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Sets of special subvarieties of bounded degree

David Urbanik

Abstract

Let f : X → S be a family of smooth projective algebraic varieties over a smooth con-
nected quasi-projective base S, and let V = R2kf∗Z(k) be the integral variation of Hodge
structure coming from degree 2k cohomology it induces. Associated to V one has the
so-called Hodge locus HL(S) ⊂ S, which is a countable union of ‘special’ algebraic sub-
varieties of S parametrizing those fibres of V possessing extra Hodge tensors (and so,
conjecturally, those fibres of f possessing extra algebraic cycles). The special subvarieties
belong to a larger class of so-called weakly special subvarieties, which are subvarieties of
S maximal for their algebraic monodromy groups. For each positive integer d, we give
an algorithm to compute the set of all weakly special subvarieties Z ⊂ S of degree at
most d (with the degree taken relative to a choice of projective compactification S ⊂ S
and very ample line bundle ℒ on S). As a corollary of our algorithm we prove conjec-
tures of Daw–Ren and Daw–Javanpeykar–Kühne on the finiteness of sets of special and
weakly special subvarieties of bounded degree.
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1. Introduction

Suppose that f : X → S is a smooth projective1 morphism of quasi-projective varieties, with
S smooth and connected. We may view f as an algebraic family of projective varieties, where
a point s in the parameter space S gives rise to the projective fibre Xs. A general problem
which encompasses many questions of classical interest is to understand what conditions on s
are imposed by the requirement that Xs (or its Cartesian powers Xs × · · · ×Xs) possess ‘more’
algebraic cycles than a general fibre of f .

Under the Hodge conjecture, this problem can be reformulated in the following manner.
Let V = R2kfan∗ Z(k) be the local system on S whose fibres Vs are naturally identified with
H2k(Xs,Z(k)). Then ℋ = V⊗ 𝒪San is a vector bundle on S, whose fibres may be naturally
identified with H2k(Xs,C). Classical Hodge theory endows ℋ with a decreasing filtration F •

by vector subbundles, making the data of (V, F •) into a so-called variation of Hodge structure,
and the Hodge conjecture then predicts that the classes in ℋs induced by algebraic cycles are
exactly those in VQ,s ∩ F 0. We may thus reformulate our question as: what conditions on s are
imposed by the requirement that the fibres VQ,s (or their tensor powers) have more classes lying
in F 0 than at a general point of S?

In this setting, the locus in S determined by this condition is called the Hodge locus, com-
monly denoted HL(S) ⊂ S. It is known by a result of [CDK94] to be a countable union of
closed algebraic subvarieties of S. The individual irreducible components of HL(S) are com-
monly referred to as (maximal proper) special subvarieties in view of the relationship between
such components and the notion of special subvariety arising in the theory of Shimura varieties.
More precisely, we may describe a collection of ‘special’ subvarieties of S associated to V in the
following manner.

Definition 1.1. Given a (pure integral weight zero) Hodge structure (V, F •), we may define
the Mumford–Tate group of (V, F •) to be the stabilizer in GL(VQ) of all Hodge tensors associated
to (V, F •), that is, the stabilizer of the rational tensors

Hg(V ) =
( ⊕
i,j�0

V ⊗i
Q ⊗ (V ∗

Q)⊗j
)
∩ F 0.

Given a subvariety Z ⊂ S we define the Mumford–Tate group MT(Z) of Z to be the
Mumford–Tate group of (Vs, F

•
s ) at a generic point s of Z, that is, at a point s ∈ Z which

lies outside of HL(Z). We note that MT(Z) may be realized inside any fibre of the variation V
∣∣
Z

by parallel translation.

1 Here, and throughout, we interpret this term in the sense of [Har13], that is, there exists an embedding X ↪→ Pn
S

of S-schemes for some n.
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Definition 1.2. A special subvariety Y ⊂ S is a geometrically irreducible algebraic subvariety
such that the only geometrically irreducible variety Z with Y ⊂ Z ⊂ S and satisfying MT(Y ) =
MT(Z) is Z = Y . We describe this by saying that Y is maximal for its Mumford–Tate group
(cf. [KO21, Definition 1.2]).

The special subvarieties belong to a larger class of subvarieties of S which are termed ‘weakly
special’, defined in an analogous manner as follows.

Definition 1.3. Given a variety Z ⊂ S, its algebraic monodromy group is the identity compo-
nent of the Zariski closure of the monodromy representation associated to V

∣∣
Znor , where Znor → Z

is the normalization.

Definition 1.4. A weakly special subvariety Z ⊂ S is a geometrically irreducible algebraic sub-
variety maximal under inclusion for its algebraic monodromy group (cf. [KO21, Corollary 3.14]).

It is known that the algebraic monodromy group of a variety Z is always a Q-normal subgroup
of its Mumford–Tate group by a result of André and Deligne [Yve92], and that any special
subvariety of S is in fact weakly special [KO21, Definition 3.1]. Thus, studying the set of weakly
special subvarieties is a generalization of the problem of studying the set of special subvarieties.

Our central result, from which the rest of the results in this paper will follow, is the following.

Definition 1.5. Given a variation of integral Hodge structure V, we say that V is polarizable
if there exists a map Q : V⊗ V→ Z of local systems which fibrewise induces a polarization on
the Hodge structure Vs for each s.

Theorem 1.6. Let (V, F •) be a polarizable variation of Hodge structure on a smooth quasi-
projective algebraic variety S, and fix a projective compactification S ⊂ S with ample line bundle
ℒ on S. Given a subvariety Z ⊂ S, write degZ for the degree of its closure Z in S with respect
to ℒ. Then for any positive integer d, there exists a terminating algorithm which computes the
set of all weakly special subvarieties of S of degree at most d.

An immediate question that is raised by the statement of Theorem 1.6 is how one plans to
computationally represent the data (V, F •). In the geometric setting, for instance, this repre-
sentation will be in terms of the algebraic de Rham cohomology and the algebraic incarnation
of the Gauss–Manin connection. We elaborate on the computational model in which we work in
§ 2, but for now let us describe how we interpret the claim that the algorithm ‘computes the set
of all weakly special subvarieties’. As this is an uncountable set (for instance, when V induces
a quasi-finite period map, every point of S is itself a zero-dimensional weakly special subvari-
ety), we need to provide a finitary description of it. What we actually do is consider the Hilbert
scheme Hilb(S) and the union Cd of the finitely many components parametrizing (geometrically
irreducible, reduced) subvarieties of S of degree at most d. We then consider the locus 𝒲d ⊂ Cd
consisting of points [Z] such that Z = S ∩ Z is weakly special. We prove the following result.

Theorem 1.7. The locus 𝒲d is a constructible algebraic subset of Cd.

We then interpret the claim of Theorem 1.6 as saying that there exists an algorithm that
outputs algebraic equations defining the locus 𝒲d inside Cd.

Remark. Here, and throughout the paper, the choice to frame the results and ideas in terms
of Hilbert schemes rather than Chow varieties makes no difference; it is the author’s personal
experience that references for relevant facts about Hilbert schemes are easier to locate in the
literature, making it easier to develop the ideas for the former. However, in actual applications
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one may wish to use the latter, as the extra information provided by the Hilbert scheme plays
no role.

Remark. Unfortunately although we are able to prove that the algorithm of Theorem 1.6 will
terminate, we are unable to give any bound on its runtime. The fundamental issue will be that we
have no a priori way of bounding the ‘differential order’ r0 to which one has to compute certain
‘differential constraints’ characterizing weakly special loci in the execution of the algorithm, and
indeed for each choice of r0 one can find an S and variation V where the order r0 is insufficient;
for more see our brief overview of the main ideas in § 1.2.

1.1 Applications
1.1.1 Computing rigid specials. Ultimately, one of our principal goals is to understand spe-

cial subvarieties, not necessarily weakly special ones, so let us take some time to describe how
information about special subvarieties can be gleaned from an algebraic description of the locus
𝒲d. Certainly some information is lost: in the case of a quasi-finite period map each point of
S is weakly special, and so we learn nothing about special points of S this way. On the other
hand, positive-dimensional2 special subvarieties need not lie inside families of weakly specials;
those special subvarieties which do not are referred to as ‘weakly non-factor’ in [KOU20], and
for instance any positive-dimensional component of the Hodge locus of the universal family of
degree m hypersurfaces in Pn+1 is of this type.3

We see that the weakly non-factor special subvarieties all correspond to isolated points of
𝒲d, leading to the following refinement of Theorem 1.6.

Corollary 1.8. In the situation of Theorem 1.6, there exists an algorithm which computes a
finite set 𝒮 ⊂𝒲d containing all the weakly non-factor special subvarieties of degree at most d.

The set 𝒮 referred to by Corollary 1.8 can simply be taken to be the set of isolated points
in 𝒲d. The reason why not all such points correspond to weakly non-factor specials is because
families of weakly specials need not be flat, and so points in 𝒲d can be isolated for reasons
unrelated to Hodge theory. Identifying which of the points of 𝒮 correspond to weakly non-factor
special subvarieties requires further analysis, which appears difficult to carry out in full generality.
The fundamental issue is that a weakly special subvariety in 𝒮 can arise as the limit of a family
of weakly specials inside 𝒲d′ , with d′ > d, and one has no way of bounding d′ in as a function of
d in general.

1.1.2 Conjectures on (weakly) special degrees. A second application of our algorithm, and of
Theorem 1.7 in particular, is to two conjectures on the degrees of special subvarieties by Daw–Ren
and Daw–Javanpeykar–Kühne. Fix a point s ∈ S outside of HL(S), let MT(S) ⊂ GL(VQ,s) be
the Mumford–Tate group of Vs, and denote by ΓS ⊂ GL(Vs) the image of π1(S, s). For each
subvariety Z ⊂ S, the algebraic monodromy group HZ of Z defines a ΓS-conjugacy class of
semisimple subgroup of MT(S) by parallel translation. A conjecture of Daw and Ren is then
contained in the following statement.

Corollary 1.9. As Z ⊂ S ranges over all geometrically irreducible subvarieties of S of degree
at most d, the algebraic monodromy groups HZ define only finitely many ΓS-conjugacy classes
in MT(S).

2 Here we really mean positive-dimensional in the Hodge-theoretic sense of [KO21, Definition 1.3], which coincides
with being positive-dimensional as a subvariety in the quasi-finite period map case.
3 This is due to the simplicity of derived subgroup of the Mumford–Tate group of the variation, this latter fact
being a consequence of the result that the global algebraic monodromy group is maximal due to [Bea86].

619

https://doi.org/10.1112/S0010437X23007029 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007029


D. Urbanik

This corollary is a substantial strengthening of [DR18, Conjecture 10.4], where it is stated
in the special case of variations associated to Shimura varieties, and where Z ranges only
over the special subvarieties. Actually, Daw and Ren do not use the language of variations
of Hodge structures, preferring instead the language of Shimura datum; we give a brief trans-
lation between the two pictures when we prove Corollary 1.9. In their case, the corollary is of
interest to implement a certain strategy for proving the Zilber–Pink conjecture, generalizing
the Pila–Zannier strategy for the André–Oort conjecture, which has had substantial success in
recent years (cf. [KUY18]). In particular, Daw and Ren prove several strong consequences of the
Zilber–Pink conjecture (Theorem 14.2 and Theorem 14.3 in [DR18]) conditional on their
Conjecture 10.4 (or rather Conjecture 10.3, which Conjecture 10.4 implies) and a collection
of conjectures relating to heights and Galois orbits associated with special points. Our result
therefore removes an obstacle to the implementation of Daw and Ren’s generalization of the
Pila–Zannier strategy.

In a paper [DJK20] by Daw, Javanpeykar and Kühne, a related conjecture is made in
Remark 3.8, which is a special case of the following statement.

Corollary 1.10. For any positive integer d, there are finitely many weakly non-factor special
subvarieties of S of degree at most d.

This is, in fact, contained in what we have already said, as it amounts to the statement
that the set of (closures in S of) weakly non-factor subvarieties in Cd is an algebraic subset of
dimension zero, hence finite as Cd has finitely many components.

1.2 Sketch of the main ideas
Because of the computational focus of the paper, we require several sections of additional setup,
so to aid the reader we now give a brief outline of the main argument behind both Theorems 1.6
and 1.7. To begin with, we develop in Proposition 4.18, based on the Ax–Schanuel theorem
of Bakker and Tsimerman [BT17], a ‘differential algebraic’ characterization of weakly special
subvarieties, which characterizes them as irreducible algebraic subvarieties of S maximal for the
property that they satisfy certain ‘differential constraints’. To be more precise, we first partition
the set of all weakly special subvarieties Z by their ‘type’, which is an equivalence class under
a certain GLm,C action of a flag variety naturally associated to the variation V

∣∣
Z

on Z, and
where m = dim V. We then consider the algebraic jet spaces Jdr S which parameterize maps from
Dd
r → S, where Dd

r is an infinitesimal d-dimensional disc of order r, and for each type 𝒞 we
construct an infinite family of varieties {𝒯d

r (𝒞)}r,d�0, with 𝒯d
r (𝒞) ⊂ Jdr S for all d, r � 0, such

that Z is weakly special of type 𝒞 if and only if it is a maximal irreducible subvariety of S for
the property that JdrZ ⊂ 𝒯d

r (𝒞) for all d, r � 0. (The subvariety JdrZ ⊂ Jdr S has as its points
those maps Dd

r → S which factor through Z.)
If Z ⊂ S is a subvariety satisfying JdrZ ⊂ 𝒯d

r (𝒞) for all d, r � 0 we say that Z satisfies the
differential constraint of type 𝒞. We are then able to show in Proposition 4.31 that satisfying
the differential constraint of type 𝒞 is a closed algebraic condition on the moduli of flat families,
and produces a corresponding locus 𝒲(𝒞) ⊂ Hilb(S) such that the weakly special subvarieties
of type 𝒞 are the subvarieties corresponding to a point of 𝒲(𝒞) not properly contained in
any other subvariety corresponding to a point of 𝒲(𝒞). The locus 𝒲(𝒞) has countably many
components {Ci}∞i=1, and the condition that [Z] ∈𝒲(𝒞) lies in some fibre of the universal family
above Ci is a constructible condition on [Z], so this allows us to realize the weakly special locus
of type 𝒞 as a countable intersection of constructible algebraic subsets of 𝒲(𝒞).
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Having understood the weakly special locus as a countable intersection of constructible sets,
we then endeavour to understand it as a constructible union of constructible sets. This requires
arguing that varieties Z satisfying the constraint of type 𝒞 are maximal if and only if they become
‘infinitesimally maximal’ at some finite order r0, that is, one cannot find higher-dimensional
analytic ‘solutions’ extending Z of the differential conditions determined by 𝒞 beyond some
finite order. This is handled in § 4.4. After the weakly special locus of type 𝒞 is represented as
both a countable union of constructible loci and a countable intersection of such loci, Theorem 1.7
follows from the elementary lemma (Lemma 4.32).

With this machinery in place, the remainder of the theorems are deduced from an explicit
understanding of the loci we have constructed, as well as carefully establishing that each step in
the above construction is computable.

1.3 Prior work
The closest work in spirit to ours appears to be a recent preprint [BD21] by Binyamini and Daw.
The authors work in the Shimura variety setting, and are primarily concerned with applications
to the ‘geometric part’ of the Zilber–Pink conjecture. They give an effective version of the result
in [DR18] that says that if S = Γ\D is a Shimura variety and V ⊂ S is a subvariety, then the so-
called weakly optimal subvarieties of V belong to finitely many constructible algebraic families.
To recover this sort of result in our language, one would equip S, after possibly passing to a
finite covering, with a variation V of integral Hodge structure coming from the Shimura datum.
The corresponding families of weakly optimal varieties would then be obtained from suitable
families of weakly specials of S by intersecting their fibres with V ; one would however need the
effective bounds on degrees of weakly optimal subvarieties in [BD21] to know which such families
to consider. (It is possible that the degree estimates in [BD21] could generalize to our setting,
but as it is not our focus we have not verified it.)

2. Preliminaries on computational models

2.1 Elementary operations
The algorithms we describe in this paper use as elementary steps many of the standard ‘oper-
ations’ of algebraic geometry; for instance, computing the image of a constructible set under
an algebraic map, trivializing vector bundles. We indicate which such elementary operations
we require here, and where the reader may find references for the existence of algorithms for
performing such operations.

In what follows all spaces we consider are algebraic varieties, not necessarily reduced or
irreducible, over a field K whose field operations are computable. An affine variety V we regard
as a finitely presented K-algebra R, and morphisms of affine varieties we model as morphisms of
the associated K-algebras. To model a more general variety V , we have a finite collection of affine
varieties {Vi}ni=1 with Vi = SpecRi, and ideals Iij ⊂ Ri ⊗K Rj representing the intersection of
the diagonal ΔV ⊂ V × V with Vi × Vj . We may regard this as giving a constructive version
of the condition that V be separated. A morphism f : V →W of varieties we represent as the
data of:

(a) affine covers {Vi}ni=1 and {Wj}mj=1 such that for each j, the inverse image f−1(Wj) may be
written as a union

⋃
i∈Ij Vi for some subset Ij ⊂ {1, . . . , n};

(b) for each i ∈ Ij a map fij : Vi →Wj .

Thus, given two varieties V and W , in order to represent a morphism f : V →W between them
for the purposes of computation, one might first have to refine the cover of V . We also note that
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given a map g : W → X represented by maps gjk such that the cover of W for g agrees with
the cover of W for f , we may compute the composition by computing appropriate compositions
gjk ◦ fij .

Let us also note that given a model {Vi}ni=1 for V as above, we obtain canonical models for
the intersections Vi ∩ Vj as the quotients Tij = Ri ⊗K Rj/Iij . We then regard a quasi-coherent
sheaf ℋ over V as consisting of the following data:

(a) for each Vi = SpecRi in the cover of V , a finitely presented Ri-module Mi;
(b) for all 1 � i, j � n a finitely presented Tij-module Nij , along with a restriction morphism

resij : Mi → Nij of Ri-modules;
(c) for all 1 � i, j � n morphisms of finitely presented Tij-modules ξij : Nij

∼−→ Nji satisfying
the axioms of a gluing datum.

We regard the data of these modules and morphisms of modules as a model of ℋ relative to
the cover Vi for V . Whenever we refer to algorithms involving ‘vector bundles’ we mean to work
with the associated quasi-coherent sheaf.

