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Abstract

We give several general implicit function and closed graph theorems for set-valued functions. Let Z be a
normed space, X, Y metric spaces with X complete. Let / : X =t Z, F : X xY =t Zbe multifunctions
with zo e f(x0) n F(JCO, yo) such that / is open at (jr0, yo) and / 'approximates' F in an appropriate
sense. Suppose that f~x(z) is closed, F(x, y) is compact for each x, y and z and suppose that F(xa, •)
is lower semi-continuous at yo. Then F(-, y) is of closed graph 'locally', is open at JCO, and there exists a
function x(-) with x(y) -*• x0 for y -*• y0 such that z0 € F(x(y), (y)) for all y near y0. A more general
form dealing with the non-linear rate situation is also established.

1991 Mathematics subject classification (Amer. Math. Soc): primary 46A30; secondary 58C15.
Keywords and phrases: Multifunction, implicit function, open mapping theorem, implicit function the-
orem.

1. Introduction

Because of its importance in analysis as well as in applications, the Banach open
mapping theorem has been studied and generalized by many authors in various as-
pects ever since its inception of functional analysis. Liusternik (cf. [11, 12]) gave
open mapping and implicit function theorems for C1- functions; versions for some
special classes of multifunctions such as convex processes began to appear in the
mid-seventies ([13,18,19,22]) as well as their latter extensions, for example, in [1-6,
9,10,14, 16, 17, 20,23, 24] and more recently in [21].

In this paper, we study multifunctions / : X =3 Z, F : X 14 Z or, in the latter part,
F : XxY =3 Z,whereX, Y are metric spaces and Z is a normed vector space. Leta,<5
be functions from (0, oo) into itself with S increasing and lim^ooKO = 0. We define
a type of open mapping property (called (8, /)-open in Definition 3.1) for / relating to
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the validity of B[z, 8(t)] c f(B[x, t]) for balls where (x, z) 6 / . Since 8 in general is
non-linear, this new open mapping property is more general than the cases considered
by many researchers whose conditions entail the Lipschitz requirements of the inverse
/ " ' . Nevertheless we show in Section 3 that our weaker assumptions still enable us
to have interesting results in connection with the closed graph theorems about / itself
or F provided that F can be 'a-approximated' by / . The a-approximation is defined
in Definition 3.2. If / , F are single-valued and a{t) = It for constant / e (0, oo), this
property says nothing but / — F is a Lipschitz function with modulus /. Suppose that
a < 8 in the sense that there exists a decreasing sequence (tn) such that a (tn) < 8 (tn+l)
for all n (for example this is the case if a = (lt)p, 8 = (ct)p with 0 < / < c and
p > 0, or a = (lt)q, 8 = (ct)p with q > p > 0 and /, c > 0). We establish in
Section 4 that F is an open mapping when / is (8(t), f)-open and a-approximates
F under some reasonable conditions (such as F is of compact-values). This result is
then applied to prove a general implicit function theorem (Theorem 4.3) dealing with,
in general, non-linear and not-one-one cases. Specializing to the case when / , F are
single-valued, / is 1-1 and both a, 8 are linear then our implicit function result is a
mild extension of a recent result of Robinson [21].

Our method is based on the open mapping theorem recently obtained by Chou [6]
while the main tool in [21] is a fixed point principle. In Theorem 2.1 we give a version
of this theorem applicable even to functions whose graphs are not necessarily closed.
This new version is needed in our study in Section 4 for implicit function theorems.
Section 3 is devoted to some results on closed graphs of multifunctions.

For simplicity of notation we use the same letter d to denote the given metrics for
X and Y; and likewise for p > 0, B[a, p] denotes the closed ball (with center a and
radius p) in X, YorZ — depending on a being an element of X, Y or Z. If A is a set,
then B[A, p] is the union of all B[a, p] as a runs over all of A. We sometimes write
Ap for the set B[A, p] and A" := {x : B[x, p] c A}. A multifunction / : X =t Z is
identified with its graph

f:={(x,z)eXxZ:zef(x)}.

