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Lagrangian dynamics and regularity of the spin
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We derive the spin Euler equation for ideal flows by applying the spherical Clebsch
mapping. This equation is based on the spin vector, a unit vector field encoding vortex
lines, instead of the velocity. The spin Euler equation enables a feasible Lagrangian study
of fluid dynamics, as the isosurface of a spin-vector component is a vortex surface and
material surface in ideal flows. We establish a non-blowup criterion for the spin Euler
equation, suggesting that the Laplacian of the spin vector must diverge if the solution
forms a singularity at some finite time. The direct numerical simulations (DNS) of three
ideal flows – the vortex knot, the vortex link and the modified Taylor–Green flow – are
conducted by solving the spin Euler equation. The evolution of the Lagrangian vortex
surface illustrates that the regions with large vorticity are rapidly stretched into spiral
sheets. The DNS result exhibits a pronounced double-exponential growth of the maximum
norm of Laplacian of the spin vector, showing no evidence of the finite-time singularity
formation if the double-exponential growth holds at later times. Moreover, the present
criterion with Lagrangian nature appears to be more sensitive than the Beale–Kato–Majda
criterion in detecting the flows that are incapable of producing finite-time singularities.

Key words: topological fluid dynamics, vortex dynamics

1. Introduction

The dynamics of an ideal flow is governed by the three-dimensional (3-D) incompressible
Euler equation. We apply the spherical Clebsch mapping (Kuznetsov & Mikhailov 1980)
to develop the spin Euler equation based on the spin vector – a unit vector encoding vortex
lines – instead of the velocity. Given a smooth initial spin vector with proper boundary
conditions, the spin Euler equation is equivalent to the classical Euler equation. The spin
Euler equation facilitates a viable Lagrangian study of fluid dynamics, as the isosurface
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of a spin-vector component is a vortex surface (Yang & Pullin 2010; Yang, Xiong & Lu
2023). On the other hand, a globally smooth spin vector may not exist for a given velocity
field with vorticity nulls or unclosed vortex lines. Hence the spin Euler equation admits
only a subset of initial conditions of the Euler equation.

The present study employs the spin Euler equation to examine the possibility of a
finite-time singularity in ideal flows. One of the outstanding open problems in fluid
mechanics is whether smooth initial data can lead to finite-time singularities in the ideal
flow. This problem is closely related to the existence and smoothness of solutions to the
Navier–Stokes equation (e.g. Fefferman 2001; Doering 2009; Wei 2016; Ayala & Protas
2017).

The regularity of the incompressible Euler equation has been studied extensively.
Various criteria for blowup and non-blowup, based on different quantities and techniques,
have been reviewed by Chae (2008), Gibbon (2008) and Drivas & Elgindi (2023). Several
criteria relate the occurrence of singularity to the growth of the vorticity ω, which plays
a vital role in fluid dynamics. The Beale–Kato–Majda (BKM) criterion establishes a
sufficient condition for the regularity in terms of ω (Beale, Kato & Majda 1984). The
geometric criterion of Constantin, Fefferman & Majda (1996) relates the regularity of the
velocity to the smoothness of the vorticity direction. Moreover, there are some refined
analytical criteria for blowup (e.g. Planchon 2003; Zhou & Lei 2013).

The regularity of the incompressible Euler equations has also been investigated by
large-scale numerical simulations. Brachet et al. (1983, 1992) and Bustamante & Brachet
(2012) conducted numerical studies of the evolution of the inviscid Taylor–Green flow, and
showed a near-exponential growth of the maximum vorticity over time, with regions of the
high vorticity predominantly confined within thin, sheet-like structures. The formation
of vortex sheets reduces the three-dimensionality, which suppresses the formation of a
finite-time singularity (Constantin et al. 1996; Drivas & Elgindi 2023).