A closed subvariety F ⊂ SpecR of an affine variety we represent by an ideal I ⊂ R, which
is itself represented in terms of a finite set of generators. An open subvariety U ⊂ SpecR of an
affine variety we represent by finitely many elements f1, . . . , fk ∈ R such that U =

⋃k
i=1D(fi),

where the D(fi) = SpecRfi are the distinguished affine opens. A constructible set C in SpecR
will then be represented by a finite list F1, U1, . . . , Fm, Um of closed and open subvarieties such
that C =

⋃m
i=1 Fi ∩ Ui. In the case of closed, open and constructible sets inside a general vari-

ety V = {Vi}ni=1, we represent these by compatible closed, open and constructible sets inside
each Vi.

Proposition 2.1. Let K be a field admitting a computational model, let X,Y be K-varieties,
let f : X → Y be a map of K-varieties, let C ⊂ X and D ⊂ Y be K-constructible sets, and let
𝒱 and 𝒲 be K-vector bundles on Y . Then there exist algorithms for:

(i) given a presentation of Y in terms of affine opens {Yi}ni=1 and affine open covers {Uij}m(i)
j=1

for Yi, computing a presentation of Y in terms of the cover {Uij};
(ii) computing the image f(C) ⊂ Y and the inverse image f−1(D) ⊂ X;
(iii) computing a cover {Ei}qi=1, refining the given cover {Yi}mi=1 for Y , and a presentation of 𝒱

by free modules with respect to the cover {Ei}qi=1;
(iv) computing the pull-back bundle f∗𝒱, the ‘tensor product’ bundle 𝒱 ⊗𝒲, and the bundle

ℋℴ𝓂(𝒱,𝒲).

Proof. (i) The statement reduces to the following problem: given inclusions of affine varieties
ιk : Uk ↪→ Yk and ι� : U� ↪→ Y�, represented as maps of finitely generated algebras gk : Rk → R′

k

and g� : R� → R′
�, compute a generating set for the ideal I ′k� ⊂ R′

k ⊗K R′
� corresponding to the

inverse image of the diagonal under the map ιk × ι�. We claim it suffices to take as generators
for I ′k� the images of the generators of Ik� ⊂ Rk ⊗K R� under the map gk ⊗ g�. Indeed, this is
easily checked from the fact that if g : R→ R′ and q : R→ R/I are ring maps, then the pushout
R′ ⊗R R/I is represented by R′/I ′, where I ′ is the extension of I in R′.

(ii) In both situations we may reduce to the affine case where X = SpecB, Y = SpecA and f is
given by a map a : A→ B. For the case of the computation of f(C) an algorithm can be found,
for instance, in [BLH22], among other places. In the case of f−1(D) it suffices to consider the
cases where D is either open or closed. In the closed case D is represented by an ideal I ⊂ A, and
the ideal defining f−1(D) is the extension B · a(I) for which generators are easily computed from
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a generating set of I. In the case where D is open it is represented by finitely many elements
f1, . . . , fk ∈ A such that D =

⋃k
i=1 SpecAfi , and then f−1(D) is represented by the elements

a(f1), . . . , a(fk).

(iii) Let us first deal with the case where Y = SpecR is affine, and 𝒱 is represented by a
projective R-moduleM . Then the claim then reduces to finding finite sets of elements f1, . . . , fk ∈
R generating the unit ideal such that for each j, the module Mfj is free over the localization Rfj ,
and computing a basis for Mfj . This we can do using the constructive proof that any projective
module over a Noetherian ring is locally free found in [LQ15, Chap. X, § 1].

Using part (i) to refine the cover of Y as necessary, the general case then reduces to the
following situation. We have two affine open sets SpecR ⊂ Y and SpecR′ ⊂ Y , modules M and
M ′ representing 𝒱 on SpecR and SpecR′, restriction maps res : M → N and res′ : M ′ → N ′,
a gluing map ξ : N → N ′, and two localizations Mf and M ′

f ′ of M and M ′. We then have to
compute the associated restriction morphisms resf : Mf → Nf and resf ′ : M ′

f ′ → N ′
f ′ as well as

the gluing morphism ξf : Nf
∼−→ N ′

f ′ . As the maps res, res′ and ξ are given in terms of the finite
presentations for the modules M,M ′, N and N ′, the maps resf , resf ′ and ξf may be simply
computed by extending scalars along the maps R→ Rf and R′ → R′

f ′ .

(iv) By part (iii) we may refine the cover {Yi}mi=1 of Y to a cover {Y ′
j }m

′
j=1 such that 𝒱 and 𝒲

are presented using free modules with explicit bases with respect to {Y ′
j }mj=1. We note that after

refining the cover {Yi}mi=1, we may use part (ii) with D = Y ′
j for j = 1, . . . ,m′ and part (i) to

compute a cover {X ′
k}n

′
k=1 of X such that the morphism f may be presented with respect to

{X ′
k}n

′
k=1 and {Y ′

j }mj=1.
We begin with f∗𝒱. Let {Yi}mi=1 and {Xk}nk=1 be the affine covers of X and Y , denote the

rings associated to Yi by Ri, and the rings associated to the intersections Yi ∩ Yj by Tij . The
data of 𝒱 is then a collection of free Ri-modules Mi, free Tij-modules Nij with restrictions
resij : Mi → Nij , and gluing data ξij : Nij

∼−→ Nji. The cover {Xk}nk=1 corresponds to rings Sk
representing the Xk, and we may compute rings Uk� representing Xk ∩X� using the diagonal
ideals Ik�. Our assumption on the cover for Y as it relates to the computational model for f
ensures that we may associate to each k an index f(k) such that a morphism αk : Rf(k) → Sk
is part of the data for f . Given two such morphisms αk : Rf(k) → Sk and α� : Rf(�) → S�, if we
denote by If(k)f(�) ⊂ Rf(k) ⊗K Rf(�) and Ik� ⊂ Sk ⊗K S� the diagonal ideals, we then obtain for
each pair (k, �) a canonical morphism

βk� : Tf(k)f(�) = (Rf(k) ⊗K Rf(�))/If(k)f(�) → (Sk ⊗K S�)/Ik� = Uk�,

which is compatible with the maps αk, α�, and the natural restrictions.
We now construct f∗𝒱. We compute M ′

k = Mf(k) ⊗Rf(k)
Sk as the free module obtained

from Mf(k) by extending scalars, and similarly for the modules N ′
k� = Nf(k)f(�) ⊗Tf(k)f(�)

Uk�.
The restrictions res′k� : M ′

k → N ′
k� are likewise given by scalar extension of resf(k)f(�) using the

maps αk and βk�, and the gluing datum ξ′k� : N ′
k�

∼−→ N ′
�k is computed via scalar extension of

ξf(k)f(�) along the map βk�.
For the tensor product 𝒱 ⊗𝒲 we keep the notation from the preceding paragraph, and

suppose that 𝒲 is represented by free Ri-modules Pi. Then one easily computes a representation
for 𝒱 ⊗𝒲 using the modules Mi ⊗Ri Pi, using the obvious construction for the gluing data.

For the construction of ℋℴ𝓂(𝒱,𝒲) we may reduce to the case where 𝒲 = 𝒪Y , using the
fact that ℋℴ𝓂(𝒱,𝒲) �𝒲 ⊗ℋℴ𝓂(𝒱,𝒪Y ). As each of the constituent modules Mi are free
with an explicit basis, we may take the dual basis to construct Hom(Mi, Ri). Gluing the modules
Hom(Mi, Ri) is then easily done using the gluing data for 𝒱. �
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2.2 Representing variations algebraically
2.2.1 Passing to algebraic data. A variation of integral Hodge structure (V, F •) on an smooth

algebraic variety S consists of an integral local system V on San and a filtration F • on the
holomorphic vector bundle ℋan = V⊗Z 𝒪San . In general, this data is highly transcendental,
owing to the fact that the image in the fibre ℋan

s of the lattice Vs is a transcendental object with
respect to any coordinate system on ℋan coming from algebraic geometry. For this reason one
cannot hope to represent the data (V, F •) in a finitary manner for the purposes of computation,
and in our algorithms we work entirely with the coarser data (VC, F

•), where VC is the complex
local system associated to V.

The advantage of passing to the coarser data (VC, F
•) is that the complex local system VC

is equivalent, by the Riemann–Hilbert correspondence, to the data of an algebraic vector bundle
ℋ with a flat algebraic connection ∇ : ℋ → Ω1

S ⊗ℋ, from which VC is recovered by taking flat
sections of ℋ with respect to ∇. The filtration F • on ℋan is, in fact, algebraic, see [Sch73,
p. 235].

Definition 2.2. Given a variation (V, F •), we call the tuple (ℋ, F •,∇) the associated algebraic
data of the variation. If each element of the tuple is defined over a subfield K ⊂ C, we also say
the associated K-algebraic data.

The algorithms we describe work entirely with the associated algebraic data (ℋ, F •,∇).
(Of course, for the purposes of proving the correctness of our computations, we assume that this
data is associated to a polarizable integral variation of Hodge structure.) We therefore devote
the following two subsections to explaining how to obtain computational models for the data
(ℋ, F •,∇) in the situation where the variation V comes from geometry, which is the primary
situation of interest.

2.2.2 Models in the geometric setting. Suppose that f : X → S is a smooth projective mor-
phism of K-varieties, with S smooth, connected, and quasi-projective. Suppose that (V, F an,•)
is the associated variation of integral Hodge structure, with V = Rkf∗Z(k) and F an,• the Hodge
filtration. There is a standard way of obtaining a K-algebraic model (ℋ, F •,∇) for the data
(VC, F

an,•), which we now describe.
We take ℋ = Rkf∗Ω•

X/S , where Ω•
X/S is the relative algebraic de Rham complex. To give the

filtration on ℋ, we define the Hodge filtration F iΩ•
X/S = Ω•�i

X/S , from which the filtration on ℋ
is obtained as the image

F iℋ = image
[
Rkf∗F iΩ•

X/S → Rkf∗Ω•
X/S

]
.

To construct the connection, we follow [KO68]. Define a filtration L• on the complex Ω•
X via

LiΩ•
X = image

[
Ω•−i
X ⊗𝒪X f∗(Ωi

S)→ Ω•
X

]
.

We have an exact sequence of complexes

0→ f∗Ω1
S ⊗ Ω•−1

X/S → Ω•
X/L

2Ω•
X → Ω•

X/S → 0. (1)

Then we have the following result.

Theorem 2.3 (Katz–Oda). The connecting homomorphism

ℋ = Rkf∗Ω•
X/S

δ−→ Ω1
S ⊗Rk+1f∗Ω•−1

X/S = Ω1
S ⊗ℋ,

is the Gauss–Manin connection ∇.
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The algorithms we describe in this paper actually require something slightly weaker than
the associated algebraic data (ℋ, F •,∇); it will suffice to have an open cover {Si}ni=1 of S and
models for the restricted data (ℋ, F •,∇)

∣∣
Si

for each i. (We do not require the gluing data.) For
this reason, the rest of this section is devoted to the proof of the following result.

Theorem 2.4. Given a smooth projective K-algebraic family f : X → S over a smooth base
S, consider the variation of Hodge structure with underlying local system V = Rkf∗Z(k). Then
there exists an algorithm for computing:

(i) an affine open cover {Si}ni=1 of S with Si = SpecRi;
(ii) for each i, the K-algebraic data (ℋi, F

•
i ,∇i) associated to the map fi : XSi → Si obtained

by base change.

Our approach is to adapt a method of [Sch12] to the relative setting in order to compute
ℋ and F • over a suitable affine base, and then to describe how to compute the connecting
homomorphism in Theorem 2.3. As necessary setup, we first recall how to use a Čech resolution
to describe the cohomology sheaves of the complexes appearing in the exact sequence (1) in the
case where S is affine, following [KO68].

Fix a finite cover 𝒰 = {Ui}ki=1 of X. Given a complex ℒ• of quasi-coherent sheaves on X,
we define a double complex C•(𝒰,ℒ•), where Cq(𝒰,ℒp) is the set of q-cochains with values in
ℒp; an element β ∈ Cq(𝒰,ℒp) is a map which assigns to a set of indices i0 < i1 < · · · < iq an
element of ℒp(𝒰i0 ∩ · · · ∩𝒰iq), where 1 � ij � k for 0 � j � q. We then have two differentials,
d : Cq(𝒰,ℒp)→ Cq(𝒰,ℒp+1) defined by

(dβ)(i0, . . . , iq) = d(β(i0, . . . , iq)),

and a differential δ : Cq(𝒰,ℒp)→ Cq+1(𝒰,ℒp) defined by

(δβ)(i0, . . . , iq+1) = (−1)p
q+1∑
j=0

(−1)jβ(i0, . . . , îj , . . . , iq+1).

With these definitions, the double complex K•(ℒ•) with Kn(ℒ•) =
⊕

p+q=nC
q(𝒰,ℒp) and

differential d+ δ computes the cohomology of ℒ• for each ℒ• appearing in the exact
sequence (1).

Although the Čech complex is given by explicit generators, simply constructing the Čech
complex is not enough to compute the cohomology sheaves Rkf∗Ω•

X/S , even if S = SpecR is
affine. The issue is that although all the usual abelian category constructions, including kernels,
images and quotients, may be carried out constructively in the category of finitely presented
R-modules, the modules that appear in K•(Ω•

X/S) are, in general, infinite dimensional over R.
Thus, our goal for computing ℋ (and also F •) is to construct a finite-dimensional subcomplex
of K•(Ω•

X/S) which computes the cohomology sheaves, for which we adapt the method of [Sch12]
to the relative setting. This requires the following lemma.

Lemma 2.5. Let d be the relative dimension of the family f , and fix an embedding ι : X ↪→ PmS
of S-schemes for some m. Then there exists an algorithm to compute:

(i) a model for S in terms of affine open subsets {Si}ki=1; and
(ii) relative hyperplanes hij : Hij → Si for j = 0, . . . , d and i = 1, . . . , k, with Hij ⊂ PmS , such

that for each s ∈ Si the divisor Xs ∩ (Hi0,s ∪ · · · ∪Hid,s) has normal crossings in Xs, and
Hij is of the form H × S ⊂ Pm × S = PmS for some K-algebraic hyperplane H ⊂ Pm.

625

https://doi.org/10.1112/S0010437X23007029 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007029


D. Urbanik

Proof. Applying Proposition 2.1(i) it suffices to assume that S is affine. AsK is a field admitting a
computational model, the collection of possibleK-algebraic relative hyperplanes h : H → S of the
prescribed type may be constructively enumerated, as can (d+ 1)-tuples h = (h0, . . . , hd) of such
hyperplanes. Given such a d-tuple with hj : Hj → S, the condition that Xs ∩ (H0,s ∪ · · · ∪Hd,s)
have normal crossings in Xs is an open algebraic condition on S, and an open subset Sh ⊂ S lying
in the locus where it holds can be computed by adapting the procedure in [Sch12, § 7]; namely,
for each SpecR ⊂ S in an affine cover of S we compute the ideal I defining the intersection
appearing in [Sch12, Equation (21)] over a R instead of over C, and then the locus Sh ∩ SpecR
will be the locus where the coefficients of the generators of I vanish. If we start computing the
loci Sh for all possible choices of h in sequence, one has at the ith stage affine open subsets
Sh1

, . . . , Shi
each with an appropriate relative family of hyperplanes, and it suffices to show that

we have S = Sh1
∪ · · · ∪ Shi

for some i. This reduces by [Sch12, Lemma 7.1] to showing that for
each proper complex algebraic subvariety X ⊂ Pm, there exists a set of K-algebraic hyperplanes
H0, . . . , Hd ⊂ Pm such that for each subset 0 � i0 � · · · � iq � d of the indices the intersection
X ∩ (Hi0 ∪ · · · ∪Hiq) is everywhere transverse. The moduli space parametrizing tuples of (d+ 1)
hyperplanes in Pm is Q-algebraic and unirational, and the condition on (H0, . . . , Hd) is an open
algebraic condition, so the result follows as any complex algebraic open set in a unirational
variety over Q will contain a K-point for any subfield K of C. �

Using Lemma 2.5, we now see that to prove Theorem 2.4 it suffices to assume that S is affine
and we have relative hyperplanes hj : Hj → S for j = 0, . . . , d of the prescribed type. Following
[Sch12, § 5] we set 𝒰 = {Ui}di=0, where Ui = X \ (X ∩Hi); we note that Ui is an affine subset
of X. The complex C•(𝒰,Ω•

X/S) then admits, for each integer t, a natural subcomplex D•,•

given by

Dp,q =
⊕

i0<···<iq
Γ(X,Ωp

X/S((t+ p)(Hi0 ∪ · · · ∪Hiq))),

where we understand Ωp
X/S(V ) for a relative divisor V to be the tensor product with the relative

sheaf 𝒪X/S(V ). We then have the following generalization of the result appearing in [Sch12,
Lemma 5.2].

Lemma 2.6. Suppose that t � d(ed+ 1)k where degX � k and codimPm
S
X � e. Then the total

complex associated to the subcomplex D•,• computes the algebraic de Rham cohomology sheaves
Rkf∗Ω•

X/S , and the total complex associated to the subcomplex D•�i,• computes the cohomology

sheaves of Rkf∗F iΩ•
X/S .

Proof. We first handle the case of R•f∗Ω•
X/S . This is proven in the non-relative setting by

Scheiblechner, so it suffices to reduce to that case. Let us denote by T •(Ω•
X/S) the total complex

associated to D•,•, so that T •(Ω•
X/S) ⊂ K•(Ω•

X/S). We then have for each i a natural map
τ : hi(T •(Ω•

X/S))→ hi(K•(Ω•
X/S)) of R-modules, where S = SpecR. Given any complex point

s : SpecC→ S, we obtain a map τs : hi(T •(Ω•
Xs/C

))→ hi(K•(Ω•
Xs/C

)) on the level of fibres,
and the result of [Sch12, Lemma 5.2] then tells us that τs is an isomorphism. The R-module
hi(K•(Ω•

X/S)) is locally free, hence has constant fibre dimension. This then implies that the
R-module hi(T •(Ω•

X/S)) also has constant fibre dimension. As R is assumed reduced, we find by
[Har13, § II, Example 5.8] that hi(T •(Ω•

X/S)) is locally free. A map of locally free modules which
is an isomorphism on fibres is an isomorphism, hence the result.