Dom(/) denotes the set {x € X :3z such that z e /(*)}•
We denote by / " ' c Z x X the multifunction given by

f-l:={(z,x)eZxX:(x,z)ef}.

For a subset A of X, we denote by f(A) the set \^jxeA f(x).

2. Controlled triples and open mappings

Let (8n), (tn) and (an) be sequences of positive real numbers such that 8n+1 < 8n

for each n and lim,,-,.^ an = 0. We call (8n, tn, an) a controlled triple if 0 < an <
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<$n+i < <$„ for each n and Tn := E°ln h < +00.
Part (ii) of the following lemma is easy to verify while (i) follows immediately

from (ii).

LEMMA 2.1. (i) Let 0 < r ; 0 < / < c and q = l/c. Then (8n, tn, an) is a
controlled triple where tn := xqn, Sn := ctn andan := ltn.

(ii) Let 8, a be functions on (0, oo) into itself with 8 increasing and lim,^.o ot(t) —
0. Let (tn) be a decreasing sequence of positive real numbers such that
E ~ i ti < +°° and <*('«) < Htn+i)for each n. Then (8(tn), tn, a(tn)) is a
controlled triple.

We shall use the notation a < 8 if a, 8 satisfy the conditions of Lemma 2.1 (ii).

EXAMPLE 2.1. Let 0 < / < c and p > 0. Let a(t) = (lt)p and 8(t) = (ct)p. Then
for tn — (l/c)", one has a(tn) < <5(Wi) f°r alln- Consequently a < 8.

EXAMPLE 2.2. Let 0 < /, c and q > p > 0. Let a(t) = (lt)q and 8(t) = (ct)p.
Then for tn = k" with any positive constant k < I, one has a{tn) < 8(tn+i) for all
large n. Consequently a -< 8.

The following result slightly extends that in [3] and [6], and encompasses many
'auto-open' mapping results, for example [5, 10, 15 and 23]; see [6] for details.

Let E, G be metric spaces, and N, g, F c E x G such that ~g c F.

THEOREM 2.1. Let s > 0,

Ns := {(x, v) G E x G : 3(a, b) e N such that d(x, a) < s, d(y, b) < s}

and (8n, tn,an) be a controlled triple such that

B[y,8j]£B[g(B[x,tj]),aj] Wj

whenever (x, y) € g fl Nj. Suppose that Dom(g) is pre-complete in E in the sense
that any Cauchy sequence (xn) in Dom(g) has a limit in E. Ifs > 2<5,, 7), then

(2.1) B[y, 8t] c F(B[x, Tt]) whenever (x, y) € g n N.

PROOF. Let (x, y) G g n N, and z e B[y, 5,-]. Then there exist xx € B[x, ?,] and
yt G g(xi) such that d(z, y^) < or, (< <5,+1). Then (xu y^) e g D Ns so there exist
x2 G B[xu ti+i] and y2 G g(x2) such that d(z, y2) < ai+l (< <5,+2). Inductively, we
have a Cauchy sequence (xn) in Dom(^), say with limit J such that g(xn) 3 yn —> z.
By the assumption that g~ c F, we have (x, z) G F. Clearly J G B[x, Tt] so
z G F(fi[^, 7}]).
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REMARK. Suppose g is of closed graph, and consider i large enough such that

(2.2) s > 48,, 27}.

Let Y denote the set consisting of all y for each of which there exists x such that
(x,y) £ gHN. Let W = Y + B[0, <5,]. By (2.1) we know that W is contained in
the range of g so g~x(w) is non-empty for each w in W. In this situation we have
the following 'continuity property' of the inverse map g~l in terms of the distance
defined by

dist(A, B) = inf [d(a, b) : a e A,b e B).

COROLLARY 1. Let j > i. Then dist^^C^i), ^"'(^2)) < 7} whenever wu w2 e
W andd(w\, w2) < Sj.

