ON EXTENSIONS OF MONOTONE FUNCTIONS FROM LINEAR SUBLATTICES

H. W. Ellis
(received July 9, 1964)

1. Introduction. In this note real valued functions, defined on a linear sublattice S of a linear lattice R and satisfying the two order conditions (M1) and (M2), are studied from the point of view of the existence and uniqueness of extensions to R. The paper is partly expository and supplements and extends §3 of [4] where S was assumed to be an ℓ-ideal.

A lattice is a set P partially ordered by a binary relation \leq and such that every pair of elements $x, y \in P$ has a greatest Iower bound or infimum $x \wedge y$ and a least upper bound or supremum $x V y$ in P. A set V that is both a vector space and a lattice is called a vector or linear lattice if the vector and lattice operations are compatible as follows. Writing the (commutative) group operation of V as addition

$$
x \leq y \text { implies } x+a \leq y+a
$$

for every $a \in V$. If $V^{+}=[x \in V: x \geq 0], x \leq y$ is equivalent to $y-x \in V^{+}$. Multiplication by scalars satisfies

$$
\mathrm{x} \leq \mathrm{y}, \quad \lambda>0 \text { implies that } \lambda \mathrm{x} \leq \lambda \mathrm{y} .
$$

It then follows that multiplication by a negative scalar reverses the order. The set V^{+}satisfies

$$
\begin{aligned}
& x, y \in \mathrm{~V}^{+} \Rightarrow x+y \in \mathrm{~V}^{+}, \\
& x \in \mathrm{~V}^{+}, \lambda>0 \Rightarrow \lambda x \in \mathrm{~V}^{+},
\end{aligned}
$$

Canad. Math. Bull. vol. 8, no. 3, April 1965
conditions that define a cone in a vector space. The set V^{+}is called the positive cone of V .

A linear lattice V is called universally continuous if every collection of elements of V^{+}has an infimum, sequentially continuous if every countable subset of V^{+}has an infimum. (In [1] these are called complete and σ-complete respectively.)

A linear sublattice of a linear lattice R is a linear subspace of R that is also closed under Λ and V. Thus if S is a linear sublattice of R and $x, y \in S$, then $x \wedge y$ and $x \vee y$, as defined in R, are in S. If R is universally continuous (sequentially continuous) a linear sublattice of R is called universally continuous (sequentially continuous) if the infimum in R of arbitrary (countable) subsets of S^{+}is in S^{+}.

A linear sublattice S of a linear lattice R is an ℓ-ideal (semi-normal manifold) of R if $x \in S, a \in R,|a| \leq|x|$ implies that $a \in S$. An ℓ-ideal of R is always universally (sequentially) continuous if R is universally (sequentially) continuous.

A function $f(x)$, defined on the positive cone of a linear lattice with values in the non-negative, extended reals is called a monotone function if it satisfies*
(M1) $f(x) \leq f(y) \quad$ if $x \leq y$ (order-preserving),
(M2) $f\left(x_{i}\right) \uparrow_{i=1}^{\infty} f(x)$
if $x_{i} \uparrow_{i=1}^{\infty} x$.
In [4] extensions of monotone functions from S^{+}to R^{+}, where S is an ℓ-ideal of R, were studied. We illustrate the application of an elementary part of this theory by an example. Let (X, A, μ) denote an arbitrary measure space with $C i$ a σ-algebra of subsets of X . Let ($2 \pi, \leq$) denote the vector lattice of finite real Q-measurable functions under the natural ordering, S the linear sublattice of m_{l} of bounded functions vanishing outside sets of finite measure. Then $7 / 1$ is sequentially

[^0]continuous, S an ℓ-ideal of M. If X is σ-finite then to each $x \in m^{+}$corresponds a sequence $\left\{x_{i}\right\} \in S^{+}$with $x_{i} \uparrow_{i=1}^{\infty} x$. It follows from [4], Theorem 3.2, that every monotone function then has a unique monotone extension to m^{+}. In particular if X is σ-finite any length function, [3], and in particular all length functions corresponding to \mathscr{L}^{P} norms, $1 \leq \mathrm{p} \leq \infty$, are completely determined on \mathscr{M} by their values on S^{+}.