In the filtered case, we may argue as before to reduce to showing that D•�i,• computes
Rkf∗F iΩ•

X/S in the case where S = SpecC. For this we inspect the proof of [Sch12, Lemma 5.2]:
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he considers the natural spectral sequence Er(D•,•)→ Er(C•(𝒰,Ω•
X/S)) associated to the Hodge

filtration (i.e. where the first page is obtained by taking cohomology with respect to the differen-
tial d and not δ), and shows that it is an isomorphism at the first stage. Necessarily this implies
(see the proof of [Wei94, 5.2.12]) that the map Tot(D•,•)→ Tot(C•(𝒰,Ω•

X/S)) of total com-
plexes induces an isomorphism between each filtered piece in each cohomological degree, and so,
in particular, the map Tot(D•�i,•)→ Tot(C•(𝒰,Ω•�i

X/S)) is a quasi-isomorphism for each i. �

To complete the proof of Theorem 2.4, it now suffices to explain how to compute the con-
nection ∇ for those modules ℋ arising from the subcomplex D•,•. Note that to ‘compute’ ∇
it suffices to show we can evaluate the map ∇ : ℋ → Ω1

S ⊗ℋ (that is, the connecting homo-
morphism in Theorem 2.3) on a vector v ∈ℋ, because we can then evaluate ∇ on a generating
set for ℋ and use R-linearity. To complete the proof, we therefore need to show two things.

(A)Consider the derived version

0→ K•(f∗Ω1
S ⊗ Ω•−1

X/S)
ρ−→ K•(Ω•

X/L
2Ω•

X) σ−→ K•(Ω•
X/S)→ 0, (2)

of the exact sequence (1). Then given an element β ∈ K•(Ω•
X/S) which lies in the kernel of

the differential, it is possible to compute a lift β̃ such that β = σ(β̃), and compute ρ−1(dβ̃).
(B)With the above setup, if β ∈ T •(Ω•

X/S) = Tot(D•,•) we have, in addition, that ρ−1(dβ̃) lies
in the total complex associated to

f∗Ω1
S ⊗D•,• ⊂ C•(𝒰, f∗Ω1

S ⊗ Ω•
X/S).

To carry out step (A), one could try to proceed in a manner analogous to [KO68], who
construct an explicit map of complexes K•(Ω•

X/S)→ K•(f∗Ω1
S ⊗ Ω•

X/S) which induces the
connecting homomorphism on cohomology. However because we are merely interested in the
existence of an algorithm and not its efficiency, we can make do with the following brutal method.

Lemma 2.7. Let 𝒜 and ℬ be any two computable sets, let κ : 𝒜 →ℬ be a map between them,
and suppose we are given b ∈ im(κ). Then there exists an algorithm to compute a preimage
a ∈ 𝒜 of b.

Proof. Enumerate all the elements of 𝒜 and try them one by one until we succeed. �

To complete step (A), it therefore suffices to show the following result.

Lemma 2.8. There exists a computational representation of the complexes appearing in (2) such
that the maps ρ and σ as well as the inclusions

Tot(D•,•) ↪→ K•(Ω•
X/S) and Tot(f∗Ω1

S ⊗D•,•) ↪→ K•(f∗Ω1
S ⊗ Ω•

X/S)

are all computable.

Proof. It suffices to show that the required statements are true on the level of the associated
double complexes. This, in turn, reduces to showing that the vector bundles in the exact sequence
(1) and the associated morphisms are computable. This follows easily from the general results
on vector bundle computations shown in Proposition 2.1 above, as well as the fact that all the
usual abelian category constructions may be carried out constructively in any category of finitely
presented modules over a finitely presented K-algebra, see [LQ15, § IV, 4]. �
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Step (B), and hence the proof, is then completed by the following.

Lemma 2.9. If β ∈ T •(Ω•
X/S), then the element ρ−1(dβ̃) ∈ K•(Ω1

S ⊗ Ω•−1
X/S) lies inside the total

complex associated to the subcomplex

f∗Ω1
S ⊗D•,• ⊂ C•(𝒰, f∗Ω1

S ⊗ Ω•
X/S).

Proof. The element β is a collection βp,q of Čech cocycles, where βp,q associates to (i0, . . . , iq)
a relative meromorphic form on X/S with at worst relative poles of order t+ p along the rel-
ative divisor Hi0 ∪ · · · ∪Hiq . The lift β̃ is the same data, but where each component is instead
considered as a form on X, and modulo the equivalence relation coming from L•. If we apply
the differential, the poles of dβ̃ will have order at worst t+ p+ 1 along Hi0 ∪ · · · ∪Hiq , and this
will furthermore continue to be true for the inverse image ρ−1(dβ̃). However, this exactly means
that ρ−1(dβ̃) in an element of the total complex associated to f∗Ω1

S ⊗D•,•. �

2.2.3 The hyperelliptic case. Let us illustrate how the computation of the associated alge-
braic data (ℋ, F •,∇) can be done in practice with an example, unrelated to the rest of the
paper. Let S = A2g+1 = SpecQ[e1, . . . , e2g+1] be an affine space of dimension 2g + 1. We con-
sider the relative hyperelliptic curve C ⊂ P2

S which on the relative affine open subset A2
S ⊂ P2

S

with coordinates x, y is given by4

y2 = R(x) = 4
2g+1∏
i=1

(x− ei) =
2g+1∑
i=0

λix
i.

We write C◦ for the intersection C ∩ A2
S , and f : C → S and f◦ : C◦ → S the families obtained

by restricting the projection P2
S → S. We write V = R1f∗Z(1) for the associated variation of

Hodge structure.
We now compute the Q-algebraic data associated to V by utilizing the relationship between

f and f◦. Denote by ∞ : S → C the natural section so that the image of ∞ is the complement
of C◦. Then we may view f as a relative projective compactification of f◦, and ∞ as a comple-
mentary relative divisor which (trivially) has normal crossings. The sheaf V◦ = R1f◦∗Z is then a
local system admitting the structure of a mixed variation of Hodge structure. In fact, because
H1(Ce,Z) � H1(C◦

e ,Z) canonically for each e ∈ S(C), the natural base-change map

V = R1f∗Z→ R1f◦∗ ι
∗Z � R1f◦∗Z,

is an isomorphism of mixed (and, hence, pure) variations of Hodge structure, where ι : C◦ ↪→ C
is the natural inclusion. We may therefore replace V with V◦ and compute the Q-algebraic data
associated to V◦.

We begin with the algebraic Hodge bundle ℋ = R1f◦∗Ω•
C◦/S . As C◦ is affine over S, this

may be computed directly from the algebraic de Rham complex Ω•
C◦/S , and we therefore have

ℋ = Ω1
C◦/S/d𝒪C◦/S . In particular, ℋ is a trivial vector bundle of rank 2g. The filtered piece

F 1ℋan ⊂ℋan corresponds to the image under the map F 1(R1f∗Z⊗ 𝒪San)→ R1f◦∗Z⊗ 𝒪San , and
so consists of exactly those (families over S of) forms which admit extensions to global holomor-
phic forms on C. Using the usual description of the space of holomorphic forms on hyperelliptic
curves, we may find g independent sections u1, . . . , ug of ℋ of the form ui = xi−1 d/y = 𝒰i(x) d/y
which together span F 1ℋ. We extend this to a basis of global sections, following [ER08, § 2],

4 The factor of 4 which appears here is included for compatibility with [ER08], whose calculation we refer to
shortly.
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by defining

ug+i =
( 2g+1−i∑

k=i

(k + 1− i)λk+1+ix
k

)
dx/4y = ℛi(x) dx/4y, 1 � i � g.

We now are left with the task of computing ∇ in terms of the frame u1, . . . , u2g. The tangent
bundle TS carries a natural trivialization by the sections ∂/∂e1, . . . , ∂/∂e2g+1, and it suffices
to compute the differential operators ∇∂i as sections of the endomorphism bundle ℰ𝓃𝒹(ℋ).
Suppose that e ∈ S is a point, and let B ⊂ S be a ball around e such that we have an integral basis
γ1, . . . , γ2g ∈ V◦(B). We may view these basis elements as being dual to a basis of topological
cycles c1, . . . , c2g. Let pjk =

∫
ck
uj be the periods of the uj with respect to these cycles, denote

the associated matrix by P , and let B = [bij ] equal P−1. We may compute that

∇∂iuj = ∇∂i

( 2g∑
k=1

pjkγk

)

=
2g∑
k=1

∂ipjkγk

=
2g∑
k=1

∂ipjk

( 2g∑
�=1

bk�u�

)

=
2g∑
�=1

( 2g∑
k=1

∂ipjkbk�

)
u�.

The calculation shows that in the basis given by the ui, the operator ∇∂i is equal to (∂iP ·
P−1)t. To determine this matrix we now quote [ER08, Theorem 4.1] as follows.

Proposition 2.10 (Enolski–Richter). For every e ∈ U , there exists a neighbourhood B of e and
a basis γ1, . . . , γ2g for V◦(B) such that

(∂�P · P−1)t =
(

αt
� γ�

β� −α

)
,

where

α� =
−1
2

(
1

R′(e�)
� (e�)� t(e�)−M�

)
,

β� = −2
(

1
R′(e�)

� (e�)� t(e�)
)
,

γ� =
1
8

(
1

R′(e�)
�(e�)� t(e�)−N�

)
,

with

M� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 0
1 0 0 . . . 0 0
e� 1 0 . . . 0 0
e2� e� 1 . . . 0 0
...

...
. . .

. . .
. . .

...

eg−2
� eg−3

� . . . e� 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,
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and N� = e�(M�Q� +Q�M
t
� ) +Q�, where Q� is the diagonal matrix with (Q�)k,k =

ℛk(e�)/𝒰k+1(e�).

3. The constructive jet correspondence

3.1 Statement of the correspondence
3.1.1 Sketch of the idea. In this section, we develop our main computational tool for comput-

ing sets of weakly special subvarieties. Let us explain the basic idea. Fix a set of Hodge numbers
hp,0, hp−1,1, . . . , h0,q with hp,0 + hp−1,1 + · · ·+ h0,q = m, and let qL be the variety of Hodge flags
on Zm, not necessarily polarized. There is a natural quotient map q : GLm → qL sending a matrix
to the flag represented by its column vectors, where we define F iCm to be the span of the first
dimF i columns. Given a variation of Hodge structure (V, F •) on S with the same Hodge num-
bers and a simply connected ball B ⊂ S, one may construct a period map ψ : B → qL as follows.
First, pick a filtration-compatible frame v1, . . . , vm for ℋ = V⊗ 𝒪San on B, that is, a frame
such that each filtered piece F i is spanned by some initial segment v1, . . . , vki . Picking a basis
b1, . . . , bm for V(B), we denote by A(s) = [aij(s)] the change-of-basis matrix corresponding to
the bases v1

s , . . . , v
m
s to the basis b1s, . . . , b

m
s at s ∈ B. The map q ◦A : B → qL is then a period

map for (V, F •) on B. More generally, we provide the following definition.

Definition 3.1. If, in the above construction, the basis b1, . . . , bm is chosen more generally to
be a basis of VC(B) (instead of an integral basis of V(B)), then the resulting map ψ = q ◦A is
called a local period map.

The point is as follows. Period maps defined using the integral lattice are hard to model
computationally, as the integral lattice V is a transcendental object. However, we show that col-
lection of all local period maps can be described entirely in terms of the associated K-algebraic
data (ℋ, F •,∇); in particular, we find that local period maps are exactly the solutions to cer-
tain K-algebraic systems of differential equations determined by this data. Our goal is then to
construct the loci 𝒲d ⊂ Cd (recall the setup of Theorem 1.7) of weakly special subvarieties in
three steps:

(i) we construct finitely many subvarieties qV1, . . . , qVk ⊂ qL (cf. § 4.3);
(ii) we show that a variety Z ⊂ S is weakly special if and only if for some qVj , for any germ

(Z, s) of Z and any local period map ψ = q ◦A defined at s, the image ψ(Z, s) lands inside
some GLm-translate of qVj , and Z is a maximal geometrically irreducible variety satisfying
this property (cf. Proposition 4.18);

(iii) we explain how to compute, as a constructible K-algebraic subset, the locus of [Z] ∈ Cd
such that Z = Z ∩ S satisfies the condition described in step (ii) (cf. § 5).

For the remainder of § 3 we develop the machinery necessary to work with local period maps
computationally so that we may carry out this strategy in the coming sections.

3.1.2 Jets and canonical jet torsors. The construction we describe uses jet spaces. These are
schemes associated to an algebraic variety S and integers d, r � 0 that parametrize infinitesimal
maps to S from a d-dimensional disc of order r. We let Adr = K[t1, . . . , td]/(t1, . . . , td)r+1, and
Dd
r = SpecAdr . We denote by FSchK the category of finite-type schemes over the field K.

Definition 3.2. Let S be an object in FSchK . We define Jdr S to be the variety representing
the contravariant functor FSchK → Set given by

T �→ HomK(T ×K Dd
r , S), [T → T ′] �→ [HomK(T ′ ×K Dd

r , S)→ HomK(T ×K Dd
r , S)],
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where the natural map HomK(T ′ ×K Dd
r , S)→ HomK(T ×K Dd

r , S) obtained by pulling back
along T ×K Dd

r → T ′ ×K Dd
r . We note that all maps here are of K-schemes.

There is an analogous construction when S is a complex analytic space, compatible with
analytification whenever K ⊂ C is a subfield; for details, we refer to [Urb21, § 2]. We note that Jdr
is a functor for each d, r � 0. We typically view points j ∈ (Jdr S)(T ) as maps T ×K Dd

r → S from
the infinitesimal disc T ×K Dd

r over T , and from this point of view the map Jdr g : Jdr S → Jdr S
′

induced by a map g : S → S′ sends j to g ◦ j.
By functoriality, the action of GLm on qL induces an action of GLm on Jdr qL. The main results

of this section are then as follows.

Theorem 3.3. Given a tuple (ℋ, F •,∇) of associated K-algebraic data on the smooth
K-variety S, and for each d, r � 0, there exists a canonical map ηdr : Jdr S → GLm\Jdr qL of
K-algebraic stacks with the following property: given any point j ∈ (Jdr S)(C) and any local
period map ψ : B → qL such that B contains the image of j : Dd

r → S, we have ηdr (j) = ψ ◦ j
modulo GLm.

Moreover, there exists an algorithm to compute the GLm-torsor pdr : 𝒯d
r → Jdr S and the

GLm-invariant map αdr : 𝒯d
r → Jdr qL which defines ηdr .

Corollary 3.4. Suppose that V is a variation of Hodge structure on a smooth K-variety
S =

⋃n
i=1 Si with each Si an affine open subset, and we have computational models (ℋi, F

•
i ,∇i)

for the K-algebraic data associated to V
∣∣
Si

. Then given a subset 𝒦 of the points of GLm\Jdr qL

corresponding to a constructible GLm-invariant subset ℛ ⊂ Jdr qL, there exists an algorithm to
compute the constructible K-algebraic subset (ηrd)

−1(𝒦) ⊂ Jdr S.

Proof. As the map ηdr described in Theorem 3.3 is functorial with respect to restrictions of
V, we may show the required claim on each Si separately. The required preimage is then just
pdr((α

d
r)

−1(ℛ)). �
A version of Theorem 3.3 without the computability claim and with the pair (qL,GLm)

replaced by the pair ( qD,Aut(Zm, Q)), where qD is the flag variety of polarized Hodge flags on the
polarized lattice (Zm, Q), appears in [Urb21, Theorem 1.11]. The difference here is that we do not
assume an algebraic model for the polarization as [Urb21] does, meaning the notion of local period
map we work with is more general (the period isomorphisms need not preserve polarizations),
and correspondingly we need to take a quotient by a larger symmetry group. Nevertheless, we
essentially follow the construction in [Urb21, § 3] with only minor modifications.

3.2 Construction of canonical jet torsors
Let us explain essential idea underlying the construction in Theorem 3.3. Suppose j ∈ Jdr S is
a jet projecting onto s ∈ S, and ψ : B → qL is a local period map defined on a small ball B
containing s. Then in algebraic coordinates on qL, the coordinates of the jet ψ ◦ j are algebraic
functions of the algebraic coordinates of j and the values at s of the derivatives of ψ. What we
show is that the values of the derivatives of ψ at s are, in fact, algebraic functions of an initial
condition for a system of differential equations, and the space of initial conditions for ψ at s is
a GLm-torsor. Constructing the map αdr : 𝒯d

r → Jdr qL referred to in Theorem 3.3 then essentially
amounts to the observation that ψ ◦ j is an algebraic function of j and the initial condition
defining ψ.

3.2.1 Jet evaluation maps. In this section we explain that the main result of [Urb21, § 3.1]
is constructive.
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Proposition 3.5. Suppose that U is a smooth K-variety, cij are global sections of Ω1
U for

1 � i, j � m, and consider the system of differential equations5

dfjk =
m∑
i=1

fikcij (3)

for 1 � j, k � m. Regard a solution to (3) as a matrix-valued map f = [fjk], and suppose that
for each point s ∈ U and initial condition f(s) = M ∈ GLm there exists a unique f : B → GLm
solving (3) on some neighbourhood B of s. Then for each d, r � 0 there exists a K-algebraic
map β : JdrU ×GLm → JdrGLm with the following property: if f : B → GLm solves the differ-
ential system (3), then β(σ, f(π(σ))) = f ◦ σ for all σ ∈ JdrB where π : JdrU → U is the natural
projection.

Moreover, there exists an algorithm to compute β given the sections cij .

Proof. The existence of this map and the verification that it satisfies the required property is
handled by [Urb21, Proposition 3.1]. Let us recall enough of the proof in [Urb21] to verify that
β is actually computable.

It suffices to construct β locally on U , so we may assume U is affine of the form SpecA. As
U is smooth, the module Ω1

U is projective, but need not be free in general. However, it is possible
to constructively find an affine open cover {Ui}ni=1 of U , with Ui = SpecAfi for fi ∈ A, such that
Ω1
Ui

is free over Afi ; see [LQ15, Chap. X, § 1]. Using this, we may further restrict to assume that
Ω1
U is free over A, and choose trivializing sections dz1, . . . , dzn of Ω1

U for functions zi ∈ A. We
then obtain a map g : U → An = SpecK[x1, . . . , xn] given by xi �→ zi.

Let us recall the construction of β given in the proof in [Urb21]. It is defined as β = r ◦ ζ,
where ζ : JdrU ×GLm → SpecR is a map to a certain affine space with coordinate ring R, and the
map r is a map r : SpecR→ JdrM, where M is the space of all m×m matrices, not necessarily
invertible. The map r is independent of the input data, so we describe it first. The jet space
JdrAn is an affine space, with natural coordinates coming from the coefficients of the maps
j : Dd

r → An from the formal d-dimensional disc of order r; in particular, one can view such a
map as a collection of n power series in d varieties, each truncated at order r. We denote these
coordinates on JdrAn by ap,i; here the index 1 � i � n corresponds to the component of the map
j, and the index p ∈ 𝒫d

r , where 𝒫d
r is the set of partitions of integers from 0 to r with d terms,

corresponds to the term in the power series of which ap,i is a coefficient. The constant terms
a∅,1, . . . , a∅,n may be identified with the coordinates x1, . . . , xn on An. The ring R is then the
Q-algebra freely generated by the formal symbols ap,i for 1 � i � n and p ∈ 𝒫d

r and the symbols
(∂i1 . . . ∂iqfjk)(a∅,1, . . . , a∅,n), where 1 � j, k � m and i1, . . . , iq is a sequence of length ranging
between 0 and r with 1 � i� � n for each i�.