As the regularity of the two-dimensional (2-D) Euler equations was established
(Yudovich 1963; Majda & Bertozzi 2002), subsequent numerical studies focused primarily
on the carefully designed initial condition that would enhance the vorticity growth.
However, different vorticity growth trends were observed in the numerical simulations
with different initial conditions or even the same initial condition.

For the two perturbed anti-parallel vortex tubes, Kerr (1993, 2005) found ‖ω‖∞ ∼
(t0 − t)−1, which provided strong evidence in favour of blowup, whereas Hou & Li (2007)
and Hou (2009) obtained a high-resolution numerical solution that is still regular beyond
the presumed blowup time t0, and exhibited a maximum vorticity growth slower than
double-exponential. The analysis was subsequently revisited in Bustamante & Kerr (2008),
who proposed a hypothesis of vorticity growth ‖ω‖∞ ∼ (t0 − t)−γ , with γ > 1, and in
Kerr (2013), who reported a double-exponential growth.

The vorticity growth of ‖ω‖∞ ∼ (t0 − t)−1 was also observed in Grauer, Marliani &
Germaschewski (1998) using a perturbed cylindrical shear flow, and in Orlandi, Pirozzoli
& Carnevale (2012) using the collision of two Lamb dipoles. Agafontsev, Kuznetsov &
Mailybaev (2015, 2017) reported that the vorticity grows exponentially in time in a shear
flow with random perturbations. Moreover, Ricca, Samuels & Barenghi (1999) suggested
that the vortex knot is a useful configuration for studying singularity formation, and also
pointed out the lack of study on the evolution of vortex knots or links with finite thickness
in ideal flows.

Several studies examined the Kida–Pelz flow (Kida 1985; Boratav & Pelz 1994; Pelz
2001), which is another highly symmetric flow for investigating the formation of potential
finite-time singularity. Grafke et al. (2008) compared different numerical methods applied
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Dynamics of the spin Euler equation

to a Kida–Pelz flow in spectral and real spaces, and found no evidence of blowup at the
times predicted by previous studies, which was confirmed by Hou & Li (2008). They also
observed that the vorticity increases exponentially along the Lagrangian trajectory.

Furthermore, there are several studies that are not based on the Euler equation for
investigating potential finite-time singularities in ideal flows. Campolina & Mailybaev
(2018) developed a model identical to the Euler equations by imitating the calculus
on a 3-D logarithmic lattice. This model for ideal flows elucidates the emergence of
singularities as a manifestation of a chaotic attractor in a renormalized dynamical system.
Their results implied that the direct numerical simulations (DNS) with the available
resolution are inadequate for the analysis of singularity formation for the Euler equation.
By employing a level-set representation for the vorticity field, Constantin (2001a,b) and
Deng, Hou & Yu (2005) established global existence theorems for a wide range of initial
values, and revealed the geometric structures of plausible blowup scenarios, for the 3-D
Euler equations and the 3-D Lagrangian averaged Euler equations.

In the present study, we investigate the Lagrangian dynamics and regularity of the
spin Euler equation, and derive a new non-blowup condition for ideal flows. The DNS
were conducted for solving the spin Euler equation with the pseudo-spectral method in
various inviscid vortical flows. The outline of the present paper is as follows. Section
2 introduces the spin Euler equation and derives the non-blowup condition. Section 3
describes numerical set-ups and methods. Section 4 elucidates Lagrangian dynamics of
ideal flows and assesses the non-blowup criterion. Some conclusions are drawn in § 5.