Suppose that X is not σ-finite. Then every monotone f on S^{+}has unique maximal and minimal extensions f_{M} and f_{m} to m^{+}. If Q contains a purely infinite set, that is a set E with $\mu(E)=\infty$ such that $\mu\left(E^{\prime}\right)=0$ or ∞ for every measurable subset E^{\prime} of E then, where f corresponds to \mathcal{L}^{P} norm, $1 \leq \mathrm{p} \leq \infty$ on $\mathrm{S}^{+}, \mathrm{f}_{\mathrm{M}}\left(\mathrm{X}_{\mathrm{E}}\right)=\infty, \mathrm{f}_{\mathrm{m}}\left(\mathrm{X}_{\mathrm{E}}\right)=0$ and the maximal and minimal extensions are different. However if Q contains no purely infinite sets and $1 \leq p<\infty$ then for each $x \in Z^{+}$with no subsequence $\left\{\mathbf{x}_{i}\right\}$ in S^{+}increasing to \mathbf{x}, \mathbf{x} majorizes elements of S^{+}on which f assumes arbitrarily large values so that $f_{m}(x)=\infty=f_{M}(x)$ and $f_{m}=f_{M}$. For $p=\infty$, however, again $\mathrm{f}_{\mathrm{m}} \neq \mathrm{f}_{\mathrm{M}}$.

If R^{X} denotes the universally continuous space of finite real valued functions on X, S as defined above is a sequentially continuous linear sublattice of R^{X} but not an ℓ-ideal unless X contains no non-measurable sets of finite outer measure. Thus the theory in [4] does not apply to extensions of monotone functions from S^{+}to R^{+X}. However, if f corresponds to the integral on $\mathrm{S}^{+}, \mathrm{f}$ can be extended as a mesure abstraite ([2], p. 114) to a monotone function on R^{X}. A similar extension from the positive cone of the space of continuous functions with compact supports occurs in the general Bourbaki theory [2].

In this note we assume given a vector sublattice S of a sequentially continuous linear lattice R and study the existence
and uniqueness properties of extensions of monotone functions from S^{+}to R^{+}. Since the case where S is an ℓ-ideal was studied in [4] we consider mainly extensions from S^{+}to T^{+}, where T is the smallest ℓ-ideal containing S. We note that there is a smallest sequentially continuous sublattice S^{\prime} of R containing S and that each monotone function on S^{+}determines a unique monotone extension to $S^{\prime+}$. The smallest ℓ-ideals containing S and S^{\prime} coincide.

Given a monotone function f defined on S^{+}, minimal and maximal extensions f_{m} and f_{M}, satisfying (M1) are defined as in [4]. As in [4], f_{M} also satisfies (M2) and thus gives a unique maximal extension of f to T^{+}, and thus leads to a maximal extension to R^{+}. In contrast to the ℓ-ideal case, f need not be monotone and, in fact, no minimal monotone extension need exist. In order that $f_{m}=f_{M}$ on T^{+}(which implies a unique monotone extension of f to T^{+}) it is necessary and sufficient that to each $x \in T^{+}$corresponds a pair $s, s^{\prime} \in S^{\prime}$ with

$$
s \leq x \leq s^{\prime}, f(s)=f\left(s^{\prime}\right)
$$

In order that $f_{m}=f_{M}$ for T^{+}for every monotone function f on S^{+}it is necessary and sufficient that $\mathrm{T}=\mathrm{S}^{\prime}$.
2. The sequentially continuous linear sublattice of R generated by S. Let S^{+}be the extension of S^{+}obtained by adding to S^{+}the collection of all lower envelopes of countable collections of elements of S^{+}. Thus if $s_{i} \in S^{+}$, $i=1,2, \ldots ; \wedge_{i=1}^{\infty} s_{i} \in S^{\prime}+$.

It is easy to verify that $\mathrm{S}^{\prime}{ }^{+}$is a cone and $\mathrm{S}^{\prime}=\mathrm{S}^{+}-\mathrm{S}^{+}$ a linear sublattice of R containing S. Suppose that $x_{i} \in S^{\prime^{+}}, i=1,2, \ldots . \quad$ Then $x=\Lambda_{i=1}^{\infty} x_{i}$ exists in R.

If $x_{i}=\Lambda_{j=1}^{\infty} s_{i j}, s_{i j} \in S^{+}, i=1,2, \ldots, x=\Lambda_{i, j}{ }_{i j} \in S^{1^{+}}$.
Thus S^{\prime} is sequentially continuous. Since every sequentially continuous linear lattice containing S must contain $S^{\prime}{ }^{+}$and therefore S^{\prime}, S^{\prime} is the smallest sequentially continuous linear sublattice of R containing S. We call S^{\prime} the sequentially continuous sublattice of R generated by S.

