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The inextensible string

By A. G. WALKER.

An object to which we were all introduced at an early stage
in mechanics is the inextensible string. This appears frequently
without causing much trouble, but there is one type of problem
which, in my opinion, stands apart from the rest, and which
certainly caused me a lot of trouble. Such a problem is when
impulses are given to a system which includes an inextensible
string, as, for example, a system consisting of two rigid parts
joined by a string. If an impulse is applied to one of these parts,
an impulsive tension (T) may be set up in the string, which, in turn,
gives an impulse to the other part. One new quantity, T, has
appeared, and one equation in addition to the ordinary dynamical
equations is thus required before the problem of finding the
change in motion of the system can be solved. It is at this stage
that opinions can differ, for this extra equation depends essentially
upon what concept of an inextensible string is being adopted, and
there is more than one. The usual procedure is to employ a
li geometrical equation " based upon the argument that the two
ends must have equal component velocities in the line of the
string as long as the string is taut. This seems almost obvious
when described in such general terms, and is followed by such
eminent writers as Routh1 and Loney,2 amongst others. I suggest,

1 See for example the worked exercise (170) on p. 149 of his Elementary Rigid
Dynamics (1882).

2 Loney devotes two sections to methods involving the geometrical equation in
Dynamics of a Particle and of Rigid Bodies (1919), p. 180.
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however, that this method implies a concept which leads to
results contrary to common-sense and to everyday experience.
This is best illustrated by a simple example.

Tivo equal particles lie on a smooth table and are joined by
an inextensible string. If one particle is projected array from
the other with velocity V, find the velocities immediately after
the string becomes taut.

Applying the geometrical condition, the momentum equation
at once gives both velocities as V/2. In the first place, this means
that 50 per cent, of the energy has been lost, presumably dispersed
by the string which need be nothing more than a light thread!
This, in my opinion, is against common-sense.1 In the second
place, it is common experience that, in such a situation, the string
becomes slack immediately after the jerk, so that the particles
would not be expected to procede with the same velocity. The
theoretical result is thus contrary to experience.

It is, of course, realised that each concept in mechanics is
an ideal, and that we cannot expect theoretical results to agree
exactly with experience. It has usually been possible, however,
to adopt concepts which lead to results approximating very
closely to those actually observed; the inextensible string leading
to the above results clearly does not belong to this class. Since
we do in fact deal with strings which are very nearly inextensible
in a general sense, the problem now is to idealise such a string
so that the consequences are reasonable and in agreement with
experience.

In my opinion the most important requirement is that energy
shall be conserved, and since this usually means that the string
must slacken, it appears that the string must be allowed to have
elastic properties. This leads me to regard an inextensible
string as a perfectly elastic string, with a very large modulus of
elasticity. The energy is then conserved as far as the string is
concerned, and for a system which includes only one such string,
the energy equation is the one extra equation which enables the
change in motion to be found without going back to the differential
equations of motion. In stich a case the actual value of the
modulus does not appear. In general the string stretches and
returns to its natural length in a very short time, and the calcu-

1 Routh's exercise, cited above, gives a similar considerable loss of energy.
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lated velocities are those existing just as the string slackens, for
then only will the string provide no part of the total energy.

Returning to the problem of two equal particles joined by
a string, we would now argue that the energy imparted to the
system is imV2, and since momentum is still conserved, it follows
that the velocities after the string has become taut are 0 and
V, the projected particle being brought to a standstill. In this
case, therefore, the string slackens as we desired. Many
students would probably give this result for such a simple
problem, but would return to the geometrical condition, i.e.,
postulate the other quite different kind of string, in a less obvious
problem. It should be noted that we are not talking of different
methods of solving a problem, but of different problems, involving
different concepts of an inextensible string.

