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Abstract. A closer look at Laguerre and Meixner polynomials shows that they
interact, with a more active role played by the latter. We intend here to expound on
this development of the story up to some level of abstraction.
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Both Laguerre and Meixner polynomials belong to the classical part of the theory
of orthogonal polynomials. While Laguerre polynomials have found a firm position
in theoretical physics (exemplum: the hydrogen atom), the Meixner ones have rather
been put aside. It turns out that if one passes from Laguerre polynomials to Laguerre
functions (they are orthonormal and complete in L2(�+)) on the one hand and from
Meixner polynomials to Meixner sequences (which are orthonormal and complete in
�2) on the other, the two meet in perfect harmony (if not to say, coincide, at least from
the point of view of the Hilbert space category); this theme is developed in [9]. Here
we intend to show how they interplay. This kind of interplay was discovered in [5] as
a property of Hilbert space operators and then settled in the proper environment of
special functions in [6] and [7].

The differential operators. The Laguerre polynomials L(α)
n , n = 0, 1, . . . , α > −1,

can be given1 as

L(α)
n (x)

df= (α)n

n! 1F1

( −n
α + 1

∣∣∣x
)

.

They satisfy2 [10]

(n + 1)L(α)
n+1(x) = (−xD2 − (α + 1 − 2x)D + α + 1 − x)L(α)

n (x), n = 0, 1, . . . (1)

which is the raising formula for them3. The other, the lowering formula [8] is4 (with
convention L(α)

−1 = 0)

(n + α)L(α)
n−1(x) = (−xD2 − (α + 1)D)L(α)

n (x), n = 0, 1, . . .

At some stage this work was supported by the KBN grant 2 P03A 037 024.
1 (a)n defined as (a)0

df= 1 and (a)n
df= (a)n−1(a + n − 1) stands for the shifted factorial (the Pochhammer

symbol).
2 Occasionally, depending on the context, we use the shorthand notation D df= d

dx .
3 We distinguish between operational formulae and Hilbert space operators; this is to avoid messy exposition.
4 There is a misprint in formula (2) (as wel as in (4)) in [8]; +1 has to be dropped in both.
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Recalling the orthogonality relation∫ ∞

0
L(α)

m (x)L(α)
n (x)xαe−xdx = �(n + α + 1)

n!
δm,n, m, n = 0, 1, . . .

and defining the Laguerre functions

l(α)
n (x)

df=
√

n!
�(n + α + 1)

xα/2e−x/2L(α)
n (x), x ≥ 0, n = 0, 1, . . .

we get from (1) for n = 0, 1, . . . the following formula

√
(n + 1)(n + α + 1)l(α)

n+1(x) =
(

−xD2 + (x − 1)D − x2 − 2x − α2

4x

)
l(α)
n (x). (2)

Since the sequence {L(α)
n }∞n=0 is complete in L2(�+, xαe−x dx), the sequence {l(α)

n }∞n=0
forms an orthonormal basis in L2(�+) (with �+ for [0,+∞)). Thus we come from (2)
to a family Sα, α > −1, of densely defined operators in L2(�+) defined as5

(Sαf )(x)
df=

(
−x

d2

dx2
+ (x − 1)

d
dx

+ −x2 + 2x + α2

4x

)
f (x),

f ∈ D(Sα)
df= lin

{
l(α)
n ; n = 0, 1, . . .

}
, (3)

which act as forward weighted shift operators (with respect to the basis {l(α)
n }∞n=0), that is

Sαl(α)
n =

√
(n + 1)(n + α + 1)l(α)

n+1, n = 0, 1, . . . (4)

The Hilbert space adjoint S∗
α of Sα, acts for f ∈ lin{l(α)

n ; n = 0, 1, . . .} as

(S∗
αf )(x) df=

(
−x

d2

dx2
− (x + 1)

d
dx

+ −x2 − 2x + α2

4x

)
f (x).

It is a backward weighted shift with respect to the Laguerre functions

S∗
αl(α)

n =
{√

n(n + α)l(α)
n+1 if n = 1, 2, . . .

0 if n = 0

Both Sα and S∗
α are the ladder operators for the Laguerre polynomials.

The finite difference operators. The Meixner polynomials M(β,c)
n , n = 0, 1, . . . ,

with parameters β > 0 and 0 < c < 1, can be defined (cf. [3]) as

M(β,c)
n (x) df= 2F1

( −n,−x
β

∣∣∣1 − 1
c

)
(5)

5 D(A) stands for the domain of an operator, lin denotes the linear span.
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They are related to their generating function as follows

(
1 − t

c

)x

(1 − t)−x−β =
∞∑

n=0

(β)nM(β,c)
n (x)

tn

n!
, (6)

Write (6) for x + 1 instead of x and put these two together so as to get

(
1 − t

c

) ∞∑
n=0

(β)nM(β,c)
n (x)

tn

n!
= (1 − t)

∞∑
n=0

(β)nM(β,c)
n (x + 1)

tn

n!
.