We note that if $x \in S^{\prime^{+}}$there exists a sequence $\left\{s_{i}\right\} \in S^{+}$ with $s_{i}{ }_{i}{ }_{i=1}^{\infty} x$. If $x \in S^{+}$we take $s_{i}=x, i=1,2, \ldots$ If not, there exist $s_{i}^{\prime} \in S^{+}$with $x=\Lambda_{i=1}^{\infty} s_{i}^{\prime}$, and if $s_{i}=\Lambda_{j=1}^{i} s_{j}, s_{i} \in S^{+}, s_{i} \downarrow{ }_{i=1}^{\infty} x . \quad$ We show that there also exists a sequence $\left\{s_{i}^{\prime}\right\} \in S^{+}$with $s_{i}^{\prime} \uparrow_{i=1}^{\infty} x$. We write $x \in S^{\prime}$ if $x \in S^{\prime}, x \leq 0$. If $x \in S^{\prime^{-}},-x \in S^{\prime}$ and there exists a sequence $s_{i} \in S^{+}$with $s_{i} \downarrow_{i=1}^{\infty}-\mathbf{x}$. Then $-s_{i} \uparrow_{i=1}^{\infty} \mathbf{x}$. Now suppose that $x \in S^{\prime}{ }^{+}$. There then exists $s \in S^{+}$with $s \geq x, x-s \in S^{-}$and thus a sequence s_{i}^{\prime} in S^{-}with $s_{i}^{\prime} \uparrow_{i=1}^{\infty}(x-s)$. Then $s+s_{i}^{\prime} \in S$, $i=1,2, \ldots$, and

$$
\left(s+s_{i}^{\prime}\right) \uparrow_{i=1}^{\infty} s+(x-s)=x .
$$

There is no loss of generality in assuming each $s+s_{i}^{\prime} \in S^{+}$ since they could be replaced by $\left(s+s_{i}^{\prime}\right) \vee 0 \in S^{+}$.

If f is a monotone function on S^{+}and $x \in S^{+}$then there is a sequence $\left\{s_{i}\right\}$ in S^{+}with $x=V_{i=1}^{\infty} s_{i}$ and if \bar{f} is to be an extension of f to $S^{+}{ }^{+}$satisfying (M2), we must have $f(x)=\lim _{i} f\left(s_{i}\right)$. That the limit does not depend on the actual sequence s_{i} is shown by the argument of [4, Lemma 3.1]. Thus

Every monotone function f on the positive cone of a linear sublattice S of R has a unique monotone extension \bar{f} to the positive cone of the sequentially continuous linear sublattice of R generated by S given by

$$
\bar{f}(x)=\lim _{i \rightarrow \infty} f\left(s_{i}\right),
$$

where $\left\{s_{i}\right\}$ is any sequence of elements of S^{+}with $s_{i} \uparrow_{i=1}^{\infty} s$
3. The semi-normai manifold of R generated by S. Let $T=\left(x \in R:|x| \leq S\right.$ for some $\left.s \in S^{+}\right)$. Direct verification shows that T is a semi-normal manifold of R containing S and is the smallest one. Since every $x \in S^{\prime}+$ is majorized by an element of $\mathrm{S}^{+}, \mathrm{S}^{+} \subset \mathrm{T}^{+}, \mathrm{S}^{\prime} \subset \mathrm{T}$ and S and S^{\prime} generate the same semi-normal manifold T of R.

In the remainder of this note the notation S^{\prime}, T refers to the sequentially continuous and semi-normal manifolds generated by S.

If $f e$ is a monotone extension of from S^{+}to T^{+}, (M1) implies that

$$
\begin{aligned}
& \sup _{s \leq x} f(s) \leq f_{e}(x) \leq \inf _{s^{\prime} \geq x} f\left(s^{\prime}\right) \\
& s^{\prime} \in S^{+}
\end{aligned}
$$

for every $x \in T^{+}$. We define functions f_{m}, f_{M} on T^{+}as follows:

$$
\begin{aligned}
& f_{m}(x)=f_{M}(x)=\lim _{i \rightarrow \infty} f\left(s_{i}\right) \text { if } x \in S^{1^{+}} \text {and } s_{i} \uparrow_{i=1}^{\infty} x ; \\
& \begin{aligned}
f_{m}(x)= & \sup _{s \leq x} f(s), \quad f_{M}(x)= \\
& \inf ^{s \in S^{+}} \quad f(s), x \neq S^{\prime} \\
& s \in S^{+}
\end{aligned}
\end{aligned}
$$

Clearly $\mathrm{f}_{\mathrm{m}} \leq \mathrm{f}_{\mathrm{M}}$ and $\mathrm{f}_{\mathrm{m}} \leq \mathrm{f}_{\mathrm{e}} \leq \mathrm{f}_{\mathrm{M}}$ for every monotone extension from S^{+}to T^{+}.