Less formally, the affine space SpecR has as coordinates those of the space JdrAn and, in
addition, the values of all partial derivatives up to order r of an undetermined matrix-valued
function f = [fjk] defined on a neighbourhood of An and with values in M. Denote by π : JdrAn →
An the natural projection. The map r is then defined by the property that if f : B →M is any
analytic map on a neighbourhood of B ⊂ An and ϕf : JdrB → SpecR is defined by

σ �→ (σ, (∂i1 . . . ∂iqfjk)(π(σ))), (4)

then the map Jdr f : JdrB → JdrM is given by r ◦ ϕf . Note that in (4) it is understood that the
indices j and k range from 1 tom and i1, . . . , iq ranges over all appropriate sequences, as described
previously. After removing all the notational bookkeeping, the basic idea is simply that for any

5 We regard the equality as taking of (3) as taking place inside Ω1
Uan(B) for some analytic neighbourhood B ⊂ U .
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analytic function f and jet σ ∈ JdrAn, the coordinates of f ◦ σ are Q-algebraic functions of the
coordinates of σ and the derivatives of f , as can be seen, for instance, by writing out σ as a
truncated power series and applying the multivariate chain rule. These observations are explained
in more detail in [Urb21, § 2.2]. In particular, the map r is universal, independent of the input
data, and is defined using general Q-algebraic polynomials obtained from differentiation rules
that are easily computed in advance of running the algorithm.

Next we consider the map ζ. This map is obtained from the differential forms cij given as
input. First, as we have trivialized Ω1

A by a basis dz1, . . . , dzn, we obtain for each (i, j) functions
cij,� ∈ A with 1 � i � n which are the coefficients of cij in this basis. The basis dz1, . . . , dzn
induces a dual basis ∂/∂z1, . . . , ∂/∂zn for the tangent sheaf, each element of which may be
identified with a computable differential operator ∂/∂zi : A→ A. Equation (3) then becomes

∂fjk
∂z�

=
∑
i

fikcij,�, 1 � j, k � n. (5)

We now compute recursively a series of polynomials ξ(i1,...,iq),jk, where (i1, . . . , iq) is as above,
which satisfy the property that ξ(i1,...,iq),jk ∈ A[ftu, 1 � t, u � m] (i.e. they are polynomials in ftu
with coefficients in A) and we have

∂fjk
∂zi1 . . . ∂ziq

= ξ(i1,...,iq),jk([ftu]), (6)

for all choices of (i1, . . . , iq) and 1 � j, k � m. For the case where q = 1 we may simply use (5).
In the cases for q > 1, we differentiate the relevant equation in the q − 1 case and then use (5)
to substitute the first-order derivatives for polynomials in {ftu : 1 � t, u � m} with coefficients
in A.

Given all this, the map ζ : JdrU ×GLm → SpecR is defined as

(σ, [atu]) �→ (g ◦ σ, ξ(i1,...,iq),jk([atu], π(σ))),

where we range over 1 � j, k � m and the sequences (i1, . . . , iq) above. This gives an explicit
computable presentation for the map ζ, and as β = r ◦ ζ this completes the proof. �

3.2.2 The torsor 𝒯d
r . Let us now construct the torsor 𝒯d

r and the map αdr : 𝒯d
r → Jdr

qL.
Using Proposition 2.1(iii) we fix a finite open cover {Ui}ni=1 of S such that each Ui carries a
filtration-compatible frame v1

i , . . . , v
m
i for the bundle ℋ

∣∣
Ui

. We denote by Cij = [cijk�] the tran-
sition functions for ℋ on the intersection Ui ∩ Uj with respect to the frames v1

i , . . . , v
m
i and

v1
j , . . . , v

m
j . We then construct the GLm-torsor 𝒯d

r as follows. Over the open subset JdrUi of Jdr S,
we model it by JdrUi ×GLm with the obvious projection. The gluing data Jdr (Ui ∩ Uj)×GLm

∼−→
Jdr (Ui ∩ Uj)×GLm over the open set Jdr (Ui ∩ Uj) are then given by (σ,A) �→ (σ,A · Cji).

Each filtration-compatible frame v1, . . . , vm on a K-algebraic open subset U ⊂ S induces a
system of differential equations on U of the form in (3) in the following way. Write cij ∈ Ω1

U

for the unique forms giving the equality ∇vi =
∑m

j=1 cij ⊗ vj . Suppose we wish to find analytic
functions fij on an open ball B ⊂ U such that bk =

∑m
i=1 fikv

i is a flat frame. We note that

∇bk = ∇
( m∑
i=1

fikv
i

)
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=
m∑
j=1

dfjk ⊗ vj +
m∑
i=1

fik

( m∑
j=1

cij ⊗ vj
)

=
m∑
j=1

(
dfjk +

m∑
i=1

fikcij

)
⊗ vj ,

thus, the condition that bk give a flat frame defines a system of differential equations of the form
in (3) after absorbing a sign into the cij .

Note that we can compute such a differential system for each frame v1
i , . . . , v

m
i with respect to

the cover {Ui}ni=1 after possibly refining the cover so that it is compatible with our computational
model for ∇. We therefore obtain maps βi : JdrUi ×GLm → JdrGLm for each differential system
from Proposition 3.5, and we may define αdr : 𝒯d

r → Jdr qL on the open subset JdrUi ×GLm as the
composition q ◦ ι ◦ βi, where ι : GLm → GLm is the inversion. Note that the fact that the βi are
compatible with each other follows from the fact that the condition that bk give a flat basis is
independent of the chosen frame. The condition that the map αdr be GLm-invariant follows from
the fact that if f = [fij ] solves the differential system in (3), then so does fA, where A ∈ GLm
is any matrix. We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. It is evident from our construction that both the map αdr : 𝒯d
r → Jdr qL and

the projection pdr : 𝒯d
r → Jdr S is computable, so it suffices to show the required compatibility

with local period maps. This is a local claim, so it suffices to assume that S = U and we have a
filtration compatible frame vi : U →ℋ and the map αdr is defined as q ◦ ι ◦ β, where β is as in
Proposition 3.5. Supposing that f = [fij ] where fij : B → GLm are analytic functions on an open
set B ⊂ U such that bk =

∑m
i=1 fikv

i gives a flat frame for VC(B), then ι ◦ f gives the change-of-
basis matrix from the frame v1, . . . , vm to the frame b1, . . . , bm. By definition (see Definition 3.1),
the map ψ = q ◦ ι ◦ f is a local period map. We then have that for (j,M) ∈ JdrU ×GLm with
f(π(j)) = M , where π : JdrU → U is the usual projection, that

αdr(j,M) = q ◦ ι ◦ β(j,M) = ψ ◦ j,
where we have used the defining property of β in Proposition 3.5. �

3.3 Germs defined by period maps
For later use, let us also extract some consequences of the proof of Proposition 3.5 that we find
useful later. We consider an open subset U ⊂ S on which Ω1

S is trivial, and let dz1, . . . , dzn be a
trivialization over U . Then the coordinates z1, . . . , zn induce, for each point s ∈ U(C), a natural
basis for the r’th order infinitesimal neighbourhoods 𝒪SC,s/m

r+1
SC,s

, where the basis elements are
the monic monomials in the functions (z1 − s1), . . . , (zn − sn), and si ∈ C is the value of zi at s.
The analogous fact is true for a point M ∈ GLm(C) with respect to the natural coordinates
on GLm.

Proposition 3.6. Fix a filtration compatible frame v1, . . . , vm for ℋ on U . For each s ∈ U(C)
and M ∈ GLm(C), consider the map τ rs,M : 𝒪GLm,C,M/m

r+1
GLm,C,M

→ 𝒪SC,s/m
r+1
SC,s

induced by the

analytic map f : B → GLm for which bk =
∑m

i=1 fikv
i gives a flat frame with f(s) = M . Then

with respect to the bases induced by the coordinates z1, . . . , zn and the natural coordinates on
GLm, the entries of the matrix defining the linear transformations τ rs,M are K-algebraic functions
on U ×GLm.

Proof. The map τs,M : 𝒪GLm,C,M → 𝒪SC,s induced by f has, when written as a power series
in the varieties (z1 − s1), . . . , (zn − sn), coefficients given by constant scalar multiples of the
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derivatives ∂i1,...,iqfjk, where the notation is as in (6). In particular, as in Proposition 3.5 and (6),
these derivatives are algebraic functions ξ(i1,...,iq),jk on U ×GLm. Writing M = [Mjk] and letting
ajk −Mjk be the natural set of generators for mGLm,C,M/m

2
GLm,C,M

, the map τs,M sends ajk −Mjk

to the power series expansion for fjk −Mjk at s. Thus, the required functions are then obtained
from the ξ(i1,...,iq),jk and by applying the multiplicativity of the map τs,M . �
Corollary 3.7. Continue with the setup of Proposition 3.6, and let g be aK-algebraic function
on the space of m×m matrices. Then the coordinates of τ rs,M (g) are K-algebraic functions on
U ×GLm.

Proof. The coordinates of the image of g in the rings 𝒪GLm,C,M/m
r+1
GLm,C,M

are constant scalar
multiples of the derivatives of g at M , which are K-algebraic functions on GLm, and which can
be extended to functions on U ×GLm via the identity. As the matrix representing τ rs,M has as
entries K-algebraic functions on U ×GLm, the coordinates of the vector τ rs,M (g) are thus also of
this form. �

Lastly, let us note that the proof of Proposition 3.5 also gives an algorithm for computing the
K-algebraic functions referenced in Proposition 3.6 and Corollary 3.7, as it essentially amounts
to computing the polynomials ξi1,...,iq ,jk.

4. Moduli of weakly specials from jets

In this section, we fix a polarized variation of integral Hodge structure V on the smooth connected
quasi-projective K-variety S, with K ⊂ C a subfield, and a projective compactification S ⊂ S.
We then describe the locus 𝒲 ⊂ Hilb(S) inside the Hilbert scheme consisting of those points [Z]
such that Z = S ∩ Z is a weakly special subvariety for the variation V. This leads immediately
to a proof of Theorem 1.7. We postpone computational considerations until § 5.

4.1 Preliminaries on families of jets
In this section, we develop some useful results about compatible families and sequences of jets,
some of which were established in a previous paper by the current author.

Definition 4.1. Suppose that 𝒯r ⊂ (JdrZ)(C) for r � 0 are sets. We say that {𝒯r}r�0 is a
compatible family if the projections πrr−1 : JdrZ → Jdr−1Z restrict to give maps 𝒯r → 𝒯r−1 for all
r � 1.

Definition 4.2. We say that {jr}r�0 with jr ∈ JdrZ is a compatible sequence if we have
πrr−1(jr) = jr−1 for all r � 1.

Notation. Given an analytic space X and a point x ∈ X, we denote by (JdrX)x the fibre of JdrX
above x.

Lemma 4.3. Suppose we have a compatible family 𝒯r ⊂ (JdrZ)(C), and each 𝒯r is a constructible
algebraic subset. Let jr0 ∈ 𝒯r0 be a jet for some fixed r0. Then if the fibre of πr

′
r0 : Jdr′Z → Jdr0Z

above jr0 intersects 𝒯r′ for each r′ � r0, then jr0 belongs to a compatible sequence {jr}r�0 with
jr ∈ 𝒯r for each r � 0.

Proof. See [Urb21, Lemma 5.3]. �
Definition 4.4. If Z is a variety (either algebraic or analytic) and j ∈ JdrZ is a jet, viewed as
a map j : Dd

r → Z, we say that j is non-degenerate if j induces an embedding on tangent spaces.
The open subvariety of non-degenerate jets is denoted by Jdr,ndZ ⊂ JdrZ.
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Lemma 4.5. Let f : (X,x)→ (Y, y) be a map of germs of analytic spaces, suppose that (Z, y) ⊂
(Y, y) is an analytic subgerm, and that (X,x) is smooth. Suppose we have a compatible family
jr ∈ (Jdr,ndX)x of non-degenerate jets with d = dim(X,x), and that f ◦ jr lies in (JdrZ)y for all r.
Then f factors through the inclusion (Z, y) ⊂ (Y, y).

Proof. As (X,x) is smooth we may reduce to the case where (X,x) = (Cd, 0). We recall that the
coordinate ring of the space Dd

r is Adr = C[t1, . . . , td]/〈t1, . . . , td〉r+1. Letting Ad∞ = lim←−r A
d
r be the

associated formal power series ring, the maps jr glue to give a single map ĵ�∞ : 𝒪X,x → Ad∞ of
formal power series rings. The non-degeneracy of the jr and the formal inverse function theorem
implies that ĵ�∞ is an isomorphism, so the kernel of the map f̂ � : 𝒪Y,y → 𝒪X,x agrees with the
kernel of the map ĵ�∞ ◦ f̂ �. The fact that f ◦ jr lies inside (Z, y) for each r translates to the
fact that the ideal Î ⊂ 𝒪Y,y corresponding to (Z, y) lies in the kernel of ĵ�∞ ◦ f � and, hence, in
the kernel of f̂ �. However, this implies the existence of the desired factorization of the map
f � : 𝒪Y,y → 𝒪X,x through the ring 𝒪Y,y/I on the level of local rings, where I is the ideal defining
(Z, y), hence of the desired factorization of f . �
Lemma 4.6. Suppose that f : X → S is a smooth map of K-schemes. Then for each s ∈ S(C),
we have a fibre Xs, and a jet space JdrXs. Suppose that si → s is a sequence in S(C), and
j ∈ (JdrXs)(C) is a jet. Then there exists ji ∈ (JdrXsi)(C) such that ji → j, with the limit taken
inside (JdrX)(C).

Proof. The statement is analytic, so we may replace f with its analytification (using the embed-
ding K ⊂ C) and prove the statement statement for a smooth map f : X → S of analytic spaces.
The statement is then local on X, so using the local form for analytic smooth maps [Gro61,
Theorem 3.1] we may reduce to the case of a projection map V ×W → V for which the statement
is obvious. �

4.2 Preliminaries on weakly specials
We now establish some basic facts about weakly special subvarieties that will be of use in the
coming sections. We will write V = Zm, fix a polarization QV : V ⊗ V → Z compatible with a
polarization Q : V⊗ V→ Z on V, and let qD ⊂ qL denote the Q-algebraic subvariety of flags which
satisfy the first Hodge–Riemann bilinear relation with respect to QV . There is a natural analytic
open subset D ⊂ qD consisting of polarized Hodge structures. If we let G = Aut(V,QV ) ⊂ GL(V )
denote the subgroup of polarization-preserving automorphisms, and let Γ = G(Z), then we obtain
from the variation V a canonical analytic period map ϕ : S → Γ\D which sends the point s to
the isomorphism class of the integral polarized Hodge structure (Vs, Qs).

Definition 4.7. Given a Hodge structure t ∈ D, denote by

Hg(t) ⊂
∞⊕

m,n�1

V ⊗m ⊗ (V ∗)⊗n

the subspace of all Hodge tensors associated to the Hodge structures tensorially generated by t.
We denote by MT(t) ⊂ G the Mumford–Tate group of t, which is the stabilizer of these tensors.

Proposition 4.8. A weakly special subvariety is exactly an irreducible component of a variety
of the form ϕ−1(π(N(R) · t)), where N ⊂ MT(t) is a Q-algebraic normal subgroup, t ∈ D is a
point, and π : D → Γ\D is the natural projection.

Proof. This is easily deduced from [KO21, Definition 3.1 and Corollary 3.14]. See also [KO21,
Proposition 3.8] for a proof that such varieties are algebraic. �
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Lemma 4.9. Suppose that Mi ⊂ G for i ∈ {1, 2} are two Mumford–Tate groups, that N1 ⊂M1

and N2 ⊂M2 are two connected semisimple Q-algebraic normal subgroups, and let h ∈ D be a
Hodge structure with MT(h) ⊂M1 ∩M2. Suppose, moreover, that each Q-simple factor of N1

does not have a compact set of real points. Then if N1 · h ⊂ N2 · h we, in fact, have N1 ⊂ N2.

Proof. Letting M3 = M1 ∩M2 and N3 = N1 ∩N2, it suffices to show that N1 = N3. As elements
of M3 normalize both N1 and N2, the problem is unchanged by replacing h with m · h for some
m ∈M3(R). Using the fact that the orbit M3(R) · h is open in the locus of points of D with
Mumford–Tate group M3, we may therefore assume that MT(h) = M3 (cf. [GGK12, p. 56] on
the openness of real orbits of Mumford–Tate groups). We begin by showing that N3 · h = N1 · h;
indeed, because these are group orbits, it suffices to check the equality of tangent spaces Th(N3 ·
h) = Th(N1 · h) at h, and using the openness of the real orbits of h we may reduce to checking the
statement Th(N3(R) · h) = Th(N1(R) · h). Analogously to [GGK12, p. 54] we may model these
tangent spaces in the following way: the Hodge structure h : S→ GL(V )R induces, through the
adjoint action on the Lie algebras ni of Ni for i = 1, 2, 3, a weight-zero Hodge structure. We
then obtain a decomposition ni,C = si ⊕ pi into summands of negative and non-negative weight,
and such that the orbit map Ni(C)→ Ni(C) · h defined by h identifies si with Th(Ni(C) · h) =
Th(Ni(R) · h) and pi with the complex Lie algebra of the parabolic subgroup of Ni stabilizing h.
In particular, because N1 · h ⊂ N2 · h we have s1 ⊂ s2. Finally, these decompositions satisfy the
property that s3 = s1 ∩ s2, from which it follows that s1 = s3 and Th(N3(R) · h) = Th(N1(R) · h).

The equality s1 = s3 together with the Hodge symmetry of the (polarizable) Hodge structures
on n1 and n3 imply that the containment n3 ⊂ n1 of polarizable Hodge structures decomposes
as n1 = n3 ⊕ a, where a is a Q sub-Hodge structure concentrated entirely in degree zero. As a

is defined over Q and concentrated in degree zero, it is spanned entirely by endomorphisms of
the Hodge structure h, so elements of a are fixed by the conjugation action of MT(h) = M3 and,
in particular, by N3. It follows that [n3, a] = 0, so a is an ideal of n1 and, hence, a semisimple
summand of n1. If we let A = exp(a), then since a ⊂ p1 we find that A lies in the stabilizer
P1 ⊂ N1 of the Hodge flag corresponding to h. Applying [GGK12, IV.A.2] the closed subgroup
of N1(R) stabilizing h is compact, so it follows that A(R) is compact. We know, by assumption,
that N1 does not have Q-simple factors with compact sets of real points, hence a = 0. �

Another useful property of weakly special subvarieties will be the following conse-
quence of the Ax–Schanuel theorem for variations of Hodge structures proven by Bakker and
Tsimerman [BT17]. In what follows we treat algebraic monodromy groups HZ associated to
subvarieties Z ⊂ S as subgroups of G. Strictly speaking, the group HZ only defines a canonical
conjugacy class of subgroup of G, but what we mean is to consider HZ as a subgroup of G rel-
ative to a polarization-preserving identification V � V(B) used to define a local lift ψ : B → D
of the fixed period map ϕ. When we view algebraic monodromy groups HZ as subgroups of G
in the coming sections we always mean with respect to some (sometimes implicitly) fixed local
lift.