PROOF. Let wu w2 6 W with d(w\, w2) < Sj, where j > i. By definition of W
and Y, pick yt € Y and then x e E such that d(wu yi) < <5, and (JC, yt) e g f) N. It
follows from (2.1) that

so wx e g(xi) for some xx e B[x, 7}]. By (2.2) it follows that (*i, wx) € g n Nj/2. In
view of (2.2) again one may apply Theorem 2.1 with s/2, Ns/2 in place of s, N; thus

i,7}])

and so w2 e g(x2) for some x2 G B[xu 7}]. Therefore

d i s t ^ -^u ; , ) , ^ - 1 ^ ) ) < d(xux2) < Tj.

3. Closed Graph Theorems

Throughout we use a, 8 to denote functions on (0, oo) into itself and we suppose
that 8 is increasing and a (0 ->• 0 as t ->• 0. Let {/ c X and K Z .

DEFINITION 3.1. A multifunction / : X z=$ Z is said to be (8(t),t)-open (uni-
formly) with respect to (U, V) if there exists r > 0 such that, for each (x, z) e
fn(Ux V),

(3.1) B[z, 8(0] c / (£ [* , f]), V; e (0, r]

(in this case, we also say that / is (8(t), f)-open with respect to (U, V, t)). If
U = X, V = Z then we simply say / is (8(0,0-open.
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REMARK 1. The above property is hereditary when U x V is replaced by its subset.

REMARK 2. The condition (3.1) of course ensures that / is open at x in the usual
sense.

REMARK 3. Let (8,,, tn, an) be a controlled triple satisfying the conditions of The-
orem 2.1. Take large enough i such that s > 2<5,, 7). For each j > i, define
y(Tj) = Sj+i, and then extend to define a strictly increasing function y : 0&+ —>• K+

whose graph contains the union of the line-segments joining the consecutive points
(Tj, y(Tj)). Note that if? e (7}+1, 7}] then y ( 0 < <5y+1 and it follows from (2.1) that

B[y, y(t)] c B[y, <$,+,] c F(B[x, 7}+1]) c F(fi[x, r])

for all (x, y) e g C\ N. Thus, with the obvious adoption of Definition 3.1 (for g H N
instead of U x V), F is (y (t), f)-open with respect to g n N.

REMARK 4. In [21], Robinson considered the following : Let / be a single-valued
function with / : J^ ->• Z, / ( S ) 2 B[zo» # ] for some /? > 0, and he supposed that

If we let r e (0,7?), fir := fi[z0,/-] and r = (R - r)<%\ then / is (dot,t)-
open with respect to (E, Br, T). In fact let z e B[z, d^t] where t e (0, r] and
(x,z) e / n ( E xBr). Then|z-zo | <dot + r < /Jandsoz = / (x) for some J e S.
Further, by definition of d0,

dod(x,x) < \z-z\ <dot,

proving that x e B[x, t] and hence that B[z, dot] c f(B[x, ?]). The same remark
and its proof are valid even for a multifunction / : E =} Z with do to be defined by

3.2) d0 := inf J ̂ ' ~ ZJ : x, x'(3.2) d0 := inf J ̂ ~ ZJ : x , x' e E, x / JC', z e / (* ) , z' e

Note that if d0 > 0 then / ( x ) and / (x ' ) must be disjoint whenever x ^ x'. Thus,
for single-valued functions, the condition d0 > 0 implies that / i s 1-1. The converse
is not true, for example, / : t —> t3 is open and 1-1 but the corresponding d0 = 0.
Thus this example is not covered by results in [21], but satisfies the following lemma
with 8 : t — • ?3.
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LEMMA 3.1. Let 8 : R+ —> R+ be a strictly increasing function and f : X =* Z
with / ( £ ) 2 B[z0, R] where E c X, z0 € Z and R > 0.

S(/, E) := inf I —j-—^— : each xt 6 E, z, e /(x,) and x{ # x21.