A monotone function f is convex (concave) if
$f(\alpha \mathrm{x}+\beta \mathrm{y}) \leq \alpha \mathrm{f}(\mathrm{x})+\beta \mathrm{f}(\mathrm{y}) \quad(\mathrm{f}(\alpha \mathrm{x}+\beta \mathrm{y}) \geq \alpha \mathrm{f}(\mathrm{x})+\beta \mathrm{f}(\mathrm{y}))$
for $\alpha+\beta=1 . \quad \alpha, \beta \geq 0$; linear if $f(x+y)=f(x)+f(y)$; sublinear if $f(x+\bar{y}) \leq f(\bar{x})+f(y)$; superlinear if
$\overline{f(x+y)} \geq f(x)+f(y)$; homogeneous if $f(\alpha x)=\alpha f(x)$ for $\alpha \geq 0$; and additive if $x \perp y$ implies that $f(x+y)=f(x)+f(y)$.

THEOREM 3.1. Let S be a linear sublattice of a sequentially continuous linear lattice R, f a monotone function on S. Then (i) f_{M} is monotone, (ii) f_{m} satisfies (M1) but is not necessarily monotone, (iii) f_{M} is sublinear if f is linear or sublinear, (iv) f_{m} is superlinear if f is linear or superlinear, (v) f_{m} and f_{M} are homogeneous if f is homogeneous, (vi) f_{M} is convex if f is convex, (vii) f_{m} is concave if f is concave and (viii) f_{M} or f_{m} need not be additive if f is additive.

Proof. Standard arguments show that (M1) holds for f_{m} and f_{M}. To prove (i) we note that (M1) implies that if $x, x_{i} \in T^{+}$and $x_{i} \uparrow_{i=1}^{\infty} x$, then

$$
f_{M}\left(x_{i}\right) \uparrow_{i=1}^{\infty} \text { and } f_{M}(x) \geq \lim _{i \rightarrow \infty} f_{M}\left(x_{i}\right)
$$

The opposite inequality is trivial if $\lim _{i \rightarrow \infty} f_{M_{i}}\left(x_{i}\right)=+\infty$. Assume that this limit is finite. Given $\epsilon>0$, there exist $s_{i} \geq x_{i}$ with

$$
f\left(s_{i}\right) \leq f_{M}\left(x_{i}\right)+\epsilon, \quad i=1,2, \ldots
$$

Since $x \in T^{+}$, there exists $s \in S^{+}$with $s \geq x$. Since $\mathrm{x}_{\mathrm{i}} \leq \mathrm{s} \wedge \mathrm{s}_{\mathrm{i}} \leq \mathrm{s}_{\mathrm{i}}$, it follows from (M1) that we can assume each $\mathrm{s}_{\mathrm{i}} \leq \mathrm{s}$.

$$
\text { Now } x_{n}^{\prime}=\bigwedge_{i=n}^{\infty} s_{i} \in S^{\prime}+\text { and } x_{n}^{\prime} \leq s, n=1,2, \ldots
$$

We note that the fact that S^{\prime} is sequentially continuous implies that if $y, x_{n}^{\prime} \in S^{\prime}$ and $x_{n}^{\prime} \leq y, n=1,2, \ldots$, then $V_{n=1}^{\infty} x_{n}^{\prime} \in S^{\prime}$. Thus if $x^{\prime}=V_{n=1}^{\infty} x_{n}^{\prime}, x^{\prime} \in S^{\prime}+$ and

$$
x_{n}^{\prime} \uparrow_{n=1}^{\infty} x^{\prime} \text { whence } f_{M}\left(x_{n}^{\prime}\right) \uparrow_{n=1}^{\infty} f_{M}\left(x^{\prime}\right)
$$

since (M2) holds for f_{M} on $S^{\prime}{ }^{+}$. Now $x^{\prime} \geq x_{n}^{\prime} \geq x_{n}$, $n=1,2, \ldots$ Thus $x^{\prime} \geq x_{n=1}^{\infty} x_{n}$,

$$
f_{M}(x) \leq f_{M}\left(x^{\prime}\right)=\lim _{n \rightarrow \infty} f_{M}\left(x_{n}^{\prime}\right) \leq \lim _{n \rightarrow \infty} f_{M}\left(x_{n}\right)+\epsilon
$$

Since ϵ is arbitrary (M2) holds in T^{+}and f_{M} is monotone on T^{+}.