Comparing the coefficients at tn we arrive at

(β + n − 1)
[
M(β,c)

n+1 (x) − M(β,c)
n+1 (x + 1)

] = n
(

1
c

M(β,c)
n (x) − M(β,c)

n (x + 1)
)

. (7)

On the other hand, the difference relation for the Meixner polynomials is

−nM(β,c)
n (x) = c

1 − c
(x + β)M(β,c)

n (x + 1)

− x + (x + β)c
1 − c

M(β,c)
n (x) + x

1 − c
M(β,c)

n (x − 1).

Changing n for n + 1 we can rewrite the above difference relation as

−(n + 1)M(β,c)
n+1 (x) = c

1 − c
(x + β)

(
M(β,c)

n+1 (x + 1) − M(β,c)
n+1 (x)

)
− x

1 − c

(
M(β,c)

n+1 (x) − M(β,c)
n+1 (x − 1)

)
(8)

and inserting (7) into the brackets of (8) we get

−(n + 1)M(β,c)
n+1 (x) = c

1 − c
(x + β)

n + 1
β + n

(
M(β,c)

n (x + 1) − c−1M(β,c)
n (x)

)
− x

1 − c
n + 1
β + n

(
M(β,c)

n (x) − c−1M(β,c)
n (x − 1)

)
.

Finally, the raising formula for Meixner polynomials is

(β + n)M(β,c)
n+1 (x) = 1

1 − c
((2x + β)M(β,c)

n (x) − c(x + β)M(β,c)
n (x + 1)

+−c−1xM(β,c)
n (x − 1)), n = 0, 1, . . . (9)

Recall that the orthogonality relation for Meixner polynomials is of the form

∞∑
x=0

(β)x

x!
cxM(β,c)

k (x)M(β,c)
l (x) = c−kk!

(β)k(1 − c)β
δkl. (10)

Define the n-th Meixner sequence as

m(β,c)
n (x)

df= (1 − c)β/2

√
(β)ncn

n!

√
(β)xcx

x!
M(β,c)

n (x), x = 0, 1, . . . (11)
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Then (9) takes the form (notice here m(β,c)
n (−1) or, rather, the whole expression in the

second bracket is irrelevant)

√
(n + 1)(β + n)m(β,c)

n+1 (x) = 1
1 − c

(
(2x + β)

√
cm(β,c)

n (x) − c
√

(x + 1)(x +β)m(β,c)
n (x + 1)

−
√

x(x + β − 1)m(β,c)
n (x − 1)

)
. (12)

Because, due to (10) each m(β,c)
n is in �2, we can define an operator Sβ,c in �2 as follows:

D(Sβ,c)
df= lin{m(β,c)

n ; n = 0, 1, . . .} and for f ∈ D(Sβ,c),

(Sβ,c f )(x)
df= 1

1 − c
(
√

c(2x + β)f (x) − c
√

(x + 1)(x + β)f (x + 1)

−
√

x(x + β − 1)f (x − 1)), x = 1, 2, . . . ,

(Sβ,c f )(0) df= 1
1 − c

(cβf (0) − c
√

βf (1)).

A look at (11) and (5) convinces us that

m(β,c)
n (x) = m(β,c)

x (n), n, x = 0, 1, . . . (13)

Because of this selfduality, by [2], the sequence {m(β,c)
n }∞n=0 forms a basis, that is an

orthonormal and complete set, in �2. Thus Sβ,c is a densely defined operator in �2 and

Sβ,cm(β,c)
n =

√
(n + 1)(n + β)m(β,c)

n+1 , n = 0, 1, . . .

Consequently, its adjoint S∗
β,c acts on lin{m(β,c)

n ; n = 0, 1, . . .} as (cf. [4])

S∗
β,cm

(β,c)
n =

{√
n(n + β − 1)m(β,c)

n−1 if n = 1, 2, . . .

0 if n = 0
(14)

and its finite difference form is

(S∗
β,c f )(x) = 1

1 − c
(
√

c(2x + β)f (x) − c
√

x(x + β − 1)f (x − 1)

−
√

(x + 1)(x + β)f (x + 1)), x = 1, 2, . . . ,

(S∗
β,c f )(0) = 1

1 − c
(
√

cβ f (0) −
√

β f (1)).

Notice that this formula extends to the whole of D(S∗
β,c) and that D(S̄β,c) = D(S∗

β,c),
where S̄β,c is the closure of Sβ,c.
Invoking the defining formula (11) we get from the above and (14)

nM(β,c)
n−1 (x) = c

1 − c

(
(2x + β)M(β,c)

n (x) − (x + β)M(β,c)
n (x + 1)

− xM(β,c)
n (x − 1)

)
, n = 1, 2, . . .

and this is the lowering formula6 for Meixner polynomials.