Lemma 4.10. Suppose that ψ : B → qD is a local lift of ϕ, and let qE ⊂ qD be an algebraic
subvariety. Fix a point s ∈ B such that ψ(s) ∈ qE. Then:

(i) an analytic germ (C, s) ⊂ (B, s) of an irreducible algebraic subvariety, maximal among such
germs for the property that ψ(C, s) ⊂ ( qE,ψ(s)) is the germ of a weakly special subvariety;

(ii) if (C, s) is as in part (i) an analytic germ of the algebraic subvariety Y ⊂ S, then the Zariski
closure of ψ(C, s) is the orbit HY · ψ(s), where HY is the algebraic monodromy of Y ;
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(iii) if we have irreducible analytic germs (Ci, s) ⊂ (B, s) of algebraic Yi ⊂ S for i = 1, 2 such
that HY1 · ψ(s) ⊂ HY2 · ψ(s) then we have HY1 ⊂ HY2 (inside GL(Vs)).

Proof. We start with part (iii), which follows from Lemma 4.9 if we can show that algebraic
monodromy groups do not contain Q-simple factors with compact sets of real points. This is
shown in Lemma 4.11. Turning to part (ii), if (C, s) ⊂ (B, s) is any analytic germ of an algebraic
subvariety Z ⊂ S, it follows as in [Urb21, Lemma 4.7] from the Ax–Schanuel theorem that
the Zariski closure of ψ(C, s) in qD is the orbit HZ · ψ(s), where HZ the algebraic monodromy
group of Z. The result in part (i) then follows from our original definition of weakly special in
Definition 1.4 and part (iii). �

Lemma 4.11. If V is a variation of Hodge structure on an irreducible algebraic variety Z, then
the algebraic monodromy group of Z does not admit a Q-simple factor with a compact set of
real points.

Proof. Noting that algebraic monodromy is an invariant unchanged by replacing Z with an open
subvariety, we may assume Z is smooth. We may then argue as follows: according to [GGK12,
III.A.1], the monodromy group ΓZ of a variation of Hodge structure on a variety Z splits, after
possibly replacing Z with a finite étale covering, as ΓZ = Γ1 × · · · × Γk where the Zariski closure
Γi

Zar = Ni, and N1 · · ·Nk is the Q-simple decomposition of HZ . As algebraic monodromy groups
are unchanged by passing to finite étale coverings, none of the Ni can have a compact set of real
points as then the equality Γi

Zar = Ni would not hold due to the fact that Γi would have to be
finite, and algebraic monodromy groups are assumed connected. �

4.3 Differential constraints and types
We continue with the notation in the previous section. In this section, we introduce an invariant
of a geometrically irreducible subvariety Z ⊂ S induced by the variation V called its type, and
use it to both construct certain so-called ‘differential constraints’ satisfied by all varieties of a
certain type and give an alternate description of the weakly special subvarieties.

Recall that we have a fixed a polarized lattice (V,QV ) with V = Zm, and that we have an
associated Q-algebraic variety qL consisting of all Hodge flags on V on which GL(V ) = GLm acts.
The variety qD consisting of all Hodge flags satisfying the first Hodge–Riemann bilinear relation
we view as a Q-algebraic subvariety qD ⊂ qL, and the open submanifold D ⊂ qD of polarized Hodge
flags we similarly view as embedded in qL. We also have a canonical period map ϕ : S → Γ\D,
where Γ = Aut(V,QV )(Z), sending a polarized Hodge structure to its isomorphism class.

Definition 4.12. Given two closed subvarieties V1, V2 ⊂ qL, we say that V1 ∼GL V2 if there exists
g ∈ GLm(C) such that V2 = g · V1.

Definition 4.13. Given a closed subvariety V ⊂ qL, we call the equivalence class of V under
∼GL a type, and use the notation 𝒞(V ) to denote this equivalence class. We also say the type
associated to V to refer to 𝒞(V ).

Definition 4.14. Given two types 𝒞1 and 𝒞2, we write 𝒞1 � 𝒞2 if there exists V1, V2 ⊂ qL such
that V1 ⊂ V2 and 𝒞i = 𝒞(Vi) for i = 1, 2.

Definition 4.15. Let ψ : B → D be a local lift of ϕ, viewed as a map B → qL using the fixed
embedding D ⊂ qL. Let C ⊂ B ∩ Z be an analytic component with Z ⊂ S a geometrically irre-
ducible algebraic subvariety. Then the type of Z is the equivalence class 𝒞(ψ(C)), where ψ(C)
is the Zariski closure of ψ(C). We use the notation 𝒞(Z) to denote the type of Z.
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Lemma 4.16. The type of Z ⊂ S is independent of the lift ψ and the component C chosen, and
as Z ranges over all geometrically irreducible algebraic subvarieties of S only finitely many types
arise.

Proof. For the first statement we note that the different Zariski closures of ψ(C), all of which are
orbits of HZ by Lemma 4.10(ii), will be related by elements of G(Z) ⊂ GLm(C) because a local
lift of ψ at a point is determined up to a monodromy group lying inside G(Z). Moreover, one
can see that varying the neighbourhood B intersecting Z or the component C will not change
the Zariski closure using irreducibility and analytic continuation.

For the second claim we argue as follows. Recall that we have a fixed subvariety qD ⊂ qL of
Hodge flags satisfying the first Hodge–Riemann bilinear relation. Points t ∈ qD may be identified
with complex cocharacters μ : C× → GLm,C, with the action on t by GLm(C) corresponding
to the action on μ by conjugation; a general version of this fact appears in [GGK12, VI.B.9],
and it is also used in the proof of [Voi12, Theorem 4.14]. Moreover, those points t ∈ D ⊂ qD
that correspond to polarized Hodge structures with Mumford–Tate group M necessarily give
rise by [GGK12, VI.B.9] to cocharacters μ which factor through MC. It will be enough to show
the stronger claim that if M ⊂ G is a Mumford–Tate group, t ∈ qD is a point whose cocharacter
μt : C× → GLm,C factors through MC, and N ⊂MC is a complex semisimple normal algebraic
subgroup, then there are finitely many possibilities for the orbit N · t ⊂ qD up to translation
by GLm(C). We use the fact, proven in [Voi12, Theorem 4.14], that there are finitely many
GLm(C)-conjugacy classes of Mumford–Tate groups. We claim this implies the stronger fact that
triples (M,N, t) consisting of a Mumford–Tate group M , a complex semisimple normal subgroup
N ⊂MC, and a point t whose cocharacter μt factors through MC, are finite up to GLm(C)-
equivalence. (The action of GLm(C) on M and N is by conjugacy and on t by translation using
the embedding qD ⊂ qL.) To constrain the possibilities for N , we observe that there are finitely
many possibilities for the normal factorN ofM . To constrain the possibilities for t it have that by
[GGK12, VI.B.9] the points t whose cocharacters μt factor through MC belong to finitely many
M(C)-orbits (the components of |NLM in the notation of [GGK12]) in qD. Finally, if two triples
(M1, N1, t1) and (M2, N2, t2) are in the same GLm(C)-orbit, we then have for some g ∈ GLm(C)
that

N1 · t1 = (g ·N2 · g−1) · (g · t2) = g · (N2 · t2),
hence the result. �

We now fix an enumeration 𝒞1, . . . ,𝒞q of the types of geometrically irreducible subvarieties
Z ⊂ S arising from our fixed variation V. We fix representatives (N1, t1), . . . , (Nq, tq) of each
type such that 𝒞i = 𝒞(Ni · ti).
Notation. Given a variety V ⊂ qL we write

𝒯d
r (V ) = 𝒯d

r (𝒞(V )) = (ηdr )
−1(GLm · Jdr V ),

where ηdr is as in Theorem 3.3. For Z ⊂ S, we set 𝒯d
r (Z) = 𝒯d

r (𝒞(Z)), where 𝒞(Z) = 𝒞(Ni · ti)
for i such that 𝒞i = 𝒞(Z).

Definition 4.17. Sets of the form 𝒯d
r (𝒞) for some type 𝒞 we call differential constraints. If for

some Y ⊂ S we have Jdr Y ⊂ 𝒯d
r (𝒞), we say that Y satisfies the differential constraint 𝒯d

r (𝒞).

We note that by the defining property of the correspondence in Theorem 3.3 we have that Z
satisfies the differential constraint 𝒯d

r (Z) for all d and r. We now use this to give the following
characterization of weakly special subvarieties.
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Proposition 4.18. Let S be a smooth connected algebraic variety admitting a polarized inte-
gral variation of Hodge structure V and suppose that Z ⊂ S is a geometrically irreducible
algebraic subvariety. Then the following conditions are equivalent:

(i) Z is weakly special;
(ii) Z is a maximal geometrically irreducible algebraic subvariety of type 𝒞(Z);
(iii) Z is maximal among geometrically irreducible algebraic subvarieties Y ⊂ S which satisfy

𝒯d
r (Z) for all d and r.

The key input to Proposition 4.18 is the following.

Lemma 4.19. Suppose that Y ⊂ S and V ⊂ qL are subvarieties, and that Y satisfies 𝒯d
r = 𝒯d

r (V )
for all d and r. Let ψ : B → qL be a local period map, and suppose that C ⊂ Y ∩B is an irreducible
analytic component. Then ψ(C) lies in a GLm(C)-translate of the variety V .

Proof. Choose a point s ∈ C in the smooth locus of C, and let jr ∈ Jdr,ndC for r � 0 be a sequence
of compatible non-degenerate jets with j0 = s and d = dimC. By the defining property of the
ηdr in Theorem 3.3, the jets ψ ◦ jr all lie inside GLm · Jdr V . Let 𝒢r ⊂ GLm be the constructable
algebraic subset of g ∈ GLm(C) for which ψ ◦ jr lies inside g · Jdr V . This gives a descending chain
of constructible sets, with 𝒢r+1 ⊂ 𝒢r, non-empty at every finite stage; from constructibility it
follows that the intersection 𝒢∞ =

⋂
r 𝒢r is non-empty. Taking g ∈ 𝒢∞, we find that ψ(C) ⊂ g · V

by applying Lemma 4.5 with (X,x) = (C, s), (Y, y) = (qL,ψ(s)), and (Z, y) = (g · V, ψ(s)), and
using the irreducibility of C. �
Proof of Proposition 4.18. To see that part (i) =⇒ part (ii), suppose Z is weakly special and
that Z ⊂ Y is an inclusion of two geometrically irreducible subvarieties of the same type. Then
fixing a local lift ψ : B → D and components CZ ⊂ CY of Z ∩B and Y ∩B, we learn from
Lemma 4.10(iii) and the equality ψ(CZ) = ψ(CY ) that HY = HZ , so necessarily Y = Z as Z is
weakly special.

To see that part (ii) =⇒ part (iii) we use the fact that if Y ⊂ S satisfies the differential
constraints 𝒯d

r (Z) for all d and r, then by applying Lemma 4.19 we learn that 𝒞(Y ) � 𝒞(Z).
Thus, if Z is a maximal variety of type 𝒞(Z) it is also a maximal variety satisfying the constraints
𝒯d
r (Z).

Finally, to see that part (iii) =⇒ part (i), suppose that Z ⊂ S is maximal among irreducible
algebraic subvarieties that satisfy 𝒯d

r (Z) for all d and r, and suppose we have an irreducible
algebraic Y such that Z ⊂ Y ⊂ S and Y has the same algebraic monodromy group as Z. It then
follows from the definitions and Lemma 4.10(ii) that 𝒯d

r (Y ) = 𝒯d
r (Z) for all d and r, so since Y

satisfies 𝒯d
r (Y ) for all d and r, it follows that Y = Z. �

4.4 Proving maximality
We soon show that the results of the preceding section enable us to construct, for a fixed type 𝒞i
arising from the variation V, families g : 𝒵 → T of subvarieties of S such that for every t ∈ T (C)
we have 𝒞(𝒵t) � 𝒞i. To understand weakly specials, we then wish to understand the condition
that the fibres of g be maximal algebraic subvarieties of Z of type 𝒞i in terms of constructible
conditions on T . In this section, we give a method for doing this.

Recall that weakly special subvarieties Z of S are defined in Definition 1.4 using the mon-
odromy of the normalization Znor → Z. As the natural map of fundamental groups induced by a
Zariski open subvariety of a normal variety is surjective, it follows that Z has the same algebraic
monodromy as any open subvariety of Z. In particular, the condition that Z be weakly special in
S can be checked after replacing S with an open subvariety U ⊂ S which intersects Z. In what
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follows, we therefore assume that S is affine and that Ω1
S and the Hodge bundles F •ℋ over S

are all trivial; we note that because S is smooth one can always find a finite open cover whose
constituent open sets have these properties.

In what follows we call a subscheme A of SC with underlying reduced space a point p ∈ S(C)
and which is contained in the rth-order infinitesimal neighbourhood of p an (infinitesimal) germ
of order r. We fix a collection of functions z1, . . . , zn in the coordinate ring of S such that
dz1, . . . , dzn spans Ω1

S , as well as a filtration-compatible frame v1, . . . , vm for ℋ. We recall from
§ 3.2.2 that for each point s ∈ S(C) and M ∈ GLm(C) we have a map f : B → GLm with s ∈ B
satisfying the property that f(s) = M and bk =

∑m
i=1 fikv

i gives a flat frame on B whose germ
at s is uniquely determined by the choice of M . Moreover, the results of § 3.3 show that with
respect to the natural bases determined by z1, . . . , zn and the natural coordinates on GLm, the
maps of complex vector spaces τ rs,M : 𝒪GLm,C,M/m

r+1
GLm,C,M

→ 𝒪SC,s/m
r+1
SC,s

induced by the analytic
maps f have their matrix entries given by K-algebraic functions on S ×GLm. We note here
that the ‘basis determined by z1, . . . , zn’ inside 𝒪SC,s/m

r+1
SC,s

is the basis of monic monomials in
(z1 − s1), . . . , (zn − sn), where si is the value of zi at s.

Proposition 4.20. Fix a variety V ⊂ qL and a K-algebraic family g : 𝒵 → T of subvarieties
of S with projection p : 𝒵 → S such that the map g × p : 𝒵 → T × S is a closed embedding.
Consider the subset 𝒜(g, V, r) ⊂𝒵 ×GLm given by{

(z,M) :
(

the order r germ of p(𝒵g(z)) at p(z) lies in

ψ−1(V ) where ψ = q ◦ ι ◦ f with f(s) = M

)}
.

Then 𝒜(g, V, r) is a constructible K-algebraic subset of 𝒵 ×GLm.

Proof. By replacing V with W = (q ◦ ι)−1(V ) it suffices to consider{
(z,M) :

(
the order r germ of p(𝒵g(z)) at p(z)

lies in f−1(W ) where f(s) = M

)}
.

The variety W may be assumed to be the restriction to GLm of an affine subvariety of the space
M of m×m matrices, and by realizing W as an intersection of varieties of codimension one we
may reduce to the situation where W is defined by a single algebraic function h in the natural
coordinates [ajk] with 1 � j, k � m on M. Applying Corollary 3.7 we find that the coordinates
of τ rs,M (h) with respect to the basis induced by the coordinates z1, . . . , zn on S are K-algebraic
functions on S ×GLm.

Using the maps p and g, we may view 𝒵 as a closed subvariety of the product T × S, and
reduce to realizing the above as a constructible locus inside T × S ×GLm. We may reduce to the
case where T = SpecB is affine, and because g is a family of affine subvarieties of S = SpecR,
we may assume 𝒵 is defined inside T × S by functions j1, . . . , jk ∈ B ⊗K R; we will denote by
ji,t their restrictions to {t} × S. The basis dz1, . . . , dzn for Ω1

S admits a dual basis ∂1, . . . , ∂n for
the tangent sheaf, which we may identify with the sheaf of algebraic derivations of functions
on S. Moreover, we can extend the operators ∂1, . . . , ∂n to T × S by regarding functions on
T as constants. Then in the basis for 𝒪SC,s/m

r+1
SC,s

induced by the coordinates z1, . . . , zn, the
coefficients of the image of ji,t are given by constant scalar multiples of the values at s of the
partial derivatives ∂i1···iqji,t up to order r. In particular, the coefficients of the image of ji,t in
𝒪SC,s/m

r+1
SC,s

are algebraic functions on T × S.
The conditions on points (t, s,M) ∈ T × S ×GLm we wish to enforce are then the following.

First, we must have s ∈𝒵t, which simply comes from requiring that (t, s) lie in the image of
the embedding 𝒵 ↪→ T × S. Second, we require that the ideal generated by j1,t, . . . , jk,t inside
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𝒪SC,s/m
r+1
SC,s

contain the function h. The second condition reduces to a linear algebraic condition
on the coefficients of j1,t, . . . , jk,t and τ rs,M (h) written in the natural basis: in particular, one may
obtain a finite spanning set of the ideal in 𝒪SC,s/m

r+1
SC,s

generated by j1,t, . . . , jk,t by multiplying
by monomials in (z1 − s1), . . . , (zn − sn), where si is the value of zi at s. The vectors in such
a spanning set 𝒮(s, t) have coordinates which are algebraic functions on T × S (because this is
true for j1,t, . . . , jk,t). Moreover, the condition that h lie in the ideal generated by j1,t, . . . , jk,t
can described by saying that there exists a linear combination of the vectors in 𝒮(s, t) which
is equal to τ rs,M (h). Because the coefficients of the elements of 𝒮(s, t) ∪ {h} are all K-algebraic
functions on T × S ×GLm, this is a constructible K-algebraic condition on T × S ×GLm. �

To give our criterion for maximality we also need a way of understanding how the size of a
germ, measured by the vector space dimension of its coordinate ring, relates to the dimension of
the variety it comes from. For this we use the following definition.

Definition 4.21. We denote by H(r, d) the vector space dimension

H(r, d) := dimC C[t1, . . . , td]/〈t1, . . . , td〉r+1.