2. Theoretical framework of the spin Euler equation

2.1. Introduction to the spin Euler equation
The 3-D incompressible Euler equation is

∂tu + u · ∇u = −∇p, (2.1)

with ∇ · u = 0, where u is the velocity, and p is the pressure.
By applying the spherical Clebsch mapping with a Hamiltonian structure (Kuznetsov &

Mikhailov 1980), (2.1) is transformed into a Lagrangian form

∂ts + u · ∇s = 0, (2.2)

where s is of class Ck, k ≥ 1. Note that u can be obtained from s, which is discussed further
in (3.1). Here, the Hopf fibration (Hopf 1931)

s = (a2 + b2 − c2 − d2, 2(bc − ad), 2(ac + bd)) (2.3)

with |s| = 1 establishes a correspondence between the unit spin vector s ∈ S2 and a
two-component wave function ψ = [ψ1, ψ2]T ∈ S3 (Chern et al. 2016; Chern 2017),
where ψ1 = a + ib and ψ2 = c + id are complex functions of real-valued potentials
a, b, c, d, and i denotes the imaginary unit. The Clebsch potentials a, b, c, d are subject
to the constraint a�b − b�a + c�d − d�c = 0, which ensures the incompressibility
∇ · u = 0.
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Then the velocity and vorticity ω ≡ ∇ × u can be re-expressed by u = a ∇b − b ∇a +
c ∇d − d ∇c and

ω = 1
4εijksi ∇sj × ∇sk

= 1
2 (s1 ∇s2 × ∇s3 + s2 ∇s3 × ∇s1 + s3 ∇s1 × ∇s2) , (2.4)

respectively, where εijk is the Levi–Civita symbol. The derivation of (2.4) is detailed in
Appendix A. Note that s remains a gauge invariant in the transformation from the velocity
to ‘magnetization’ (Chorin 1994).

From the perspective of vortex dynamics, the spin vector encodes vortex lines and
surfaces (Chern et al. 2016; Chern 2017; Yang et al. 2023). Isosurfaces of one component
of s are a family of vortex surfaces. Correspondingly, intersections of isosurfaces of two
components of s are a family of vortex lines.

We consider the quaternion form (Gibbon & Holm 2007) of the two-component wave
function ψ = a + ib + jc + kd, where {i, j,k} are the basis vectors of the imaginary part
of the quaternion. The velocity and spin vector are then given by u = (∇ψ̄ iψ − ψ̄ i ∇ψ)/2
and s = ψ̄ iψ , respectively, where ψ̄ denotes the quaternion conjugate of ψ . Then we
derive

u · ∇s = 1
2

(
∇ψ̄ iψ · ∇ψ̄ iψ − |∇ψ |2 + |∇ψ |2 − ψ̄ i ∇ψ · ψ̄ i ∇ψ

)
= 1

2

(
s ∇ψ̄ · i ∇ψ − ∇ψ̄ · i ∇ψs

) = s × m, (2.5)

where m ≡ ∇ψ̄ · i ∇ψ is a pure quaternion (i.e. a vector in R3) and can be expanded as
m = im1 + jm2 + km3, with

m1 = |∇a|2 + |∇b|2 − |∇c|2 − |∇d|2,
m2 = 2(∇b · ∇c − ∇a · ∇d),

m3 = 2(∇a · ∇c + ∇b · ∇d).

⎫⎪⎬
⎪⎭ (2.6)

Thus we rewrite u · ∇s = s × m with an effective field m = (m1,m2,m3).
In general, m cannot be represented solely in terms of s, because the Hopf mapping

(2.3) is non-invertible. However, given s with a boundary condition, we can obtain u by
calculating ω with (2.4) and applying the generalized Biot–Savart law, and then obtain
s × m at any point in R3 by (2.5).

Substituting (2.5) into (2.2), we obtain the spin Euler equation

∂ts + s × m = 0. (2.7)

This is equivalent to the original incompressible Euler equation (2.1). In contrast to (2.2),
(2.7) characterizes the evolution of s by its precession about m rather than the convection
with u. The spin Euler equation (2.7) can be more suitable to study fluid dynamics
from a Lagrangian perspective than its original form (2.1), because the isosurfaces of si,
i = 1, 2, 3, are vortex surfaces consisting of vortex lines (Yang & Pullin 2010, 2011; Yang
et al. 2023). From the Helmholtz vorticity laws, the surfaces are material surfaces for all
t ≥ 0 in Euler flows.