Proofs of (iii) - (vii) are routine and do not use (M2). The limitations on monotone extensions are illustrated by the following simple example.

Let R denote the real numbers, let $X=(0,1)$ and let $\mathrm{R}=R^{\mathrm{X}}$. Then $\mathrm{S}=\left(\mathrm{ax}_{\mathrm{X}},-\infty<\mathrm{a}<\infty\right)$ is a sequentially continuous linear sublattice of R and T denotes the bounded functions on X.

Define $f\left(a X_{X}\right)=a$ on S^{+}. Then f is a linear monotone function on S^{+}and

$$
f_{m}(x)=\inf _{0<t<1} x(t), \quad f_{M}(x)=\sup _{0<t<1} x(t)
$$

on T^{+}.

Let $x_{i}(t)=1,2^{-i}<t<1 ;=0$ elsewhere, $i=1,2, \ldots$ Then each $x_{i} \in T^{+}, f_{m}\left(x_{i}\right)=0, x_{i} \uparrow_{i=1}^{\infty} X_{X}$ but $f_{m}\left(X_{X}\right)=f\left(X_{X}\right)=1$ showing that f_{m} is not monotone on T^{+}. If $x(t)=x_{\left(0, \frac{1}{2}\right)}, y(t)=x_{\left[\frac{1}{2}, 1\right)}$,

$$
f_{m}(x+y)=1 \neq f_{m}(x)+f_{m}(y)=0
$$

Thus linearity need not persist for f_{m}. Since $x \perp y$ this also gives an example whor f is additive on S^{+}but f_{m} is not additive on T^{+}. The same example shows that linearity or additivity need not persist for f_{M}.

$$
\text { If } f \text { is additive on } S^{+}, x, y \in T^{+} \text {with } x \perp y \text { then }
$$

3. 1

$$
f_{m}(x+y) \geq f_{m}(x)+f_{m}(y)
$$

Given $\in>0$, there exist $s, s^{\prime} \in S^{+}$with $s \leq x, s^{\prime} \leq y$, $f_{m}(x)+f_{m}(y) \leq f(s)+f\left(s^{\prime}\right)+\epsilon=f\left(s+s^{\prime}\right)+\epsilon \leq f_{m}(x+y)+\epsilon$, since $s \perp s^{\prime}$.

If f is additive on S^{+}then f_{m} is additive on T^{+}if and only if for each $x, y \in T^{+}$with $x \perp y$,

$$
\begin{aligned}
& \sup f(s)=\sup \quad f\left(s^{\prime}+s^{\prime \prime}\right) . \\
& s \leq x+y \quad s^{\prime} \leq x, s^{\prime \prime} \leq y \\
& s \in S^{+} \quad s^{\prime}, s^{\prime \prime} \in S^{+}
\end{aligned}
$$

When S is semi-normal both a maximal and a minimal monotone extension always exist as is shown in [4]. When S is not semi-normal a maximal monotone extension exists but not necessarily a minimal one. For S and R as in the example, let $t_{i}, i=1,2, \ldots$ be distinct points of $(0,1)$. Let

$$
\begin{gathered}
f_{j}(x)=\operatorname{minimum}_{i=1,2, \ldots, j} \quad x\left(t_{i}\right) \\
\end{gathered}
$$

in T^{+}. Then f_{j} is a monotone extension of f to T^{+}.
Let $x_{j}(t)=0, t=t_{i}, i \geq j ; x_{j}(t)=1$ elsewhere in X.
Then

$$
x_{j} \uparrow_{j=1}^{\infty} x_{X}
$$

If \underline{f} is a minimal monotone extension of f from S^{+}to T^{+} then $f(x) \leq f_{j}(x)$ for every $x \in T^{+}$and all j. Then

$$
\underline{f}\left(x_{j}\right) \leq f_{j}\left(x_{j}\right)=0, \quad j=1,2, \ldots ; f\left(x_{X}\right)=1
$$

contradicting the assumption that $\underset{f}{f}$ is monotone on T^{+}.
When $f_{m}=f_{M}$ on T^{+}it is clear that all of the additional properties of f except perhaps additivity are preserved. From 3.1 above

If f is adcitive and sublinear on S^{+}and $f_{m}=f_{M}$, then $f_{m}=f_{M}$ is additive on T^{+}.