6 Notice that we have used here a, rather simple, argument concerning Hilbert space operators.
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Let {εn}∞n=0 be the canonical zero-one basis in �2, that is εn = {δn,i}∞i=0. Because {εn}∞n=0 ⊂
D(S̄β,c) we have

S̄β,cεn = 1
1 − c

(
√

c(2n + β)εn − c
√

n(n + β − 1)εn−1

−
√

(n + 1)(n + β)εn+1), n = 1, 2, . . . ,

S̄β,cε0 = 1
1 − c

(cβε0 −
√

βε1).

and

S∗
β,cεn = 1

1 − c
(
√

c(2n + β)εn − c
√

(n + 1)(n + β)εn+1

−
√

n(n + β − 1)εn−1), x = 1, 2, . . . ,

S∗
β,cε0 = 1

1 − c
(
√

cβε0 −
√

βε1).

The abstract setup. Let H be a separable Hilbert space with the inner product
〈 · ,−〉 and let {en}∞n=0 be a basis in it. Set

e(β,c)
n

df=
∞∑

k=0

m(β,c)
k (n)ek; n = 0, 1, . . . (15)

Then, by (13) and according to Proposition 2 of [6], e(β,c) df= {e(β,c)
n }∞n=0 is another basis

in H and the reciprocity

en =
∞∑

k=0

m(β,c)
n (k)e(β,c)

k ; n = 0, 1, . . .

holds.
A densely defined closable operator S in H is said to be a (forward) weighted shift
with respect to e and with the weights {σn}∞n=0 if lin{en; n = 0, 1, . . .} is a core7 of S,
Sen = σnen+1 for n = 0, 1, . . . and all σn’s are positive numbers. In like manner, an
operator T is called a backward weighted shift with respect to e and with the weights
{τn}∞n=0 if lin{en; n = 0, 1, . . .} is a core of T , Ten = τn−1en−1 for n = 0, 1, . . . and all τn’s
are positive numbers. If all σn = τn the operators S and T are formally adjoint each
to the other, that is 〈S f, g〉 = 〈f, Tg〉, for f, g ∈ lin{en; n = 0, 1, . . .}; in fact we always
have D(S) ⊂ D(S∗) and the inclusion may be strict in general, cf. [4].

Prompted by the presentation so far we are going to distinguish two weighted shifts,
both with the same weights σn = √

(n + 1)(n + β) with β > 0: the forward weighted
shift with these weights Sβ,c and the related backward shift which is nothing, as we
already know, but the adjoint S∗

β,c restricted to lin{en; n = 0, 1, . . .}. They are a kind
of creation and annihilation operators in our circumstances and we would like to hold
on these names here. According to what we have said it is enough to consider one of
them, the creation operator say. Fortunately in this case D(S̄β,c) = D(S∗

β,c).

7 D ⊂ D(A) is a core of a closable operator A if A|D = Ā with ¯ standing for the closure.
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Set

M df= diag(n)∞n=0 with respect to the basis e. (16)

Using closability of M, by (15), we infer that e(β,c) ⊂ D(M̄). Also fn
df= √

(N + 1)(N + β)

× [m(β,c)
N (n)eN+1 − cm(β,c)

N+1(n)eN ]. By (12) we have8 (with e−1 = 0 and m(β,c)
k (−1) df= 0)

[Sβ,c + cS∗
β,c − β

√
cI − 2

√
cM]

N∑
k=0

m(β,c)
k (n)ek

(12)=
N∑

k=0

m(β,c)
k (n)[

√
(k + 1)(k + β)ek+1 + c

√
k(k + β − 1)ek−1 − √

c(2k + β)ek]

=
N∑

i=0

[√
i(i + β − 1)m(β,c)

n (i − 1) + c
√

(i + 1)(i + β)m(β,c)
n (i + 1)

−√
c(2i + β)m(β,c)

n (i)
]
ei + fN

(12)= − (1 − c)
√

(n + 1)(n + β)
N∑

i=0

m(β,c)
n+1 (i)ei + fN . (17)

Because fN → 0,
∑N

k=0 m(β,c)
k (n)ek → e(β,c)

n and Sβ,c
∑N

k=0 m(β,c)
k (n)ek → √

c(2n +
β)e(β,c)

n − c
√

n(n + β − 1)e(β,c)
n−1 − √

(n + 1)(n + β)e(β,c)
n+1 as N → ∞ we get therefrom

e(β,c)
n ∈ D(S̄β,c) and

(S̄β,c + cS∗
β,c − β

√
cI − 2

√
cM̄)e(β,c)

n = −(1 − c)
√

(n + 1)(n + β)e(β,c)
n+1 . (18)

Let Uβ,c be a unitary operator sending en’s to e(β,c)
n ’s. Then (1) can be read as

Sβ,c = − 1
1 − c

U∗
β,c(S̄β,c + cS∗

β,c − β
√

cI − 2
√

cM̄)Uβ,c (19)

Let us record this as

THEOREM 1. The creation operator Sβ,c satisfies (1) or, equivalently, (19).