Therefore, solving the spin Euler equation (2.7) is similar to a vortex method (Yang
et al. 2021; Nabizadeh et al. 2022; Xiong et al. 2022) for simulating ideal flows. Since
the primary variable s of (2.7) has unit length, the fixed magnitude of s can avoid the
numerical blowup arising from numerical instabilities.
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m

s
m × s

(a) (b)

Figure 1. The domain is discretized on a uniform grid. The smallest lattice configuration, consisting of 23 grid
points, is sketched. (a) Schematic of a 23 lattice of spin vectors, where the orientation of s fully characterizes
the ideal flow by (2.4). (b) At each grid point, the spin vector s in (2.3) precesses around an ‘effective magnetic
field’ m in (2.6).

In particular, the spin Euler equation contains the inherent Lagrangian vortex dynamics
via level sets of si (i.e. vortex surfaces). This can facilitate the regularity analysis of the
Euler equation, similar to the level set representation of ω (Constantin 2001a,b; Deng et al.
2005).

Note that the initial conditions s0 of (2.7) for simulating ideal flows are a subset of the
classical Euler equations, because finding a globally smooth s0 for a given vorticity field
ω0 remains an open problem. Currently, a useful approximation of s0 can be obtained
using the numerical optimization (Chern et al. 2017) and the Poincaré recurrence theorem
(Poincaré 1890).

The spin Euler equation is also equivalent to a special case of the Landau–Lifshitz
equation with a specific effective magnetic field m, revealing a possible connection
between ideal flow and magnetic crystal. As sketched in figure 1, the spin vector (or
magnetization) s in (2.3) at each point in space precesses around the effective magnetic
field m in (2.6). More discussion is provided in Appendix B.

2.2. Non-blowup condition of the spin Euler equation
Next, we discuss the regularity of the spin Euler equation. The derivation for the
non-blowup condition is outlined below and detailed in Appendix C. First, we estimate
the upper bound of ‖ω‖p in terms of ‖∇s‖2p, p ≥ 1, as

‖ω‖p ≤ 1
2 ‖∇s‖2

2p, (2.8)

where the Lp-norm is defined in Appendix C. Then we estimate the growth of ‖∇s‖2p as

∂t‖∇s‖2p
2p ≤ 2p ‖m‖1 ‖�s‖p

∞, (2.9)

and the upper bound of ‖m‖1 in terms of ‖∇s‖2 and ‖�s‖∞ as

‖m‖1 ≤ 1
4 ‖∇s‖2

2

(√
6 +

√
2Cω ‖�s‖∞

)
, (2.10)
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where Cω is a positive constant. Finally, substituting (2.9) and (2.10) into (2.8), we obtain
a sufficient condition for bounded ‖ω‖p as∫ t

0
‖�s( · , τ )‖p+1

∞ dτ < ∞, ∀p ≥ 1. (2.11)

In summary, we obtain a non-blowup condition (2.11) of the spin Euler equation
(equivalent to the original Euler equation with well-posed initial conditions), which
guarantees a bounded ‖ω‖p. It implies that if the solution loses regularity beyond a certain
time, then the Laplacian of the spin vector must grow unboundedly. The transport equation
and the estimation of the norm of �s are discussed further in Appendix D.

3. Numerical set-up

We conduct the DNS of three ideal flows with different initial conditions in a periodic cube
of side 2π on N3 (up to 15363) uniform grid points, by solving the spin Euler equation (2.2)
with the pseudo-spectral method as

∂s
∂t

= F−1
[

1
|κ |2 iF

(
1
4
εijksi ∇sj × ∇sk

)
× κ

]
· ∇s,

s(x, t = 0) = s0(x).