Note that on $(0,1) S=\mathscr{L}^{2}$, with the natural order, is a sequentially continuous linear lattice with $f(x)=N^{2}(x)$ $=\int_{0}^{1}[x(t)]^{2} d t$ monotone and additive but superlinear and not sublinear on S^{+}. Since f has a inique additive extension to $m^{+}(\S 1)$ the additional condition of sublinearity is not necessary.
4. The extensions f_{m} and f_{M}

THEOREM 4.1. Let S be a linear sublattice of R, $f \frac{\text { a monotone function on }}{+} S^{+}$. Then in order that $f_{m}=f(M$ on T^{+}it is necessary and sufficient that to each $x \in T^{+}$and $\epsilon>0$ corresponds $s \leq x, s^{\prime} \geq x, s, s^{\prime} \in S^{+}$with

$$
\begin{equation*}
f\left(s^{\prime}\right)-f(s)<\epsilon . \tag{4.1}
\end{equation*}
$$

The proof is routine. We show that if S is sequentially continuous then we can replace (4.1) by

$$
\begin{equation*}
f(s)=f\left(s^{\prime}\right) . \tag{4.2}
\end{equation*}
$$

If $f_{M}(x)=\infty$ any s^{\prime} majorizing x will do. If $f_{M}(x)<\infty$, there exist $s_{i} \in S^{+}$with $s_{i} \geq x, f\left(s_{i}\right) \leq f_{M}(x)+1 / i$, $i=1,2, \ldots$. By hypothesis $s^{\prime}=\Lambda_{i=1}^{\infty} s_{i} \in S^{+}$. Since $s^{\prime} \geq \mathrm{x}, \mathrm{f}\left(\mathrm{s}^{\prime}\right) \geq \mathrm{f}_{\mathrm{M}}(\mathrm{x})$. Since $\mathrm{s}^{\prime} \leq \mathrm{s}_{\mathrm{i}}$,

$$
f\left(s^{\prime}\right) \leq f\left(s_{i}\right) \leq f_{M}(x)+1 / i, \quad i=1,2, \ldots,
$$

and $f\left(s^{\prime}\right)=f_{M}(x)$. A similar argument shows that there exists $\mathrm{s} \leq \mathrm{x}$ with $\mathrm{f}(\mathrm{s})=\mathrm{f}_{\mathrm{m}}(\mathrm{x})$.

THEOREM 4.2. Let S be a iinear sublattice of R. Then in order that $f_{m}=f_{M}$ on T^{+}for every monotone function f on S^{+}it is necessary and sufficient that $T=S^{\prime}$ 。

Proof. By definition f_{m} and f_{M} always coincide on $\mathrm{S}^{+} \mathrm{C} \overline{\mathrm{T}^{+}}$so that the condition is sufficient.

Let $x_{0} \in T^{+}$and define $f(s)=0$ if $s \leq x_{0}, f(s)=1$ otherwise. If $s \leq s^{\prime}$ and $s^{\prime} \leq x_{0}$ then $s \leq s^{\prime} \leq x_{0}$ and $f(s)=f\left(s^{\prime}\right)$. If $f\left(s^{\prime}\right)=1, f(s) \leq f\left(s^{\prime}\right)$ trivially. Thus f satisfies (M1) on S^{+}. If $s_{i} \uparrow_{i=1}^{\infty} s$ then $f\left(s_{i}\right)=0$, $i=1,2, \ldots$ if $f(s)=0$. If $f(s)=1$, then if $f\left(s_{i}\right)=0$, $i=1,2, \ldots, s_{i} \leq x_{0}, V_{i=1}^{\infty} s_{i} \leq x_{0}$ contradicting $V_{i=1}^{\infty} s_{i}=s$. Thus (M2) holds and f is monotone on S^{+}.

$$
\text { If } x_{0} \in S^{\prime}+\text { there exists a sequence }\left\{s_{i}\right\} \text { with }
$$

$s_{i} \uparrow_{i=1}^{\infty} x_{0}$ and

$$
f_{M}\left(x_{0}\right)=f_{m}\left(x_{0}\right)=0
$$

Always

$$
\begin{aligned}
\mathrm{f}_{\mathrm{m}}\left(\mathrm{x}_{0}\right)= & \sup _{\mathrm{s} \leq \mathrm{x}_{0}} \mathrm{f}(\mathrm{~s})=0, \\
& \operatorname{sinf} \quad \mathrm{~s}\left(\mathrm{~s}^{\prime}\right)=1 \\
& \mathrm{~s} \in \mathrm{~S}^{+}
\end{aligned}
$$

showing that the last expression need not coincide with $f_{M}\left(x_{0}\right)$ in $S^{\prime}{ }^{+}$. If $x_{0} \neq S^{\prime^{+}}, f_{M}\left(x_{0}\right)=1 \neq f_{m}\left(x_{0}\right)$ for the f determined by this x_{0}. Thus the condition is necessary.