The one before last and the last component of (17) can be now stated as

THEOREM 2. The creation operators Sβ,c in H and Sβ,c in �2 satisfy

Sβ,c e(β,c)
n = − 1

1 − c

∞∑
k=0

(
Sβ,cm(β,c)

n

)
(k) ek, n = 0, 1, . . . (20)

As a next step we work out a kind of converse to these Theorems.

The punchline. Now we take delight in convincing ourselves that the operators
Sβ,c and Sβ,c, appearing in Theorems 1 and 2, are the only possible solutions of (19)
and (20) within the class of weighted shifts.

8 Here and in the sequel we make constant use of (13) without mentioning it.
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Fix c and β and suppose we are given
1o two bases e = {en}∞n=0 and f = {fn}∞n=0
2o two closable operators S and T such that lin e is a core for S and so is

lin e(β,c) for T, and such that e(β,c) ⊂ D(S) ∩ D(S∗) and e, f ⊂ D(T).
By analogy with (19) suppose (with M defined by (3) and the remark afterwards)

Ten = − 1
1 − c

(S + cS∗ − β
√

cI − 2
√

cM̄)en, n = 0, 1, . . . (21)

THEOREM 3. Suppose for some β > 0 and 0 < c < 1 S is a weighted shift with
respect to e with some weights {σn}∞n=0 and so is T with respect to f with some other
weights {τn}∞n=0. Then f = e(β,c) and S is a creation operator with respect to e and at the
same time so is T with respect to e(β,c), all this provided σ0 = τ0 = 1 and f0 = e(β,c)

0 .

Proof. Making use of closability of the operators involved and the very specific
way they act, as we have done it so far, we get (suppose the weights for S and T are
σn’s and τn’s resp.)

LHS of (4) =
∞∑

i=0

〈en, fi〉τifi =
∞∑

i,j=0

〈en, fi〉τi〈fi, ej〉ej,

RHS of (3) = −(1 − c)−1(σnen+1 + σn−1en−1 − √
c(2n + β)en).

Taking into account the fact that, due to (13), 〈e(β,c)
k , el〉 = m(β,c)

k (l) = m(β,c)
l (k) we get

from these two for the inner product with e(β,c)
k

∞∑
i,j=0

〈en, fi〉τi〈fi, ej〉m(β,c)
k (j)

= −(1 − c)−1(σnm(β,c)
k (n + 1) + σn−1m(β,c)

k (n − 1) − √
c(2n + β)m(β,c)

k (n)
)
.

Comparing this with (12) and starting with the initial conditions σ0 = τ0 = 1 and
f0 = e(β,c)

0 we come to the final conclusion. �
The next result refers to (20) we state one of the possibilities, the proof as well as

other versions can be pattern after [7]. Consider the following two conditions

S e(β,c)
n = − 1

1 − c

∞∑
k=0

(
S m(β,c)

n

)
(k)ek, n = 0, 1, . . . , (22)

S en = − 1
1 − c

∞∑
k=0

(
S m(β,c)

n

)
(k)e(β,c)

k , n = 0, 1, . . . (23)

for S to be a closable operator in �2 for which lin{m(β,c)
n ; n = 0, 1, . . .} is a core and S

an operator in H for which either lin e or lin e(β,c) is a core, depending on which of (22)
and (23) is chosen.

THEOREM 4. Suppose S is a weighted shift with respect {m(β,c)
n }∞n=0 with weights

{σn}∞n=0 and S is a weighted shift with respect to either e or e(β,c) depending on choice of
between (22) and (23). Then S = Sβ,c and S = Sβ,c, that is they are respective creation
operators, provided σ0 = τ0 = 1.
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“Meixner” plays with “Laguerre”. For the reason touched upon at the very
beginning of this paper the Laguerre polynomials are specially adapted to Meixner
ones. They provide us with a specific example of a Hilbert spaceH in which the creation
operator Sβ,c manifests itself in a natural way: according to (4), Sα+1 defined by (3)
acts on the Laguerre functions lα+1

n as a creation operator in our abstract sense. Thus
one can write down mutatis mutandis our Theorems corresponding to this concrete
situation. In particular the new basis (or rather a three parameter family of) is explicitly
written as

∞∑
k=0

m(β,c)
k (n)lα+1

k , n = 0, 1, . . .

It might be interesting to notice that (20), after passing to source polynomials, which
can be done with ease, according to Theorem 4, determines the couple “Laguerre –
Meixner” uniquely.
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