Suppose c := <$(/, E) > 0. T/je« / is (c8(t), t)-open with respect to (E, Br, x)where
r € (0, R), Br := B[z0, r] and r = S^c'^R - r).

EXAMPLE 3.1. Let/? > 1. Let/(f) = (sgn /)|f|pforallr e R, and 8 the restriction
of / to R+. Let X = Z = E = R. Then 8(f, E) = {\/2)p-\ Indeed, by convexity,
[(x + t)/2\p < {xp + t»)/2, Vx, t > 0 and it follows that

,xp + tp | 1
inf , , :x,t>0\ = -—.

Also, since ?p + (1 - f)p < 1, Vr e (0,1), it follows that

{ xp — tp 1
:x > t > 0 | = 1.( 0 J

Consequently

xp — tp 1
:x > t > 0 |

(x - 0" J

{ x t 1 [ xp A-tp

:JC >^ > Of A inf {—-— : x, ? > 0
(xt)p J l(x + 0 p

{ xp — tp 1
:JC >^ > Of

(x-t)p J

• I,
= mm{1, - I2P

THEOREM 3.1. Suppose f : X ^ Z is (8(t), t)-open. Then f is of closed graph if
and only if f~l(z) is closed for all z e Z.

The necessity part is easy to verify while the sufficiency part follows from the
following theorem (applied toll = X and V = Z).

THEOREM 3.2. Suppose f : X =1 Z is (8(t), t)-open with respect to U xV, and
that f~l(z) is closed for all z € V. Then the closure of the restriction f\vxv of f is
contained in f.

PROOF. Let (x, z) be the limit of a sequence (xn, zn) e / D {U x V). Then z eV.
Take r > 0 such that (3.1) in Definition 3.1 holds. Consider tk of the form tk — \/k
with positive integers k, large enough so that tk < r. Take a strictly increasing
sequence nk of positive integers such that d (znk,T) < 8(tk). Then it follows from (3.1)
that

zeB[znk,8(tk)]cf(B[xnt,tk])
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and so z e /(£*) for some %k e B[xnt, tk]. Passing to the limit in £t € /~'(z), we
have J e /~'(z), that is, (JC, z) e / .

REMARK. There are simple examples of (<5(0> O-open mappings with non-closed
graphs.

Let, as before, / : X =t Z, F : X =* Z. Let U c X, and V, Vf c Z. Recall that
a : K+ —• K+ with a (0 -> 0 when t - • 0.

DEFINITION 3.2. / is said to a-approximate (innerly) F with respect to (£/, V, V-0
if there exists r > 0 such that for each x € U and zF e F(x) D V there exists
ẑ^ € /(JC) n V7 with the property

(*) /(*') - zf c B[F(JC') - zF; a(t)], Vd(x',x) < t < r.

If V — Vf then we simply say that / a-approximates F with respect to (U, V).

REMARK 1. This property is hereditary if U is replaced by its subset.

REMARK 2. If / , F are single-valued then (*) can be rewritten as

I/CO - F(x') - [f(x) - F(x)]\ < a(r), W(x\ x) < t < x.

So if V = F(U), Vs = f(U) and a(t) is linear: a{t) = It, Vf with some constant
/ then this simply is equivalent to: / — F is Lipschitz (with modulus / on the r-
neighbourhood of U).

REMARK 3. For any / : X =i Z and K c Z, let

F(x) = f{x) + K, Vx e X.

Then / a-approximates F with respect to (£/, V, V—K) for any a and UxV C XxZ.

The following theorem is clearly a special case of Theorem 3.4.

THEOREM 3.3. Suppose that Dom(F) c Dom(/) and

(i) f is of closed graph,
(ii) / a-approximates F ithat is, with respect to iX, Z)),

(iii) Fix) is compact for all x e X.

Then F is of closed graph.