THEOREM 4.3. Let S be a linear sublattice of R.
Then in order that every monotone function f on S^{+}extend to a monotone function f_{m} on T^{+}it is necessary and sufficient that $x_{i} \in T^{+}, s \in S^{+}, x_{i} \uparrow_{i=1}^{\infty} s$ imply the existence of a sequence $s_{j} \in S^{+}, \quad s_{j} \uparrow_{j=1}^{\infty} s$ with each s_{j} majorized by some x_{i}.

Proof. Sufficiency. For $\mathbf{x}, \mathrm{x}_{\mathrm{i}}$ in T^{+}assume that $x_{i} \uparrow_{i=1}^{\infty} x$. First assume that $f_{m}(x)<\infty$. There then exists $s \in S^{+}, s \geq x$, with

$$
\mathrm{f}_{\mathrm{m}}(\mathrm{x}) \leq \mathrm{f}(\mathrm{~s})+\epsilon, \epsilon>0 \text { arbitrary } .
$$

Now $x_{i}^{\prime}=x_{i} \wedge s \in T^{+}$and $x_{i}^{\prime} \uparrow_{i=1}^{\infty} s$. By hypothesis there exists $s_{j} \uparrow_{j=1}^{\infty} s$ with each s_{j} majorized by some x_{i}^{\prime}. Thus

$$
f\left(s_{j}\right) \leq f_{m}\left(x_{i}^{\prime}\right) \leq \lim _{i \rightarrow \infty} f_{m}\left(x_{i}^{\prime}\right),
$$

$$
\begin{aligned}
& f(s)=\lim _{j \rightarrow \infty} f\left(s_{j}\right) \leq \lim _{i \rightarrow \infty} f_{m}\left(x_{i}^{\prime}\right) \\
& f_{m}(x) \leq f(s)+\epsilon \leq \lim _{i \rightarrow \infty} f_{m}\left(x_{i}^{\prime}\right)+\epsilon \leq \lim _{i \rightarrow \infty} f\left(x_{i}\right)+\varepsilon .
\end{aligned}
$$

By (M1) $f_{m}(x) \geq \lim _{i \rightarrow \infty} f_{m}\left(x_{i}\right)$. Since \in is arbitrary

$$
f_{m}\left(x_{i}\right) \uparrow_{i=1}^{\infty} f_{m}(x)
$$

and f_{m} is monotone on T^{+}. A similar argument applies if $f_{m}(x)=+\infty$.

Necessity. To prove necessity we show that if the condition is violated we can construct a monotone function on S^{+}with f_{m} not monotone. Suppose that there exists $s_{0} \in S^{+}$and $x_{i} \in T^{+}$, $x_{i} \uparrow_{i=1}^{\infty} s_{0}$ and that there exists no sequence $\left\{s_{i}\right\}$, $s_{i} \uparrow_{i=1}^{\infty} s_{0}$ with each s_{i} majorized by some X_{i}.

Define $f(s)=0$ if $s \leq x_{i}$ for some i (i.e. if s is majorized by some x_{i}) or if $s<s_{0}$ and there exists $s_{i} \uparrow_{i=1}^{\infty} s$ with each s_{i} majorized by some x_{i}. Define $f(s)=1$ elsewhere in S^{+}.

We first verify that f is a monotone function on S^{+}. Assume that $s \leq s^{\prime}$. Then $f(s) \leq f\left(s^{\prime}\right)$ trivially if $f\left(s^{\prime}\right)=1$. If $f\left(s^{\prime}\right)=0$ and $s^{\prime} \leq x_{i}, s \leq s^{\prime} \leq x_{i}$ and $f(s)=0$. If $f\left(s^{\prime}\right)=0$ and $s_{i} \uparrow_{i=1}^{\infty} s$, with each s_{i} ' majorized by some $\mathbf{x}_{j}, s_{i} \wedge \mathbf{s} \in S^{+}$, $i=1,2, \ldots, s_{i} \wedge s \uparrow_{i=1}^{\infty} s$, with each $s_{i} \wedge s$ majorized by some x_{j} and again $f(s)=0$. Thus (M1) holds for f on S^{+}.

