REMARKS ON A PAPER BY S. TROTT

W. O. J. Moser

(received July 25, 1963)

There are several statements in [3] which require clarification.

Theorem 1 [3, p. 246] states that $U_{3}=U_{2} U_{4} U_{2}^{-1} U_{4} U_{2} U_{4}$. In fact this is (essentially) the relation $O=P U P U^{-1} P U$ given in [1, p. 91, (7.35)]. To see this we note that $O=U_{3}, P=U_{4}$, $\mathrm{U}=\mathrm{U}_{4} \mathrm{U}_{2} \mathrm{U}_{4}$ (as explained in [1, p. 88]); since $\mathrm{U}_{4}^{2}=\mathrm{E}$,
$U_{3}=O=P U P U^{-1} P U=U_{4} \cdot U_{4} U_{2} U_{4} \cdot U_{4} \cdot U_{4} U_{2}^{-1} U_{4} \cdot U_{4} \cdot U_{4} U_{2} U_{4}$

$$
=\mathrm{U}_{2} \mathrm{U}_{4} \mathrm{U}_{2}^{-1} \mathrm{U}_{4} \mathrm{U}_{2} \mathrm{U}_{4}
$$

In [3, p. 245] there is the statement: "It has been shown by D. Beldin (Thesis, Reed College, 1957) that M_{n} is a 2-generator group."

There is the implication that this had not been established earlier. In fact, B. Neumann [2, pp. 375-378] showed that M_{n} is generated by

Canad. Math. Bull. vol. 7, no. 1, January 1964
when n is odd, $n>3$; and M_{n} is generated by R and $Q=-S$ when n is even, $n>3$. Trott's generators

$$
\mathrm{K}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & \\
0 & 0 & 1 & 0 & \\
0 & 0 & 0 & 1 & \\
& & \left.\begin{array}{llllll}
& & & \\
0 & 0 & 0 & 0 & \ldots & 1 \\
(-1)^{n} & 0 & 0 & 0 & \ldots & 0
\end{array}\right)
\end{array}\right)
$$

(Trott uses the symbol U instead of K, but this could be confused with Neumann's U, which is different) are "simpler" than Neumann's; but Neumann gave a set of defining relations using R and S, whereas Trott did not.

In terms of the generators

$$
R_{1}=U_{1}=U_{4}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { and } U_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text {, Trott [3, p. 252] }
$$

obtained, for M_{2}, the defining relations

$$
\begin{equation*}
R_{1}^{2}=\left(U_{1}^{-1} R_{1} U_{2} R_{1}\right)^{6}=E, \quad U_{2}^{-1} R_{1} U_{2} R_{1} U_{2}^{-1}=R_{1} U_{2} R_{1} U_{2}^{-1} R_{1} U_{2} R_{1}, \tag{1}
\end{equation*}
$$

by showing that (1) and

$$
R_{2}=R_{1} U_{2}^{-1} R_{1} U_{2} R_{1}, \quad R=U_{2} R_{2}
$$

are together equivalent to 7.21 [1, p. 85] (which define M_{2}) and

$$
R_{1}=R_{1}, \quad U_{2}=R_{3} R_{2} .
$$

It should be pointed out that (1) is immediately seen to be equivalent to the relations
(2) $\left(R U_{2}\right)^{2}=\left(R^{3} U_{2}^{2}\right)^{2}=\left(R^{2} U_{2}^{2}\right)^{6}=E$
which define $M_{2}[1, p .88]$; in fact (1) is obtained from (2) by letting $R_{1}=R U_{2}$.

REFERENCES

1. H.S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups. Springer, Berlin, 1957.
2. B.H. Neumann, Automorphismengruppe der freien Gruppen. Math. Ann. 107(1933) pp. 367-386.
3. S. M. Trott, A pair of generators for the unimodular group. Can. Math. Bull. 5(1962) pp. 245-252.

University of Manitoba