THEOREM 3.4. Let U c X and V, Vf c Z. Suppose that Dom(F) c Dom(/)
and
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(i) The closure of the restriction of f to U x Vf is contained in f,
(ii) / a-approximates F with respect to (U, V, Vf),

(iii) F(x) is compact for all x e U.

Then the closure of the restriction F\UxVofF toUxV is contained in F. Consequently
F\UxV is closed provided that U and V are closed.

PROOF. By (ii), take T > 0 so that the situation in Definition 3.2 holds. Let (x, z) be
the limit of a sequence (xn, z

F) e F D (U x V), Then xn, x e Dom(/), and moreover
we may assume that d(x, xn) < x for each n, hence there exists z{ e f(xn) D Vf such
that

(3.3) f(x) -zf
nQB [F(x) - zF

n\ a(d(x, *„))].

Pick z e / (x) , and then take £„ e F(x) such that

(3.4) \z - z{ - (|n - zF
n)\ < a(d(x, xn)).

Since F(x) is compact by (iii), we may suppose that |„ -*• !• for some £ € F(J). It
follows by passing to the limit in (3.4) that z{ ->• z — % + z. Thus (x, z — % + z) is
the limit of (xB, z/) € / D {U x V^) and it follows from (i) that z - | + z € /(3f).
Thus, by (3.3), (3.4) continues to hold if z is replaced by z — £ + z. Comparing this
new inequality with (3.4) we see that — £ + z = 0; hence z = £ 6

THEOREM 3.4* L c / f f c X . K Z . V ^ c Z fo? doW sets, and U = W n
f~l(yf). Then F\UxV is closed if(i), (ii) a«rf (iii) of Theorem 3.4 are satisfied, and
Dom(F) c Dom(/).

PROOF. The same proof works: if (x, z) e F n ({/ x V) then x e U c W; also
z - | + z = limn^oo z/ e W = V/ and it follows from z - $ + z e / (x) that
x G /"1(V/ /) . Therefore x e U and consequently (x, z) e F n (f/ x V)

REMARK. {/ is not necessarily closed in Theorem 3.4*, as / is not assumed con-
tinuous.

Combining Theorems 3.2, 3.4 and 3.4*, we have

THEOREM 3.5. Suppose that Dom(F) c Dom(/) and

(i) / is (8(t), t)-open with respect to (U, Vf);
(ii) / a-approximates F with respect to (U, V, Vf);

(iii) f~l(z) is closed for each z € Vf;
(iv) F(x) is compact for each x e U.

Suppose further that either (a) U, V are also closed or (b) V is closed and U =
f~l(Vf) fl W for some closed sets W and Vf. Then F\UxV is of closed graph.
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[9] Closed graph theorems 137

4. Open mapping and implicit functions

Let U, V, Vf, a, 8 be as at the beginning of the preceeding section. We suppose
further that U is precomplete in X. Let / : X =4 Z, F : X =t Z. We suppose
throughout this section that Dom(F) c Dom(F). To prepare the main results, we
begin with:

THEOREM 4.1. Suppose that

(i) / is (8(t), t)-open with respect to (U, Vf);
(ii) / a-approximates F with respect to (U, V, Vf).

Then we have

(4.1) B[z, 8(t)] c B[F(B[x, /]); «(*)], Vf e (0, r]

whenever x e U and z e F(x) D V.

PROOF. By (i) and (ii), we may take the same x > 0 in Definitions 3.1 and 3.2. Let
x e U, zF e F(x) n V and t e (0, r] . By (ii), there exists zf e Vf n / (x) such that

/(fi[x, r]) - zf c fi [F(fl[jr, /]) - zF- « ( 0 ] , Vr G (0, T]

By (i), we also have, for this (x, zf) in / n (U x V/), that

B ^ . W l c / ^ t J t , / ] ) , Vre (0 , r ] .

Hence

S[0, «(r)] c /(B[x, f]) - z / c B [F(B[x, t]) - zF; «(?)],

that is,

B[zF, S(t)] C S[F(fi[x, r]); «(/)], Vf e (0, T],

proving (4.1).

