across all tiers, and mainly in hubs locally. No case–con-
trol differences were observed for rich club organization and at
the connection level. The effect sizes were generally consistent,
albeit not significant, in the smaller replication sample, which
we also statistically tested in a meta-analysis (online
Supplementary Fig. S3).

The reduction of global network efficiency in MDD cases sug-
gests that there is an overall reduction in the capacity of the net-
work to communicate between regions. Efficiency measures are
based on shortest path lengths, and the brain is optimized toward
a low average shortest path length to ensure efficient communica-
tion (Kaiser, Martin, Andras, & Young, 2007). As edge-weighted

network measures were used, differences in efficiency could be
attributed to differences in weights or topology. Given the absence
of case–control differences in mean FA and the significant reduc-
tion in global efficiency in MDD even after controlling for mean
FA, the differences in network efficiency may possibly be due to
topological differences. The differences are, however, likely to be
subtle and dispersed across the network, given that no connected
subnetworks were found to be significantly different between
groups at the connection level. Likewise, the inability to detect sig-
nificantly different connections at the current statistical power
using mass univariate testing also hints at the subtlety of effects.
Nevertheless, these results are still insightful as they seem to sug-
gest that the brain is configured slightly differently in MDD and
point to the importance of studying network organization along-
side connectivity strength. These topological differences can be
diathetic, a sequelae, or a form of adaptation to MDD, all of
which are interesting possibilities that warrant further
investigation.

Interestingly, the overall reduction in network efficiency is
unlikely to be associated with hub–hub connections, as indicated
by the absence of significant case–control differences in rich club
organization. This could be because the rich club plays a crucial
role in integrating information from numerous functionally spe-
cialized regions across the brain (Kaiser et al., 2007; van den
Heuvel & Sporns, 2011), and contribute toward providing a foun-
dational basis for the development and functional specialization
of lower tier regions (Blesa et al., 2021). It is arguably evolution-
arily adaptive to prioritize maintaining a stable and robust core to
make it resilient to changes that could critically compromise func-
tioning. While biologically costly to maintain the rich core, the
high biological cost is offset by the functional benefits it confers
for neural communication (Bullmore & Sporns, 2012; Collin,
Sporns, Mandl, & van den Heuvel, 2014). The manifestation of
the effects of MDD in a subtle yet cumulative manner, unlike
radiologically defined abnormalities that are immediately dam-
aging, also lends support to the assertion that the rich core
remains intact in MDD.

Hubs, however, may remain a key area of focus in MDD
research, given that significant reductions in efficiency at the
nodal level were mostly observed in T1 nodes. As rich connec-
tions between hubs have been shown above to be resilient to
MDD-related changes, the differences seen in T1 may be driven
by differences in feeder connections (hub to non-hub connec-
tions) instead. Hubs of interest include the thalamus, putamen,
pallidum, precuneus, and ventral diencephalon, deficits which
have been shown to be implicated in MDD (Kim et al., 2019;
Lebedeva et al., 2017; Li, Rossbach, Zhang, Liu, & Zhang, 2018;
Lu et al., 2016; Zhang et al., 2022). Of note, these regions are
mostly involved in reward processing and emotion regulation.
The pallidum, putamen, and thalamus are part of the cortico-
basal ganglia loop, which plays a central role in developing goal-
directed behaviors (Haber, 2016). Specifically, the putamen is part
of the striatum (the main input structure of the basal ganglia) and
receives input from various cortical structures including the
anterior cingulate cortex and prefrontal cortex which comprise
regions associated with reward and motivation. The pallidum,
especially the ventral pallidum, is also key player in emotion pro-
cessing, where it receives input from the limbic areas via the ven-
tral striatum. Both putamen and pallidum project to the thalamus,
which functions as a core information relay station from basal
ganglia to the cerebral cortex and also contributes toward
higher-order functions (Kumar, Beckmann, Scheffler, & Grodd,
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2022). Disruptions to this corticostriatal circuitry have been
implicated in neuropsychiatric disorders including MDD
(Gunaydin & Kreitzer, 2016). The precuneus and ventral
diencephalon are also involved in related processes, with the for-
mer playing a central role in the DMN responsible for internally
orientated cognition (e.g. rumination) and the latter containing
the hypothalamus which is a key region for stress response
(Zhou et al., 2020). Thus, the implication of multiple regions
involved in reward/emotion regulation processes suggests that dif-
ferences in this circuitry may be more important in MDD (Ng,
Alloy, & Smith, 2019; Park et al., 2019).