Lemma 4.22. Let A an analytic variety of pure dimension d, and let a ∈ A be a point. Then we
have dimC 𝒪A,a/mr+1

A,a � H(r, d).

Proof. Using the density of the smooth locus of A, it suffices to show that the function a �→
dimC 𝒪A,a/mr+1

A,a is upper semi-continuous on A. This question is local on A, so after replacing
A with an open neighbourhood we may assume that A is a closed analytic subvariety of Cn,
defined as the vanishing locus of an ideal I = 〈f1, . . . , fk〉 generated by functions holomorphic
in the coordinates x1, . . . , xn on Cn. We write a = (a1, . . . , an) ∈ Cn. The question then reduces
to showing that a �→ dimC Ia is lower semi-continuous, where Ia ⊂ 𝒪Cn,a/m

r+1
Cn,a is the image

of I. With respect to the canonical bases for the germ 𝒪Cn,a/m
r+1
Cn,a given by monomials in

(x1 − a1), . . . , (xn − an), the coordinates for the elements of Ia are given by the values at a of
polynomial functions in the partial derivatives of the generators f1, . . . , fk; in particular, the
condition that dim Ia � k for some k may be enforced using determinant conditions defining an
open locus in a. The result follows. �

In what follows we assume that the varieties in the family g : 𝒵 → T have a common dimen-
sion d. Choose Vi ⊂ qL such that 𝒞i = 𝒞(Vi), where 𝒞i is one of the types arising from the variation
V. The locus 𝒜(g, Vi, r) has a sublocus ℬ(g, Vi, r) consisting of points (z,M) where for every
r′ � r the coordinate ring 𝒪ψ−1(V ),p(z)/m

r′+1
ψ−1(V ),p(z)

has vector space dimension � H(r′, d+ 1);
this locus may be seen to be K-algebraically constructible, since the generators of the ideal
defining the order-r′ infinitesimal neighbourhood of ψ−1(V ) at p(z) have coordinates which are
K-algebraic functions on S ×GLm, and this is a linear-algebraic condition on the vector space
dimension of this ideal. The complement of the projection of ℬ(g, Vi, r) to T we denote by
𝒰(g, Vi, r). Informally, this is the locus of t ∈ T (C) such that no germ of p(𝒵t) is contained in
an order r infinitesimal germ A of ψ−1(Vi) for a local period map ψ such that the coordinate
ring of A is large enough that the germ of ψ−1(Vi) at s could have dimension d+ 1.

Proposition 4.23. Suppose that t ∈ T (C) is a point such that 𝒞(p(𝒵t)) = 𝒞i. Then p(𝒵t) is
weakly special of type 𝒞i if and only if the point t lies in the union

⋃
r�0 𝒰(g, Vi, r).

Proof. Let us first suppose that Z = p(𝒵t) is not weakly special of type 𝒞i = 𝒞(Vi). Choose
a point s ∈ Z(C) and a local lift ψ : B → D of the canonical period map ϕ : S → Γ\D
sending the point s to the isomorphism class of the polarized Hodge structure at s.
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Applying Proposition 4.10(ii) we have that ψ(B ∩ Z)
Zar

= HZ · ψ(s), and applying
Proposition 4.8 the irreducible component Y of ϕ−1(π(HZ · ψ(s))) containing Z is a weakly
special subvariety of type 𝒞i; here π : D → Γ\D is the projection. Necessarily Y is of larger
dimension, and so by the compatibility of ψ with ϕ the germ of ψ−1(HZ · ψ(s)) at s has
dimension at least d+ 1 and contains the corresponding germ of Z. The containment more-
over continues to hold if we consider the rth-order neighbourhoods of these germs, and moreover
by Lemma 4.22 the dimension of the coordinate ring of the rth-order neighbourhood of the germ
of ψ−1(HZ · ψ(s)) at s is at least H(r, d+ 1). The fact that 𝒞i = 𝒞(Z) means that there exists
g ∈ GLm(C) such that g · (HZ · ψ(s)) = Vi, hence ψ−1(HZ · ψ(s)) = (g · ψ)−1(Vi). It follows that
t does not lie in 𝒰(g, Vi, r) for every r, and so does not lie in the union.

Conversely, let us suppose that Z = p(𝒵t0) has type 𝒞i, but that t0 does not lie in the
specified union; in particular, we assume that t0 /∈ 𝒰(g, Vi, r) for every r. Then by definition of
𝒰(g, Vi, r), we find that the constructible algebraic subset 𝒢r ⊂ℬ(g, Vi, r) consisting of points
(t, s,M) with t = t0 is non-empty for every r. We observe that 𝒢r+1 ⊂ 𝒢r for each r, hence
by constructibility the countable intersection

⋂
r�0 𝒢r of non-empty constructible sets is non-

empty containing an element (t0, s0,M0). If we then let ψ be the local period map defined by
M0, then we claim that the germ of ψ−1(Vi) at s0 has dimension at least d+ 1: indeed, by
[SP20, Proposition 00KQ] the map r′ �→ dimC 𝒪ψ−1(V ),s/m

r′+1
ψ−1(V ),s

is a polynomial in r′ of degree
equal to the dimension of ψ−1(V ), and H(r′, d+ 1) is a polynomial of degree d+ 1 in r′. By
construction, the germ of Z at s lands inside Vi, hence ψ(B ∩ Z)

Zar ⊂ Vi for a sufficiently small
neighbourhood B. As 𝒞(Z) = 𝒞i, we in fact must have the equality ψ(B ∩ Z)

Zar
= Vi as the

two irreducible algebraic loci have the same dimension. Choosing g ∈ GLm(C) such that g · ψ is
a local lift of the period map ϕ : S → Γ\D sending a point s to its associated polarized Hodge
structure, we find by Lemma 4.10(ii) that g · Vi is identified with an orbit HZ · (g · ψ)(s0) of the
algebraic monodromy group of Z. We thus find that the weakly special subvariety Y which is a
component of ϕ−1(π(g · Vi)) and contains Z has dimension at least d+ 1, hence the result. �

Let us now return to the case of a general base S (i.e. we do not assume that Ω1
S , the Hodge

bundles F •ℋ, etc., are trivial). The main result of this section is then as follows.

Proposition 4.24. Let g : 𝒵 → T be a K-algebraic family of irreducible d-dimensional subva-
rieties of S, all of type 𝒞i. Then the locus in T of maximal algebraic varieties of type 𝒞i (i.e. the
weakly special locus) is a countable union of constructible K-algebraic sets.

Proof. Given a K-algebraic open subset U ⊂ S, we may reduce to showing the same statement
for just those fibres of g which intersect U , noting that an irreducible d-dimensional complex
variety Z of S which intersects U is weakly special if and only if its intersection with U is
weakly special for the variation V

∣∣
U
. We may then find a finite cover of S by open sets U where

Ω1
U , F

•ℋ, etc., are all trivial. The result then follows from Proposition 4.23. �

4.5 Constructible loci associated to families
In preparation for our main arguments, we need to know that two additional sorts of conditions
associated to families of varieties are described by constructible algebraic conditions on their
moduli. We recall we have fixed a projective compactification S ⊂ S, and that Hilb(S) is the
associated Hilbert scheme.

Lemma 4.25. Let 𝒯d
r ⊂ Jdr S be a constructible K-algebraic set. Then the condition that JdrZ

(or JdrZsm) lie inside 𝒯d
r , where Z = Z ∩ S, gives a constructible K-algebraic condition on [Z] ∈

Hilb(S) within each component of Hilb(S).
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Proof. We handle the case where Z satisfies the condition 𝒯d
r , the case for the smooth locus Zsm

being entirely analogous.
Fix a component C of Hilb(S), and denote by u : 𝒴 → C the universal family over C; we note

that we may view 𝒴 as a closed subscheme of S × C, and let p : 𝒴 → S be the natural projection.
We let 𝒴 = p−1(S), and let u : 𝒴 → C be the natural restriction. We may furthermore construct
a family udr : 𝒴d

r → C such that the fibre above [Z] may be identified with JdrZ, where Z =
Z ∩ S; we do this by considering the subscheme of Jdr𝒴 whose jets are constant on C. Then
the projection p admits a natural extension pdr : 𝒴d

r → Jdr S, the set pd,−1
r (𝒯d

r ) is K-algebraically
constructible, and the desired locus in C is the image of the complement 𝒴d

r \ pd,−1
r (𝒯d

r ) under
udr . This is a constructible K-algebraic set by Chevalley’s theorem. �

Proposition 4.26. Suppose that gi : 𝒴i → Ti for i = 1, 2 are two K-algebraic families of geo-
metrically irreducible subvarieties of S, and suppose that all the fibres of g1 have dimension d.
Then the locus of t ∈ T1 where the fibre 𝒴1,t lies inside a fibre of g2 is a constructible K-algebraic
locus.

Proof. The locus in question may be constructed by considering the fibre product
𝒴12 = 𝒴1 ×S 𝒴2 with respect to the natural projections pi : 𝒴i → S for i = 1, 2, and consid-
ering the family g12 : 𝒴12 → T1 × T2. The fibre above (t1, t2) of g12 may be identified with
the intersection 𝒴1,t1 ∩𝒴1,t2 of fibres. By geometric irreducibility, it suffices to compute the
K-constructible locus in T1 ×K T2 where the fibres have dimension d and project this to T1,
hence the result. �

4.6 Digression on definability
In the next section we need some tools from o-minimal geometry; in this short section we review
the necessary background. For details see, for instance, [BKT20].

By a structure 𝒮 we mean, for each k, a certain collection of subsets Sk ⊂ 𝒫(Rk) of the
power set of Rk, closed under finite unions, intersections, products, and projections; and such
that R ∈ 𝒮1, the diagonal in R2 is in 𝒮2, and the graph of addition function + : R2 → R is in
𝒮3. We call the sets which are elements of some 𝒮k definable sets. Given a function f : A→ B
between two definable sets, we say that f is definable if its graph is a definable set. The structure
of interest in Hodge theory is 𝒮 = Ran,exp. It includes as definable any real analytic function on a
compact interval in R, as well as the graph of the real exponential. Using the identification C = R2

one may also speak of definable complex analytic functions. This lets us define a definable analytic
variety X as an analytic variety admitting a finite cover {Ui}ni=1 by definable subsets Ui ⊂ Cn,
such that X ∩ Ui is cut out by definable analytic functions, and such that the transition maps
are likewise definable analytic. Algebraic varieties have a canonical definable analytic structure,
as one can see by compactifying. Using the fact that derivatives of definable analytic functions
are definable analytic, one easily checks (for instance, using the explicit models for jet spaces
described in [Urb21, § 2]) that Jdr is naturally a functor on the category of definable analytic
spaces.

We endow D ⊂ qD with the definable structure induced from the algebraic variety qD. The
main application of definable analytic spaces we need is then as follows.

Proposition 4.27. For any algebraic subvariety Y ⊂ S, there exists a finite cover B1, . . . , Bk
of Y by definable open sets and definable local lifts ψi : Bi → D of the period map Y → Γ\D
obtained by restricting ϕ : S → Γ\D.

644

https://doi.org/10.1112/S0010437X23007029 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007029


Sets of special subvarieties of bounded degree

Proof. As we may always restrict local lifts, it suffices to show this in the case where S = Y .
We may reduce to the same statement with S replaced by a finite étale cover, so we may, in
particular, assume that the monodromy ΓS lies in a neat arithmetic subgroup Γ′ ⊂ G(Z), and
is unipotent around a normal crossing divisor E = X \ S corresponding to some log-smooth
compactification S ⊂ X. Construct an analytic period map ϕ′ : S → Γ′\D. Arguing as in [BT17,
§3], we may cover S by finitely many definable neighbourhoods of the form Δk × (Δ∗)� for some
k and �, where Δ is the open unit disc in C and Δ∗ is the disc punctured at zero. Moreover, as
in [BT17, § 3] each such neighbourhood fits into a definable analytic diagram

where the vertical map is a restriction of the universal covering Δk ×H� → Δk × (Δ∗)� and the
horizontal map is a lift of ϕ′. It now suffices to take a finite covering of each neighbourhood
Δk × (Δ∗)� by simply connected definable open sets and locally invert exp. �

Lastly, we recall the Peterzil–Starchenko theorem, proven in [PS08], which tells us that a
definable analytic subset of an algebraic variety is, in fact, algebraic.

4.7 Rigidity and families of weakly specials
Recall we have fixed a projective compactification S ⊂ S. Let Hilb(S) be the associated
Hilbert scheme, and denote by Var(S) the locus consisting of those geometrically integral
subschemes which intersect S; the intersection of Var(S) with any component of Hilb(S) is
K-algebraically constructible. Using the properness and flatness of the universal family (see
[EGAIV, Théorème (12.2.1)]), one checks this locus is, in fact, open, so we may endow it with
the induced reduced scheme structure. To understand the locus 𝒲 ⊂ Var(S) of weakly special
subvarieties, we need some preliminary results about families of weakly special subvarieties in S
and the conditions they induce on Var(S).

The first notion we need is as follows, which is referred to as a weakly non-factor weakly
special subvariety in [KOU20].

Definition 4.28. Given a weakly special subvariety Z ⊂ S, we say that Z is rigid if there does
not exist a weakly special variety Y with Z � Y ⊂ S such that HZ is normal in HY .

As explained in [KOU20, § 2], the set of rigid weakly special subvarieties is countable, and
corresponds to those weakly special subvarieties which cannot be ‘Hodge-theoretically deformed’
inside S.

Lemma 4.29. Suppose that Z ⊂ S is a weakly special subvariety. Then there exists a rigid
weakly special subvariety Y ⊂ S containing Z such that HZ is normal in HY .

Proof. From the definition it follows that there exists a finite chain Y0 � Y1 � · · · � Yk where
each Yi is weakly special, Z = Y0, HYi is normal in HYi+1 , and Yk is rigid. As each alge-
braic monodromy group is semisimple, it follows that HZ = HY0 is a product of simple factors
of HYk

. �

Fix a geometrically irreducible variety Y ⊂ S. Then for each point s ∈ Y , the algebraic mon-
odromy group HY,s may be regarded as a subgroup of the automorphism group GL(Vs) of
the fibre above s. Given a path γ in Y from s to s′, we obtain isomorphisms αγ : Vs

∼−→ Vs′ .
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By writing the path γ as a composition γ = γk ◦ · · · ◦ γ1, where each γi can be lifted to the nor-
malization Y nor → Y , one may check that HY,s′ = αγ ◦HY,s ◦ α−1

γ . However, given a Q-algebraic
normal subgroup N ⊂ HY,s, it is not clear that N ′ = αγ ◦N ◦ α−1

γ is independent of γ. Different
choices of γ, however, will lead to normal Q-algebraic groups N ′ ⊂ HY,s′ conjugate under an
element σ ∈ ΓY ⊂ GL(Vs′), where ΓY is the monodromy on Y . The element σ acts through the
outer automorphism group of HY,s′ , giving finitely many possibilities N ′

1, . . . , N
′
� for the normal

Q-algebraic subgroup N ′. Moreover, if ψ : B → D is a local lift of the period map on Y and
s′ ∈ B, the orbits N ′

i · ψ(s′) for i = 1, . . . , � all define the same type, and this type is independent
of ψ. To see this, note that if ψ is replaced by σ · ψ and N ′ by σ ·N ′ · σ−1 then the resulting orbit
is σ · (N ′ · ψ(s′)). The independence of the neighbourhood B follows by analytic continuation.
We denote this type by 𝒞(Y,N).

Proposition 4.30. Let Y ⊂ S be a geometrically irreducible variety, and let N ⊂ HY be a
connected normal Q-algebraic subgroup. Consider the locus 𝒟(Y,N) ⊂ Var(S) consisting of [Z]
such that Z ⊂ Y and such that HZ lies inside one of the parallel translates N1, . . . , N� of N along
paths in Y . Then:

(i) 𝒟(Y,N) is a closed algebraic locus in Var(S); and
(ii) for every [Z] ∈ 𝒟(Y,N) we have 𝒞(Z) � 𝒞(Y,N).

Proof. By Proposition 4.27 we may choose finitely many definable analytic local lifts ψi : Bi → D
for 1 � i � n of the restriction of ϕ to Y, and after translating we may assume that if y ∈ Bi ∩Bi′ ,
then ψi and ψi′ differ on Bi ∩Bi′ by an element of the monodromy group ΓY ⊂ GL(Vy). More
precisely, we may assume that the isomorphisms Vy � V which determine the ψi differ on overlaps
by an element of ΓY ; here we recall the notation introduced in § 4.2. This implies that the maps
{ψi}ni=1 determine a common embedding HY ⊂ G (recall the discussion preceding Lemma 4.10),
and hence applying Lemma 4.10(ii) the images ψi(Bi) for 1 � i � n lie in a common orbit qDY =
HY · t ⊂ qD. For each of the realizations N1, . . . , N� of the group N , we obtain a semisimple
splitting HY = Nj ·N ′

j , and corresponding factorizations qDY = qDj × qD′
j by orbits. We define

𝒦d
r,j ⊂ Jdr qDY to be the locus of jets constant on qD′

j , and define 𝒥d
r ⊂ Jdr Y by 𝒥d

r ∩ JdrBi =
(Jdrψi)

−1(𝒦d
r,1 ∪ · · · ∪𝒦d

r,�).
From the fact that ΓY preserves the union 𝒦d

r,1 ∪ · · · ∪𝒦d
r,�, it is clear that the resulting locus

is well-defined and closed analytic in Jdr Y . As the maps Jdrψi are definable analytic, this locus is
also definable, so by the Peterzil–Starchenko theorem [PS08], algebraic. Thus, by Lemma 4.25
above the locus 𝒩d

r ⊂ Var(S) of points [Z] which satisfy the differential conditions 𝒥d
r is alge-

braically constructible in each component of Var(S). It is clear that because 𝒥d
r ⊂ Jdr Y for every

d and r, any such [Z] which satisfies 𝒥d
r must lie in Y . Let C ⊂ Bi ∩ Z be an analytic compo-

nent for such a Z and pick a smooth point z ∈ C. Then, the irreducibility of the fibre (JdrC)z
implies there is a j such that (Jdrψi)((J

d
rC)z) ⊂𝒦d

r,j . The constancy of the jets on the factor
qD′
j then implies that ψ(C) ⊂ qDj × {t2} for some t2 ∈ qD′

j , and hence ψ(C) lies in an Nj orbit;
it follows that 𝒞(Z) � 𝒞(Y,N). Using Lemmas 4.10(ii), 4.9 and 4.11 we moreover learn that
HZ ⊂ Nj . Finally, for any Z such that HZ ⊂ Nj for some j, it is clear from the definitions and
Lemma 4.10(ii) that Z satisfies 𝒥d

r for all d and r. We may, thus, identify 𝒟(Y,N) with the
intersection

⋂
d,r𝒩

d
r .