For the remainder of this paper we assume that the function a, S satisfy an additional
requirement a -< S, namely that there exists a decreasing sequence (tn) of positive
real numbers such that ^2tn < +oo and a{tn) < S(tn+1) for each n. There are
an abundance of examples of such or, S, as explained in Section 2. Recall that, for
any set N in a metric space and s > 0, Ns denotes the set {x : B[x, s] c N} and
Ns:=B[N,s].
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THEOREM 4.2. In additon to the assumptions (i), (ii) of Theorem 4.1 with a < 8,
we suppose further that

(iii) /~'(z) is closed for each z e Vf,
(iv) F(x) is compact for each x e U.

Let s > 0. Then, for all (x, z) e F n (f/3i x V3s),

(4.2) B[z, *(*„)] c F(B[JC, TJ)

whenever n is large enough that a(tn), Tn,28{tn) < min{s,x), where Tn := Yl'jLn h-

PROOF. We suppose without loss of generality that x < s and tn e (0, T] for all
n (take smaller x in (i), (ii) and delete finitely many terms of (tn), if necessary). By
Theorem 4.1, for each (x, z) e (U x V) n F, one has

(4.3) B[z; 8(tn)] c B[F(fl[jc, ?„]); «(*„)] Vn.

Henceforth we consider « large enough in the sense already specified. Let g = F\UxV,
and JV := U3s x V3i. Note that if (x, z) e N, n^ then ( x . z j e ^ x V2j and satisfies
(4.3). Consequently

(4.3*) B[z; 8(tn)] c B[g(B[jc, ?„]); «(*„)].

Indeed, i f f is from the left member of (4.3*) then, by (4.3), |£ - f| < a(rn) < s for
some § e F(/j) and some rj e B[x; rB]. Hence

v-H\ < v-n + it - r i <SM+s<2s.

Therefore § e z + B[0,2s] c V since z e f . Similarly r] eU. This means that the
relations £ € F(rj) and § e ^(?j) are the same, and so (4.3*) follows from (4.3). Now,
since by Theorem 3.4, the closure of g is contained in F, we apply Theorem 2.1 to
conclude that (4.2) holds thanks to (4.3*).

Local Theory We shall consider multifunctions F : X x Y =} Z and / : X =£ Z.
For y € Y we use Fy to denote the multifunction F(-, y). Let (x0, yo) € X x Y,
and z0 6 F(x0, yo)- Let (/ be a neighbourhood of x0. We suppose further that U
is precomplete in X. Let V be a neighbourhood of z0. The following result shows
the existence of an implicit function for z0 e F(x(-), •) near y0 if F(x0, •) is lower
semi-continuous at y0 and if / , Fy satisfy the conditions of the preceeding theorem
for each y near y0.

THEOREM 4.3. Let p > 0, W a < 8. Suppose that

(i) / is (8(t), t)-open with respect to (U, Vf),
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[11] Closed graph theorems 139

(ii) / a-approximates Fy with respect to (U, V, Vf)for each y e B[y0; p],
(iii) f~l(z) is closed for each z e W,
(iv) F(x, y) is compact for each x e U and y e B[y0, p],
(v) F(x0, •) is lower semi-continuous at y0.

Then there exists a neighbourhood Mofx0,a neighbourhood P ofy0 and a single-
valued function x(-) on P to M such that z0 e F(x(y), y) for all y e P with x(-)
continuous at y0 and x(y0) = x0.

Granting this, we have the following:

COROLLARY 1. Let I, c be constants with 0 < I < c, and a(t) := It, S(t) := ct
(soa < 8 with tn := (l/c)n). Then Theorem 4.3 remains valid if(i), (ii) are replaced
by

(i*) / is (ct, t)-open with respect to (U, Vf),
(ii*) / a-approximates Fy with respect to (U, V, Vf)for each y e B[y0, p].