Assume that $s_{i} \uparrow_{i=1}^{\infty} s$. Then $f\left(s_{i}\right) \uparrow_{i=1}^{\infty} f(s)$ trivially if
$f(s)=0$. Assume that $s=s_{0}$. If each $x_{i}=V_{j=1}^{\infty} s_{i j}$ with each $s_{i j}$ majorized by some $x_{i}, s_{0}=V_{i, j} s_{i j}$ and the $s_{i j}$ can be combined to form a sequence increasing to s_{0} with each term majorized by some x_{i}, giving a contradiction. Thus for some $i, f\left(s_{i}\right)=1$ and, by (M1), $f\left(s_{i}\right) \uparrow_{i=1}^{\infty} f\left(s_{0}\right)$.

$$
\text { Assume } s \neq s_{0}, s V s_{0}>s_{0} . \quad \text { If all } f\left(s_{i}\right)=0
$$

$V_{i=1}^{\infty} s_{i}=s \leq s_{0}$ contrary to hypothesis. Thus in this case $\lim _{i} f\left(s_{i}\right)=1=f(s)$. Finally assume $s<s_{0}$. If for each i there exists $s_{i j}$ with $V_{j=1}^{\infty} s_{i j}=s_{i}$ and each $s_{i j}$ is majorized by some x_{k}, then $f(s)=0$. If this is false for some i, $f(s)=\lim _{i} f\left(s_{i}\right)=1$. Thus (M2) is satisfied and f is monotone on S^{+}.

Now in $T^{+}, f_{m}\left(s_{0}\right)=f\left(s_{0}\right)=1, \quad f_{m}\left(x_{i}\right)=\sup _{s \leq x_{i}} f(s)=0$, $s \in S^{+}$
$\mathrm{i}=1,2, \ldots$ showing that f_{m} is not montane on T^{+}.
We observe that when S is semi-normal the condition of Theorem 4. 3. is trivially satisfied since each X_{i} is then necessarily in S^{+}.

Suppose that f is monotone on S^{+}, f_{m} monotone on T^{+}. Let \dot{f}_{m} and \dot{f}_{M} denote the minimum and maximum extensions of f_{m} and f_{M} respectively from T^{+}to R^{+}. Then \dot{f}_{m} and \dot{f}_{M} are monotone on R^{+}and in R^{+},

$$
\begin{aligned}
\dot{f}_{m}(x)= & \sup _{y \leq x} f_{m}(y)=\sup _{s \leq x} f(s) ; \\
& s \in S^{+}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{f}_{M}(s)=\lim _{i \rightarrow \infty} f\left(s_{i}\right) \text { if there exist } s_{i} \in S, \quad s_{i} \uparrow_{i=1}^{\infty} x ; \\
& =\inf f(s) \text {, if no such sequence exists and } x \\
& s \geq x \quad \text { is majorized in } S^{+} \text {; } \\
& s \in S^{+} \\
& =+\infty \text { if there is no } s \in S^{+}, s \geq x \text { and no sequence } \\
& s_{i} \uparrow_{i=1}^{\infty} x, \quad s_{i} \in S^{+} .
\end{aligned}
$$

For every monotone extension $f e$ from S^{+}to R^{+}and all $x \in R^{+}$,

$$
\dot{f}_{\mathrm{m}}(\mathrm{~s}) \leq \mathrm{f}_{\mathrm{e}}(\mathrm{x}) \leq \dot{\mathrm{f}}_{\mathrm{M}}(\mathrm{x}) .
$$

Addendum. The referee has pointed out that the third sentence on page 227 in [4] is incorrect without the additional hypothesis that $f(0)=0$ and that $p_{\lambda} \in R^{+}, \lambda \in \Lambda$ should be added to the hypotheses of Lemma 4.2.

REFERENCES

1. G. Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, Vol. XXV, New York, 1948.
2. N. Lourbaki, Éléments de Mathématique, Fasc. XIII, "Intégration", Chaps. I-IV (Paris, 1952).
3. H.W. Ellis and I. Halperin, Function Spaces determined by a levelling length function, Can. J. Math., 5 (1953), 576-592.
4. H.W. Ellis and Hidegorô Nakano, "Monotone functions on linear lattices", Can. J. Math., 15 (1963), 226-236.

Summer Research Institute, Queen's University, Kingston

[^0]: * $a_{i} \uparrow_{i=1}^{\infty}$ means $a_{i} \leq a_{2} \leq \ldots ; a_{i} \uparrow_{i=1}^{\infty}$ a implies in addition that $a=V_{i=1}^{\infty} a_{i}$