It is seen that a problem with one string is straightforward
if the energy equation can be used. Great difficulties generally
occur, however, when there is more than one string, for it is then,
as far as I know, necessary to solve the differential equations of
motion, the strings being assumed elastic with large and, perhaps,
different moduli. The final velocities in the system are attained
when the strings return to their natural lengths, and these will
usually involve the ratios of the different moduli, assumed com-
parable. It would thus be necessary to distinguish between
different kinds of " inextensible-elastic strings."

Another large class of problems still remains, in which an
impulse of given magnitude P is applied to a system which in-
cludes an inextensible-elastic string. There is now no energy
equation to start with, and another method of attack must be
found. Since the time during which the string is stretched is
very small owing to the large modulus, it may be comparable with
the time during which the impulsive force acts, and so provide
complications. It is therefore safer to start with the complete
equations of motion, the impulse being replaced by a large force
F acting for a short time T where P - FT.

Consider for example the problem in which two particles
m,m' on a smooth table are joined by a string which is just taut,
and an impulse P is applied to m along the line of the string away
from m'. If I and A. are the natural length and modulus of the
string, and if M => m + m' and P - FT, then it can be verified that
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the velocities v of m and v' of m' when the string returns to its
natural length (after time >T) are

m) M

, , I sine -. ( M \ 1 / 2 . , „ . ,
where k = >- , e = i ( - ; TA1'2. (2)2 \Zmra'e

The energy imparted to the system is

) (3)

The initial motion thus depends upon k, i.e., upon the product
TA* which can take any value between 0 and cc. At one
extremity we can have TA5 -> oc, in which case h = 0 and

P P2

' E (4 )

showing that the geometrical condition now holds. We may say
that in this case the inextensibility of the string overweighs the
impulsiveness of the force; there are many small oscillations while
the force is acting, with the consequence that the particles settle
down to the same velocity.

At the other extremity we can have TA= -> 0, in which case
k = 1 and

, 2P P2

V=~M' ^ ( )

In this case the string slackens after the jerk. We may here
say that the impulsiveness of the force overweighs the inexten-
sibility of the string; the force ceases to act while the string is
still stretching and before any force is effectively applied to the
second particle. This solution is similar to that obtained when
one particle is projected with given velocity away from the other;
the two in fact agree exactly if the velocity of projection is
P/m, i.e., the velocity calculated from the momentum equation
when the impulse is applied only to m, the string being ignored.

Between the two extremities we have the range of possibilities
given by values of k between 0 and 1, and the solution to be
adopted in any particular problem should depend upon the con-
ditions of the problem, i.e., the kind of string and the nature of
the impulse. If we are to make a choice without further infor-
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mation, then the second extreme case given by A" = 1 seems to be
the most satisfactory. It agrees fairly closely with experience
and it gives at the same time a simple rule, at least when only
one string is involved. It also gives the maximum total energy
with which the given impulse can provide the system, the minimum
being given by k = 0; this follows from (3). The rule may be
stated thus :—

/ / impulsive forces are applied to a system which includes
one inextensible string, first calculate the initial motion and the
energy of the system under the same forces but ignoring the
string. Noiv return to the given system with the string and
calculate the motion with the given amount of energy reckoned
above. This energy equation is the additional information
required to account for an unknown impulsive tension in the
string.

It is evident that the problem becomes complicated algebrai-
cally when more than one string is involved. In principle, the
results will depend upon the ratios of the (large) moduli and upon
the values of products such as TA>. If such products are taken
to be zero, as suggested above, then the total energy can be
calculated as before, but it would still be necessary in general
to consider the differential equations of motion in order to solve
the problem completely. There is a need for more rules to deal
adequately with such problems.

A proof of the " Theorem of the Means."

By C. E. WALSH.

Numerous proofs have been given of this familiar theorem,1

which states that if «i, a2, . . . , aB are positive, and not all equal,
then

a" + o" + + a" > nai a2 an-

The following is an elementary proof by induction, which I

1 See e.g. Hardy, Littlewood & Polya Inequalities, where many references will be
found.
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