In view of Lemma 3.1 (and replacing X by E in Theorem 4.3), we also have:

COROLLARY 2. Let a < 8 with strictly increasing 8, and let U be any precomplete
neighbourhood of x0 in the subspace S of X under the relative topology. Let f :
X =t Z,and suppose that / ( S ) 2 B[z0, R]for some R > 0. Let V c B[z0, r] be a
neighbourhood ofz0 with r e (0, R). Let (i), (ii) in Theorem 4.3 be replaced by

c = 8(f, S ) ; = i n f 1 ' ^ ^ : x , x ' e V . x ? x ' , z e f(x),z' e f(x')\ > 0,

(ii**) / ca-approximates Fy with respect to (U, V)for each y G B[y0, p\.

and other assumptions {that is, (iii)—(v) unchanged). Then the conclusions of Theorem
4.3 remain true.

(By Lemma 3.1 and Remark 1 after Definition 3.1, (i**) implied that / is (c8(t), t)-
open with respect to U, V.)

NOTE. In particular we have the following Corollary 3 which was established by
Robinson [21] in the special case when/, F are single-valued, p = l,c = \,a{t) = It
and under a stronger approximation property than (ii**).

COROLLARY 3. Let p > 0, k > 0 and 8(t) = (let)". Let a be

either a(t) = (lt)p, where I is a positive constant with I < k,

or a(t) = tq with q > p.
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Then a < 8 and hence Theorem 4.3 remains true if(i), (ii) are replaced by

(i#) c'-=M{kPd(x'ly:x'x'e E > x * x ' - z e / ( x ) ' z ' e f{x)

(ii**) / ca-approximates Fy with respect to (U, V)for each y e B[y0, p].

PROOF OF THEOREM 4.3. Take the same r > 0 in Definitions 3.1 and 3.2. Take
5 > 0 such that B[x0, 3s] c U; thus x0 e Uis. We may further assume that z0 e V4s.
Take a positive integer n0, large enough so that a(tn), Tn, 25(?„) < min{s, T} for all
n > «0. Let y e B[y0, p]. By Theorem 4.2, we have

(4.4) B [Fy(x0) n V3s; S(tn)] c Fy(B[x0, Tn]), V/z > n0.

By (v), there exists pn > 0 such that

(4.5) F(x0, y) n B[z0, S(tn)] # 0, Vj e B[j0; Pn\.

Do this for each n, and we can arrange that pn | 0 as n —> oo and each pn < p. Note
that B[z0, <$(?„)] c V3j since 5(fn) < s and z0 e V4s. By (4.4) and (4.5) one then has
for each n > n0 that

z0 € flt/^c J) n K3j; S(tn)] c

andsozo e F^^"^ ) ) for some ^"(j) e S[JC0, Tn]. Do this for each n > nQ and define
= *o and x{y) = x"{y) for y with pn+I < d(y, y0) < pn. Then x(y) -+ x0

a s y -^ yo and so clearly x(-) is a function from B[y0, pno] into B[x0, Tno] with the
desired properties.

We end this paper with a simple example. Let h be a discontinuous linear functional
on a Banach space X (say over R); thus it is unbounded on any ball B in X and hence
it maps B onto K. Let g be any function from K onto itself, and / := g o h\ then /
also maps any ball B onto U. and so must be (8(t), 0-open with Z — U., where 5 can
be any monotone function on R+. Let Y = R and F : X x Y ->• R be defined by

TheneachFyisa-approximatedby/(withf/ = X, V = R = Vf) whereat^) :=
because of the elementary inequality

*2l, Vx, ,x2eX.

Therefore, applying Theorem 4.2 with any S such that a -< 8, we see that F is an open
mapping; also one may apply Theorem 4.3 to conclude that there exists an implicit
function for z0 € F(x, y). Similar examples of multifunctions can also be found. We
note further that, our function / is, in general not 1-1 and therefore not covered by
the results in [21].
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