It now suffices to show the countable intersection 𝒟(Y,N) of algebraically constructible sets
is closed. Consider a sequence of points [Zj ] ∈ 𝒟(Y,N) converging to a limit [Z] ∈ Var(S). It
suffices to argue that Z satisfies the constraints 𝒥d

r for all d and r. Reasoning as in the preceding
paragraph, it suffices to check an irreducible component C of an analytic germ of Z satisfies 𝒥d

r
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for all d and r. This is equivalent to showing that after shrinking C so that it lies in some Bi, the
image ψi(C) lies in an orbit of one of the groups N1, . . . , N�. Applying Lemma 4.5 it will suffice
to take d = dimZ and show the locus 𝒥d

r contains a single compatible family σr ∈ Jdr,ndC of non-
degenerate jets with σ0 lying in the smooth locus of Z; let us fix such a sequence. After passing to
a subsequence we may assume that the points [Zj ] lie in a single component T of Var(S), and let
g : 𝒴 → T be the universal family over T (i.e. the restriction of the universal family over Hilb(S)
obtained by replacing the fibres with their intersections with S). After replacing 𝒴 with the open
locus 𝒴sm which parametrizes the smooth loci of the fibres of 𝒴, the restriction 𝒴sm → T is
flat, of finite presentation, and has smooth fibres: it is a smooth morphism. It then follows from
Lemma 4.6 that for each r we can lift the sequence [Zj ] to a sequence of jets σj,r ∈ JdrZj which
converge to σr. We conclude that σr ∈ 𝒥d

r for all r from the fact that 𝒥d
r is closed. �

4.8 The locus 𝒲
We are now ready to study the locus 𝒲 ⊂ Var(S) of weakly special subvarieties. To aid in the
discussion, let us denote for any type 𝒞 the locus 𝒲(𝒞) ⊂ Var(S) of varieties that satisfy the
differential constraints 𝒯d

r (𝒞) for all d and r. From Lemma 4.19 it is clear that this is the same
as the locus of [Z] ∈ Var(S) such that 𝒞(Z) � 𝒞. We write 𝒞 = 𝒞(V ) for some variety V over
the field L.

Proposition 4.31. The locus 𝒲(𝒞) ⊂ Var(S) is, within each component of Var(S), a closed
L-algebraic subvariety. Moreover, each geometric component C of 𝒲(𝒞) agrees with a component
of 𝒟(Y,N) for some choice of rigid weakly special Y and algebraic monodromy group N = HZ0 ,
where [Z0] ∈ C is some point.

Proof. We fix an L-component T ⊂ Var(S) and argue about the locus 𝒲(𝒞) ∩ T . The condition
on [Z] ∈ Var(S) that Z satisfies the constraint 𝒯d

r (𝒞) is an L-algebraically constructable condi-
tion on T by Lemma 4.25, so the condition that we satisfy all the differential constraints exhibits
𝒲(𝒞) ∩ T as a countable intersection of L-algebraically constructable sets. On the other hand,
we claim that 𝒲(𝒞) is also a countable union of closed algebraic sets 𝒟(Yj , Nj) for choices of
rigid Yj and subgroups Nj ⊂ HY coming from the algebraic monodromy of points of 𝒲(𝒞),
which will suffice to show the result. (See also Lemma 4.32.)

To see this, consider a point [Z0] ∈𝒲(𝒞). By Lemma 4.29, we can find a rigid weakly
special Y such that HZ0 is a Q-algebraic normal subgroup of HY . By Proposition 4.30 we have
a closed algebraic locus 𝒟(Y,HZ0), and the points [Z] in this locus satisfy the condition 𝒞(Z) �
𝒞(Y,HZ0) = 𝒞(Z0). As [Z0] ∈𝒲(𝒞) implies 𝒞(Z0) � 𝒞, it follows that 𝒟(Y,HZ0) ⊂𝒲(𝒞).
On the other hand, as we vary the point [Z0], only countably many rigid weakly specials Y and
Q-algebraic groups HZ0 can arise, hence 𝒲(𝒞) =

⋃∞
j=1 𝒟(Yj , Nj) for some countable collection

{(Yj , Nj)}∞j=1 as described. �

Lemma 4.32. Let X be a L-algebraic variety, and suppose that a set 𝒮 ⊂ X(C) is both a
countable intersection 𝒮 =

⋂∞
i=1Di of constructible L-algebraic sets Di and a countable union

𝒮 =
⋃∞
i=1Ei of constructible L-algebraic sets Ei. Then 𝒮 is L-constructible, and there exists m

and n such that

𝒮 =
m⋂
i=1

Di =
n⋃
i=1

Ei.

Proof. By replacing Di with D1 ∩ · · · ∩Di and Ei with E1 ∪ · · · ∪Ei we may assume that Di ⊃
Di+1 and Ei ⊂ Ei+1 for all i. We recall that any constructible L-algebraic subset of X is of the
form (V1 ∩ U1) ∪ · · · ∪ (Vk ∩ Uk) for closed L-algebraic sets V1, . . . , Vk and open L-algebraic sets
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U1, . . . , Uk of X. The sequence of closures D1, . . . ,Di, . . . therefore eventually stabilizes to some
L-algebraic union V1 ∪ · · · ∪ Vk of closed L-algebraic sets, and replacing the sequence {Di}∞i=1 by
a subsequence we may assume that each Di is of the form (V1 ∩ U1,i) ∪ · · · ∪ (Vk ∩ Uk,i).

Using the fact that a countable intersection of Zariski open subsets of an irreducible closed
set remains dense, the closure of the set 𝒮 is equal to V1 ∪ · · · ∪ Vk. It follows from the fact that
closed complex algebraic sets form meagre subsets of algebraic sets of larger dimension that for
large enough i the sets Ei are also of the form (V1 ∩ U ′

1,i) ∪ · · · ∪ (Vk ∩ Uk,i). The complements
Vj \ (Vj ∩ U ′

1,i) are a sequence of closed subsets of Vj , decreasing in the index i, so must stabilize
for large i. The result follows. �

Theorem 4.33. Suppose that V is a polarized integral variation of Hodge structure on the
smooth K-algebraic variety S, and that the associated algebraic data admits a model (ℋ, F •,∇)
over K. Then the locus 𝒲 ⊂ Var(S) of weakly special varieties is a constructible K-algebraic
subset within each component of Var(S).

Proof. It suffices to show that 𝒲 is a constructible complex algebraic set in each component;
the K-algebraicity follows from [KOU20, Proposition 3.1(b)], which shows that an Aut(C/K)-
conjugate of a weakly special variety is again weakly special.

Recall we have a fixed list of types 𝒞1, . . . ,𝒞q arising from the variation V. It suffices to show
this statement for the locus 𝒲j ⊂𝒲(𝒞j) of varieties which are weakly special (i.e. maximal)
for the differential constraints 𝒯d

r (𝒞j); we write 𝒞j = 𝒞(Vj) for some Vj ⊂ qL. Thus, we need to
compute the sublocus of 𝒲(𝒞j) consisting of points [Z] ∈𝒲(𝒞j) such that for any [Y ] ∈𝒲(𝒞j)
with Z ⊂ Y we have Z = Y . Let us denote by {Ci}∞i=1 the components of 𝒲(𝒞j), and fix some i0.
We denote by C◦

i0
⊂ Ci0 the subset consisting of [Z] such that 𝒞(Z) = 𝒞j ; this is the open locus

obtained by removing the intersections of Ci0 with 𝒲(𝒞j′) for those j′ �= j such that 𝒞j′ � 𝒞j .
We let d be the dimension of the subvarieties parametrized by C◦

i0
. We may compute the maximal

points of C◦
i0

in two ways:

(i) on the one hand, a point [Z] ∈ C◦
i0

is maximal if it lies outside the loci

Ei = {[Z] ∈ C◦
i0 : there exists [Y ] ∈ Ci such that Z ⊂ Y },

for every i �= i0;
(ii) on the other hand, for each r we have from Proposition 4.24 a locus 𝒰(C◦

i0
, Vj , r) ⊂ C◦

i0
such

that [Z] ∈ C◦
i0

is maximal if and only if it lies inside 𝒰(C◦
i0
, Vj , r) for some r.

Both conditions described in parts (i) and (ii) are constructible; for part (i) this is true by
Proposition 4.26, and for part (ii) this is true by Proposition 4.24. It follows that the locus
𝒲j ∩ C◦

i0
= 𝒲j ∩ Ci0 is both a countable union and a countable intersection of constructible

sets, hence constructible by Lemma 4.32. �

5. The computation of 𝒲

In § 4 we have ignored computational considerations. We now explain why the components of
the moduli scheme Var(S) as well as the constructible conditions defining 𝒲 in each component
are computable. We fix a closed embedding S ⊂ Pn with respect to which we compute degrees
of subvarieties of S. We assume throughout that we have an open K-algebraic affine cover
S =

⋃n
i=1 Si and models (ℋi, F

•
i ,∇i) for the K-algebraic data associated to V

∣∣
Si

, where V is a
polarizable integral variation of Hodge structure V, and K ⊂ C is a computable subfield.
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5.1 Loci defined by families
Proposition 5.1. Let f : X → T be a projective K-algebraic morphism over the Noetherian
base T . Then there exists algorithms to compute:

(i) a flattening stratification of T , that is, a partition T = T1 ∪ · · · ∪ Tk into locally closed
K-algebraic sets such that the base-change maps f : XTi → Ti are flat for i = 1, . . . , k;

(ii) a partition T = T1 ∪ · · · ∪ Tk of T into constructible sets such that the geometrically irre-
ducible components of the fibres are given uniformly (see [Aya10, Definition 1]) in each
set (in particular, some subset of the sets {Ti}ki=1 parametrize exactly the geometrically
irreducible fibres);

(iii) the constructible locus Tred ⊂ T where the fibres of f are reduced.

Proof. (i) The theory of parametric Gröbner bases solves this problem, as is explained by
Swinarski in [Swi18, § 1.4]. This is also discussed in [Wib07]; see, in particular, [Wib07,
Corollary 2].

(ii) This problem is solved by Ayad in [Aya10]. Note that Ayad works over Q, but explains how
to extend the methods to a general K in his PhD thesis [Aya06].

(iii) By part (i) we may reduce to the situation where f is flat, and by taking an irreducible
decomposition of T , where T is irreducible and reduced. In this situation the locus Tred ⊂ T is
an open subset, either empty or dense. It suffices to decide whether Tred is non-empty, and if it
is, compute a non-empty open subset V ⊂ Tred and reduce to the same problem for the family
XT\V → T \ V , which we can resolve by induction on the dimension of the base.

It suffices to make the argument in [SP20, Lemma 0578] constructive. More specifically,
[SP20, Lemma 0578] in combination with the openness of the reduced locus tells us Tred is non-
empty if and only if XK(T ) is reduced, where K(T ) is the function field of T . We can decide
whether XK(T ) is reduced using any of the algorithms for computing the reduction of a finite-
type scheme over a field (e.g. using [KL91]), so it suffices to compute V in the case where Tred

is non-empty.
For this we can follow the method of proof in [SP20, Lemma 0578] and [SP20, Lemma 0573],

which computes the locus Xsm ⊂ X consisting of x ∈ X such that the germ (Xf(x), x) is smooth,
and then argues we can take for V an open locus consisting of t ∈ T where Xsm,t is scheme-
theoretically dense in Xt. The proof in [SP20, Lemma 0573] which establishes the existence of a
non-empty V is constructive, except that one needs a constructive version of the ‘generic flatness’
result that if A is an integral finite type algebra and M is a finitely-generated A-module then
M is flat on an open neighbourhood of SpecA. For this one can use the stronger property that
M is generically free, for which a constructive proof appears in [Ble18]. �
Lemma 5.2. There exists an algorithm to compute the locus described by Proposition 4.26 given
the families g1 and g2 as input.

Proof. As in the proof of Proposition 4.26, we may construct a family g12 : X12 → T1 ×K T2

whose fibre above (t1, t2) may be identified with the intersection X1,t1 ∩X2,t2 . We then use the
algorithm in Proposition 5.1(ii) to find the locus where the fibres of g12 have dimension d, and
project this locus to T1. �

5.2 Computing with type data
To compute the differential constraints 𝒯d

r (𝒞i) for the finitely many types 𝒞1, . . . ,𝒞q associated
to the variation V, we must first explain how to compute certain data associated to those types.
We continue with the notation established in § 4; in particular, we have a fixed polarized lattice
V , and fixed embeddings D ⊂ qD ⊂ qL.
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Definition 5.3. We say a type 𝒞 is Hodge-theoretic if 𝒞 = 𝒞(V ) where V = N · t for a point
t ∈ D and a connected Q-algebraic normal subgroup N ⊂ MT(t).

Proposition 5.4. There exists an algorithm that computes a finite list V1, . . . , V� ⊂ qL of
subvarieties such that the set of Hodge-theoretic types is a subset of {𝒞(V1), . . . ,𝒞(V�)}.
Proof. We first note that the task of computing Hodge-theoretic types reduces to the following
problem: compute pairs (h,N) up to GL(V )(C)-equivalence, with h ∈ D and N a Q-algebraic
normal subgroup of MT(h). Here we regard GL(V )(C) acting on h through the embeddingD ⊂ qL
and on N by conjugation. Given that (N ′, h′) = g · (N,h) for g ∈ GL(V )(C), we have as orbits
in qL

N ′ · h′ = (g ·N · g−1) · (g · h) = g · (N · h),
so two equivalent pairs determine the same type.

We denote by {hp,q}p+q=n the Hodge numbers associated to the period domain D. Given
a point h ∈ D thought of as a morphism h : S→ GL(V )R, the Mumford–Tate group is the
Q-Zariski closure of h(S). Using the construction of S in [GGK12, Ch. 1], there is an isomorphism
SC � Gm,C ×Gm,C, and pulling back the morphism hC along the inclusion of the second factor
we obtain a cocharacter μh : Gm,C → GL(V )C. The weights of μh determine the Hodge flag
associated to h, in the sense that μh acts through the character zp with multiplicity hp,q, and
the weight space decomposition on VC is the Hodge decomposition associated to h.

The preceding paragraph shows that pairs (h,N) are represented up to GLm(C)-equivalence
by pairs (μ,N ′) with the following properties:

(i) the weight space decomposition of VC with respect to μ has the weight zp occur with
multiplicity hp,q;

(ii) the group N ′ is a (possibly complex) connected semisimple algebraic subgroup of GL(V )C;
(iii) the character μ factors through the connected component of the normalizer of N ′.

To see that pairs (μ,N ′) satisfying properties (i), (ii) and (iii) are finite up to GLm(C)-conjugacy,
we may reason as follows. First, we use the known fact that semisimple subgroups of GL(V )C are
finite up to conjugacy, hence this is also true for the identity components of their normalizers.
It then suffices to show that cocharacters μ : Gm,C → H of a complex algebraic group H with a
fixed set of weights and multiplicities lie inside finitely many H-conjugacy classes. This reduces
to the case where H is a torus, where it is immediate. (For a similar argument, see the proof
in [Voi12] that there are finitely many Mumford–Tate groups up to GL(V )(C)-conjugacy.)

The proof is now completed as follows. In [dG11] de Graaf gives an algorithm that classifies
all semisimple subalgebras of gl(V )C up to linear equivalence, hence using [dG09] we may obtain
representatives N ′

1, . . . , N
′
� for all connected semisimple subgroups of GL(V )C up to conjugacy.

Computing the identity component of the normalizers H ′
1, . . . , H

′
� and fixing maximal tori T ′

i ⊂
H ′
i for each i, we may then compute appropriate cocharacters μ1i, . . . , μkii of T ′

i . Then the desired
set of types can be taken to be 𝒞(N ′

i · μji) for indices 1 � i � � and 1 � j � ki. �
The types 𝒞(Vi) computed by Proposition 5.4 need not all come from the variation V, in the

sense that they may not be among the types 𝒞1, . . . ,𝒞q associated to subvarieties Z ⊂ S. As a
consequence, to implement the ideas present in the previous sections we require a way of testing
when a certain differential constraint is the ‘right one’ for a family of subvarieties, for which the
following two lemmas are useful.

Lemma 5.5. Suppose Z ⊂ S is a geometrically irreducible subvariety, and U ⊂ Z is a Zariski
open subset of the smooth locus. Let V

m,n
U be the restriction to U of V⊗m ⊗ (V∗)⊗n, and let
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ℋm,n
U be the associated algebraic Hodge bundle. Then the natural map V

m,n
U,C →ℋm,n

U,an identifies
global monodromy invariant sections and algebraic sections in the kernel of ∇.

Proof. The required result follows from the Riemann–Hilbert correspondence: global sections of
V
m,n
U,C may be identified with morphisms C→ V

m,n
U,C from the trivial local system, which correspond

exactly to connection-compatible morphisms 𝒪U →ℋm,n
U of (algebraic, by Riemann–Hilbert)

vector bundles. �

Definition 5.6. Given a type 𝒞(V ) with V ⊂ qL a subvariety, we refer to the dimension dimV
as the dimension of 𝒞(V ).

Definition 5.7. Suppose that g : X → T is a subfamily of the universal family over Var(S),
with T ⊂ Var(S) a geometrically irreducible closed subscheme. By the type 𝒢(T ) of the generic
fibre of g, we mean the type of a fibre Xt above a point t lying in the complement of those loci
𝒲(𝒞i) for i = 1, . . . , q which intersect T properly. That this complement is a non-empty open
subset follows from the closedness of the loci 𝒲(𝒞i) established in Proposition 4.31.

Lemma 5.8. Suppose we are given a K-algebraic family g : X → T over a geometrically irre-
ducible reduced Noetherian base T which is a subfamily of the universal family over Var(S), along
with the natural projection p : X → S. Then there exists an algorithm to compute dim𝒢(T ).

Proof. Fix (m,n) large enough so that any semisimple subgroup N ⊂ GL(V )C is determined by
its tensor invariants of bidegree at most (m,n); because [dG11] gives an algorithm for determining
semisimple subalgebras of gl(V )C up to linear equivalence, such an (m,n) can be determined
algorithmically. Given a vector bundle 𝒱 on S, we denote by 𝒱g its pullback under p to X; this
we can regard as a family of vector bundles on the fibres of g. We may compute the various
tensor powers ℋj,h

g =
(
ℋ⊗j ⊗ (ℋ∗)h

)
g

for 0 � j � m and 0 � h � n, as well as the subsheaf

ℐj,h
g ⊂ℋj,h

g generated by relative global flat sections. We may also compute the locus Xsm ⊂ X
where the morphism g is smooth.