While our results point to the importance of hubs, they also
suggest that hubs are not solely involved in the reduction of over-
all network efficiency in MDD. Reduction in tier-level efficiency
was observed across all four hierarchical tiers, indicating that
MDD-associated brain differences are pervasive, involving both
hubs and non-hubs. Since the four tiers cover a broad set of cat-
egories of functional processing (Blesa et al., 2021; Smith et al.,
2019), the widespread somatic, affective, and cognitive dysfunc-
tions often observed in MDD may possibly be associated with
changes in information flow in multiple regions belonging to dif-
ferent tiers. Interestingly, although MDD cases had lower effi-
ciency at T2 to T4, there was an absence of significant findings
at the nodal level for these tiers unlike for T1. This suggests
that differences at these lower tiers may be a result of the accumu-
lation of subtle reductions in the nodal efficiency of multiple
nodes that were too small/insignificant to be detected individually
at the nodal level. An exception would be the insula, which des-
pite being a T3 node, also showed significant reduction in nodal
efficiency. This could be due to its close proximity and connec-
tions with the abovementioned T1 nodes like the thalamus and
putamen, likely necessary to support its diverse functions (includ-
ing affective processes; Ghaziri et al., 2018), thus rendering its
paths more susceptible to changes associated with MDD. In the
same light, the significant reduction in efficiency of T1 nodes,
as discussed above, is likely not attributable to large differences
in only a few connections, but a result of the accumulation of sub-
tle differences in the large number of connections surrounding it.
In other words, the ability to identify significant findings in T1
nodes may be by virtue of the fact that these nodes have the high-
est number of connections and hence, the accumulation of more
subtle differences around them.

Taking all these together, our results suggest that there are sub-
tle, widespread, and possibly topology-related differences in the
structural connectomes of MDD cases. The differences potentially
build up in the order of hierarchy to effect changes that are detect-
able at the higher network organization levels (global, tier, and
nodes in the top tier). The reasonable consistency of effect sizes
in both samples suggests that the findings are likely true, although
this can be determined definitively in the future using larger sam-
ples with preferably more than a thousand subjects for reliable
results (Marek et al., 2022). While the small effect sizes may
seem trivial, they are actually in line with recent meta-analytic
and large consortia studies that found very small differences
(<2% variance explained) in MDD across all neuroimaging
modalities (Feng, Thompson, & Paulus, 2022; Winter et al.,
2022). Our study conducted at a similar scale thus offers a con-
nectomic perspective and provides further evidence for the notion
that very subtle and potentially diffusely distributed brain-related
differences exist in MDD.

While not the first to examine network measures in MDD, this
study is one of the largest, well-powered, and most comprehensive

hierarchical connectomic explorations of MDD to date. The use of
two large samples is a strength, in that the results are generally
replicable and can serve as a reliable reference for future studies.
Limitations should, however, be considered. Firstly, it is known
that network metrics can vary depending on various factors,
such as the atlas used, thresholding method and tractography
parameters, which still lack consensus in the scientific community
(Adamovich, Zakharov, Tabueva, & Malykh, 2022; Wei, Cieslak,
Greene, Grafton, & Carlson, 2017). Our results may thus not
hold if different approaches were taken. Secondly, our results
may not be directly applicable to the more severe MDD cases,
as GS and UKB are community-based cohorts consisting mainly
of relatively healthy individuals. Our results, however, have the
benefit of better generalizability to the community and likely
cover abnormalities common across different severities/subtypes,
thus providing a starting point for future in-depth analyses. We
considered it essential to maximize sample size by minimizing
exclusions to ensure sufficient power needed to detect small
effects present in MDD.

Conclusion

This study presents a comprehensive approach to the hierarchical
comparison of the structural connectomes of MDD cases relative
to controls in two large population cohorts. The key takeaways
include (1) there is an overall reduction in network efficiency in
MDD, (2) the rich club core remains robust in MDD, and (3)
the connectomic differences in MDD are subtle but widespread
involving both hubs and non-hubs. This work can be extended
in future studies by integrating functional connectivity data (e.g.
the coupling between structural and functional connectivity) to
gain further insights into the basis and consequences of reduced
network efficiency in MDD.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291724000643.
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