For each point t ∈ T (C), let us explain the relationship between the bundles ℐj,h
g |Xsm,t and

the algebraic monodromy group of the fibre Xt; we denote the bundlesℐj,h
g |Xsm,t andℋj,h

g |Xsm,t

simply by ℐj,h and ℋj,h in what follows. By Lemma 5.5, the canonical isomorphism σ : ℋan ∼−→
V⊗ 𝒪Xan

sm,t
identifies the bundles ℐj,h with the subbundles generated by monodromy invariant

tensors. Thus, it identifies the algebraic monodromy groups HXt with appropriate stabilizer
groups of the tensors lying in the bundles ℐj,h for 0 � j � m and 0 � h � n. Moreover, if we
regard HXt as a subgroup of GL(Vs) for some s ∈ Xt, the dimension dim𝒞(Xt) is equal to
dimHXt − dim(Stab(F •

s ) ∩HXt), where Stab(F •
s ) is the stabilizer of the Hodge flag at s.

Compute a generic point t ∈ T (C); this we can do by computing ℐj,h over the generic point
η ∈ T (i.e. over the function field K(T )) and then specializing. Choose a point s ∈ Xt,sm(C).
We may then compute the subgroup N ⊂ GL(ℋs) which stabilizes ℐj,h

s for all 0 � j � m and
0 � h � n, and the subgroup P ⊂ N which stabilizes F •

s . Applying Lemma 5.5 and the fact that
σ preserves filtrations, we get

dimN − dimP = dimHXt − dim(Stab(F •
s ) ∩HXt) = dim𝒞(Xt) = dim𝒢(T ). �

5.3 Computing Hilbert schemes
Lemma 5.9. There exists finitely many Hilbert polynomials P1, . . . , Pm associated to pure
dimensional reduced subschemes of S of degree at most d. Moreover, there exists an algorithm
to compute the polynomials P1, . . . , Pm.

651

https://doi.org/10.1112/S0010437X23007029 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007029


D. Urbanik

Proof. The finiteness claim is proven by Starr in [Sta17]. To see that the relevant polynomials
are computable, we may inspect Starr’s proof: for varieties of pure dimension k and for each m
such that n− k � m �

(
n+d
n

)
he considers the natural projective family over the Grassmannian

of m-dimensional subspaces of H0(Pn,𝒪(d))∗, and argues that all of the polynomials P1, . . . , Pm
occur among the fibres of these families. Constructing these families for each k and each m,
we may use Proposition 5.1(i) to compute flattening stratifications, and then obtain all the
polynomials P1, . . . , Pm by computing the reduced, geometrically irreducible locus of each family
using Proposition 5.1(ii) and (iii), and if this locus is non-empty, choosing a fibre and computing
the Hilbert polynomial using [BS92]. �

Lemma 5.10. There exists an algorithm to compute the subscheme Var(S)b ⊂ Var(S) of
Var(S) ⊂ Hilb(S) parametrizing varieties with closure in S of degree at most b, as well as the
universal family ub : 𝒴b → Var(S)b and the projection 𝒴b → S.

Proof. By Lemma 5.9, we may enumerate the Hilbert polynomials P1, . . . , Pm corresponding to
pure dimensional geometrically reduced subschemes of degree at most b. For each polynomial
Pi(t), one can construct the associated component Hilb(S)i of the Hilbert scheme using subvari-
eties of appropriate Grassmanians described explicitly in the Plüker coordinates; see for instance
[Lel12, § 1]. Note that such methods naturally also compute the associated family 𝒴i → Hilb(S)i
and the associated projection, as they work with explicit families of generators for homogeneous
ideals in Pn and so produce equations for the universal family inside Pn ×Hilb(S)i. For the
geometric irreducibility and reducedness we use Proposition 5.1(ii) and (iii), and to impose the
condition that a scheme Y ⊂ S intersects S it suffices to require that Y does not lie inside S \ S,
which we can do using Lemma 5.2. �

5.4 Computing loci satisfying differential constraints
Let us suppose that we have computed the varieties V1, . . . , Vk ⊂ qL given by Proposition 5.4, and
denote by 𝒞(V1), . . . ,𝒞(Vk) the associated types. We know that the types 𝒞1, . . . ,𝒞q associated
to subvarieties of S are a subset of the types 𝒞(V1), . . . ,𝒞(Vk), but we do not know which subset
this is. To remedy this, we work with the following loci.

Definition 5.11. For any locus 𝒲(𝒞) (recall § 4.8) associated to a type 𝒞, define the locus
𝒲(𝒞)opt to be the sublocus of 𝒲(𝒞) consisting of just those components C ⊂𝒲(𝒞) such that
we have an equality of types 𝒢(C) = 𝒞. We refer to such components C as optimal components;
this notion is distinct from other notions of optimality in theories of exceptional intersections.
We note that if 𝒞 = 𝒞(V ) for V irreducible, this is the same condition as dim𝒢(C) = dim𝒞(V ).

Lemma 5.12. The locus 𝒲(Vi)opt is non-empty if and only if the type 𝒞(Vi) is among the types
𝒞1, . . . ,𝒞q associated to subvarieties Z ⊂ S.

Proof. Given any subfamily g : X → C of the universal family over Var(S), where C ⊂ Var(S)
is closed and irreducible, the generic type 𝒢(C) satisfies the property that for each c ∈ C we
have 𝒞(Xc) � 𝒢(C). (This is because C ⊂𝒲(𝒢(C)) since the latter set is closed.) Thus, if we
consider a component C of 𝒲(𝒞(Z)) which contains [Z], then necessarily 𝒞(Z) � 𝒢(C) � 𝒞(Z),
and so 𝒲(𝒞(Z))opt contains C, and is non-empty.

Conversely, supposing that 𝒲(Vi)opt is non-empty containing the component C, we learn
that for a generic point c ∈ C we have 𝒞(Xc) = 𝒞(Vi), hence the result. �

We now explain how to compute the loci 𝒲(𝒞(Vi))opt.
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Lemma 5.13. Given a K-algebraic family g : X → T which is a subfamily of the universal family
over Var(S), and given a type 𝒞(V ), there exists for each r, d � 0 an algorithm to compute the
constructible locus of [Z] ∈ T such that Z satisfies the differential constraint 𝒯d

r (𝒞(V )).

Proof. Applying Corollary 3.4, we may compute the differential constraints 𝒯d
r (𝒞(V )) ⊂ Jdr S.

We then observe that the proof of Lemma 4.25 is constructive, so it suffices to construct the
appropriate families and judiciously apply Proposition 2.1(ii). �

Proposition 5.14. Given a component T of Var(S) and a geometrically irreducible variety
V ⊂ qL, there exists an algorithm to compute T ∩𝒲(𝒞(V ))opt.

Before proceeding with the proof of Proposition 5.14, we note that Lemma 5.10 above
guarantees that we may assume we have computed the universal family u : 𝒴 → T over T
along with the projection p : 𝒴 → S. We fix d to be the common dimension of the varieties
parametrized by T throughout. We denote by 𝒲d

r,i ⊂ T the constructible locus of [Z] ∈ T such
that Z satisfies the differential constraint 𝒯d

r (𝒞(Vi)). Note that it follows from Lemma 4.19 that
T ∩𝒲(𝒞(Vi)) =

⋂
r𝒲

d
r,i.

Proof of 5.14. We set V0 = V . We show the stronger claim that we may compute all the loci T ∩
𝒲(𝒞(V0))opt, T ∩𝒲(𝒞(V1))opt, . . . , T ∩𝒲(𝒞(Vk))opt; in particular, we consider those indices
i1, . . . , ip with 0 � ij � k such that dimVij = �, and show that we may compute the loci T ∩
𝒲(𝒞(Vi1))opt, . . . , T ∩𝒲(𝒞(Vip))opt.

We compute the loci T ∩𝒲(𝒞(Vip))opt in parallel. More specifically, we compute for each ij
the locus 𝒲d

r,ij
for increasing values of r. We observe that there must be some r0 at which:

(i) the loci 𝒲d
r0,ij

are all closed;
(ii) if j �= j′ and C ⊂𝒲d

r0,ij
and C ′ ⊂𝒲d

r0,ij′
are two components such that dim𝒢(C) =

dim𝒞(Vij ) and dim𝒢(C ′) = dim𝒞(Vij′ ), then C and C ′ intersect properly.

Indeed, the existence of such an r0 follows because this is true in the case where 𝒲d
r0,ij

= T ∩
𝒲(𝒞(Vij )) for all ij , which occurs for some r0 large enough as the loci 𝒲(𝒞(Vij )) are all closed.
(Note that the condition dim𝒢(C) = dim𝒞(Vij ) in fact implies 𝒢(C) = 𝒞(Vij ) for components C
of 𝒲(𝒞(Vij )), hence optimal components of 𝒲(𝒞(Vij )) and 𝒲(𝒞(Vij )) must intersect properly
for j �= j′, otherwise we would have 𝒞(Vij ) = 𝒞(Vij′ ).)

We claim that at this stage we must have that the optimal components of T ∩𝒲(𝒞(Vij ))
are exactly those components C of 𝒲d

r0,ij
whose generic type has dimension dimVij = �. Indeed,

for each such C, it must lie inside the closed locus T ∩𝒲(𝒢(C)), where 𝒢(C) is the generic
type of C. By assumption, we have 𝒢(C) = 𝒞(Vij′ ) for some j′, because it was assumed that
all the Hodge-theoretic types are among the types 𝒞(V1), . . . ,𝒞(Vk). However, the choice of r0
guarantees that C can only lie inside 𝒲(𝒞(Vij′ )) when j′ = j. It follows that C is an optimal
component of T ∩𝒲(𝒞(Vij )).

We conclude by observing that we can compute all the loci 𝒲d
r,ij

and the optimal components
C by computing the differential conditions 𝒯d

r (𝒞(Vi)) and using Lemmas 5.13 and 5.8. �

5.5 Main result
We recall that, given an integer b, we have a locus Var(S)b ⊂ Var(S) consisting of those varieties
of degree at most b.

Theorem 5.15. There exists an algorithm to compute the intersection of 𝒲 with Var(S)b.
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Proof. By Proposition 5.14 and Lemma 5.10, we may compute the loci 𝒲(𝒞(Vi))opt ∩Var(S)b
for each of the types 𝒞(V1), . . . ,𝒞(Vk). By Lemma 5.12 these loci will be non-empty only for
types belonging to the subset 𝒞1, . . . ,𝒞q, so we may assume that all the types we work with
belong to this set. It suffices to prove the claim of the theorem for the locus 𝒲j of weakly
special subvarieties of type 𝒞j . As 𝒲j ⊂𝒲(𝒞j)opt, we may therefore fix a component C ⊂
𝒲(𝒞j)opt ∩Var(S)b parametrizing varieties of dimension m and show we can compute 𝒲j ∩ C.
Removing points [Z] ∈ C which lie inside 𝒲(𝒞j′)opt for some j′ �= j such that the intersection
𝒲(𝒞j′)opt ∩𝒲(𝒞j)opt is proper, we obtain the locus C◦ ⊂ C which appears in the proof of
Theorem 4.33. We then observe the following.

(i) By Proposition 5.14, we have an algorithm which computes any component Ti of 𝒲(𝒞j)opt

and, in particular, those components parametrizing [Z] ∈ Var(S) with dimZ > m. By apply-
ing Lemma 5.2 to the universal family over C◦ as well as the universal family over Ti, we may
therefore compute constructible loci Ei ⊂ C◦, where Ei is as in the proof of Theorem 4.33.

(ii) We may compute the loci 𝒰(C◦, Vj , r) that appear in the proof of Theorem 4.33 by observ-
ing that the arguments that appear in §§ 3.3 and 4.4 are constructive. In particular, the
constructions that appear only require linear algebra and the tools present in Proposition 2.1.

By constructibility of 𝒲j ∩ C◦ and Lemma 4.32, we know that there exists i0 and r0 such that

𝒲j ∩ C =
i0⋂
i=1

(C◦ \ Ei) =
r0⋃
r=1

𝒰(C◦, Vj , r).

Moreover, the sets Ei and 𝒰(C◦, Vj , r) are disjoint for each choice of i and r. It follows that we
may compute 𝒲j ∩ C◦ by computing the decreasing intersections

⋂i′
i=1(C

◦ \ Ei) and increasing
unions

⋃r′
r=1 𝒰(C◦, Vj , r), and terminating when we achieve equality. �

Remark. We note that the proof of Theorem 5.15 requires the material in § 4, in particular
Lemma 4.32, in order to establish the termination (i.e. the existence of i0 and r0) of the algorithm
implicit in the proof.

6. Applications

We now prove a stronger form of the conjecture that appears in [DR18].

Theorem 6.1. Let V be a polarizable integral variation of Hodge structure on a smooth alge-
braic variety S. Fix a projective compactification S ⊂ S and an ample line bundle ℒ on S. Then
as Z ⊂ S ranges over (geometrically) irreducible subvarieties of S whose closures Z in S have
degree at most d with respect to ℒ, the following hold:

(i) up to conjugacy by the monodromy group ΓS of V, only finitely many algebraic monodromy
groups HZ arise;

(ii) of those Z that are weakly special, only finitely many are rigid (weakly non-factor in the
language of [KOU20]), and each corresponds to an isolated point [Z] in the weakly special
locus 𝒲 ⊂ Var(S);

(iii) the non-rigid weakly specials Z belong to finitely many constructible families, with each
family consisting of varieties lying inside a common rigid (weakly) special.

Proof. By replacing ℒ with a tensor power we may embed S in Pn, and assume the degrees of
the closures Z correspond with their degrees as subvarieties of Pn. We are then in the setting of
§ 4, from which the desired results may be obtained in the following way.
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(i) As there are finitely many Hodge-theoretic types, it suffices to show the statement for those
points [Z] ∈ Var(S)d of type 𝒞i and, hence, those [Z] ∈𝒲(𝒞i) ∩Var(S)d that do not also lie in
𝒲(𝒞j) for some type 𝒞j � 𝒞i with j �= i. We may therefore assume the component C of 𝒲(𝒞i)
containing [Z] satisfies 𝒞i = 𝒢(C) = 𝒞(Z), and show the result for just the generic points of
C. It follows from Proposition 4.31 that we may identify C with a component of 𝒟(Y,HZ) ∩
Var(S)d, where Y is a rigid weakly special containing Z such that HZ is normal in HY ; note
that the point [Z0] in Proposition 4.31 must be generic. Using the definition of 𝒟(Y,HZ) in
Proposition 4.30 a generic point [Z ′] ∈ C has algebraic monodromy group HZ′ conjugate to HZ

under the monodromy ΓY on Y and, hence, by the monodromy ΓS on S. Only finitely many
such components occur for degrees � d, hence the result.

(ii) Suppose that [Z] ∈𝒲(𝒞(Z)) is a rigid weakly special, and let C be a component of 𝒲(𝒞(Z))
containing Z. By Proposition 4.31 we may identify C with a component of 𝒟(Y,N) for Y a rigid
weakly special and where N = HZ0 is normal in HY , with [Z0] ∈ C a point. On the one hand,
from Proposition 4.30 we know that 𝒞(Z) � 𝒞(Y,N) = 𝒞(Z0). On the other hand, because
C ⊂𝒲(𝒞(Z)) we have 𝒞(Z0) � 𝒞(Z), so it follows that 𝒞(Z) = 𝒞(Z0) = 𝒞(Y,N).

Once again applying Proposition 4.30 we learn that HZ lies in one of the Q-algebraic
subgroups N1, . . . , N� of HY which are conjugate to HZ0 under ΓY ; say that HZ ⊂ Ni. If
we fix a local period map ψ : B → D such that B contains a point s ∈ Z(C), then we have
that HZ · ψ(s) ⊂ Ni · ψ(s). Using the fact that dim𝒞(Z) = dim𝒞(Y,N) we learn that, in fact,
HZ · ψ(s) = Ni · ψ(s). As Ni is conjugate under ΓY to HZ0 , it does not contain a Q-simple fac-
tor with a compact set of real points by Lemma 4.11. Applying Lemma 4.9 twice we learn that
HZ = Ni and, hence, HZ is normal in HY . By rigidity, it follows that Y = Z. As all elements of
C lie in Y and have the same dimension as Z, we learn that C is a point.

We have learned that for each type 𝒞i arising from the variation V, every rigid weakly special
Z with 𝒞(Z) = 𝒞i is an isolated point in 𝒲(𝒞i). As there can only be finitely many isolated
points in the finite-type locus 𝒲(𝒞i) ∩Var(S)d and there are only finitely many types 𝒞1, . . . ,𝒞q
arising from V, the result follows.

(iii) This is the statement that the locus 𝒲i ∩Var(S)d is covered by finitely many of the loci
𝒟(Y,N) of Propositions 4.30 and 4.31. �

As a corollary, we obtain the following conjecture which appears in [DR18].

Corollary 6.2. Suppose that S = Γ\X is a Shimura variety associated to the Shimura datum
(G,X). Then there exists a finite set Ω of semisimple Q-algebraic subgroups of G such that if
Z ⊂ S is a special subvariety of S with deg(Z) � d (relative to the Bailey–Borel line bundle)
and defined by a Shimura subdatum (H,XH) ⊂ (G,X), then

Hder = γFγ−1,

for some γ ∈ Γ and F ∈ Ω.

Proof. Without loss of generality, passing to a finite covering if necessary, we can assume Γ ⊂
G(Q) is a neat arithmetic subgroup and so S is a smooth quasi-projective algebraic variety. If we
choose a faithful integral representation ρ : G→ GL(V ), we obtain a variation V of polarizable
integral Hodge structures on S with monodromy ΓS = Γ. For each special subvariety Z defined
by (H,XH), the group H may be identified with the Mumford–Tate group of Z, and the group
Hder with its algebraic monodromy group. We thus may take the set Ω to be the set of algebraic
monodromy groups associated to subvarieties Z ⊂ S of degree at most d, and the result follows
from Theorem 6.1(i). �
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As explained in [DR18, § 10] and [DJK20, Remark 3.8], Corollary 6.2 also resolves [DR18,
Conjecture 10.3] of Daw and Ren and the conjecture in [DJK20] of Daw, Javanpekkar and Kühne
that there should be finitely many non-factor special subvarieties of bounded degree.

Lastly, we resolve Corollary 1.8.

Corollary 6.3. In the setting of Theorem 5.15, there exists an algorithm to compute a finite
subset 𝒮 ⊂𝒲 ∩Var(S)d containing the rigid weakly special subvarieties.

Proof. By Theorem 6.1(ii) it suffices to compute the finite set of isolated points of 𝒲 ∩Var(S)d,
which can be done by taking the Zariski closure and computing an irreducible decomposition. �
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