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

Here, u is calculated from ω with (2.4) by the Biot–Savart law in Fourier space (Xiong
& Yang 2020), κ denotes the wavenumber vector, s0 is a smooth initial condition, and
F is the Fourier transform operator with its inverse form F−1. The high-order Fourier
smoothing method (Hou & Li 2007; Bustamante & Kerr 2008) is used to suppress the
Gibbs phenomenon. The temporal evolution is integrated using an explicit second-order
Runge–Kutta scheme with adaptive time steps in physical space. The time step is selected
to ensure that the Courant–Friedrichs–Lewy number is smaller than 0.3 for numerical
stability and accuracy. In the numerical implementation, s is normalized at every time step
to ensure |s| = 1.

We consider two types of initial conditions. For the first type, the initial vorticity is
concentrated in a thin closed vortex tube, such as the trefoil knot (Yao, Yang & Hussain
2021; Zhao & Scalo 2021; Zhao et al. 2021) and Hopf link (Aref & Zawadzki 1991;
Kivotides & Leonard 2021; Yao et al. 2022). Under the self-induced velocity, such vortex
tubes can be gradually stretched, twisted and flattened, and form nearly singular vortical
structures.

We use the rational map (Kedia et al. 2016; Tao et al. 2021) to construct smooth s0.
A small twist is applied to the vortex tube by setting P = α (Tao et al. 2021), and Q =
α3 + β2 and Q = α2 + β2 are chosen for the trefoil knot and the Hopf link, respectively.
Here, (P,Q) are a pair of complex polynomial functions, and (α, β) is a mapping of the
coordinate system from the Euclidean space R3 to the two-component complex space C2.
The function pair (P,Q) is normalized and subjected to a divergence-free projection,
yielding a two-component wave function ψ0 = [ψ1,0, ψ2,0]T that matches the initial
field. The initial spin vector s0 and vorticity ω0 are then obtained from (2.3) and (2.4),
respectively. Additionally, we re-scale the time as t∗ = t/(L2

0/Γ ), with the initial mean
length L0 = 2

√
2π3/2/‖∇s(·, 0)‖2 and the circulation Γ . The trefoil knot has L0 = 0.749

and Γ = 5.05, and the Hopf link has L0 = 0.773 and Γ = 5.24.
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Cases N3 ‖u0‖2
2 H0 L0 Γ t∗/t TR

Trefoil knot Up to 15363 72.4 79.0 0.749 5.05 9.00 2.39
Hopf link Up to 15363 68.9 79.0 0.773 5.24 8.77 2.61
MTG Up to 10243 20.7 0 — — 1 3.67

Table 1. DNS cases and parameters.

The second type is a modified Taylor–Green (MTG) initial condition (Meng & Yang
2023), with

s0 = (cos x cos y cos z,
√

1 − cos2 x cos2 y cos2 z cos 2z,
√

1 − cos2 x cos2 y cos2 z sin 2z)
(3.2)

and
ω0 = (cos x sin y cos z,− sin x cos y cos z, 0). (3.3)

Note that s0 for this MTG initial condition is different from s0 for the standard
Taylor–Green initial condition (Taylor & Green 1937; Brachet et al. 1983, 1992;
Bustamante & Brachet 2012); the former in (3.2) has a negligible singularity, and the latter
has a weak singularity (Meng & Yang 2023). This highly symmetric MTG flow would not
exhibit a finite-time singularity, and this non-blowup case is used to validate the criterion
in (2.11). The re-scaling time is t∗ = t. The parameters for all cases are listed in table 1.

To evaluate the numerical resolution, we define R(t∗) ≡ 1/(h ‖∇s(·, t∗)‖∞), the ratio
of the minimum resolved scale to the grid spacing h. A finer resolution has a larger R. The
evolution of R for the three initial conditions is shown in figures 2(a)–2(c). Our numerical
tests suggest that R ≥ 2 can be the criterion for well resolving the smallest scale of (3.1).
The largest numbers of grid points in the simulation are N3 = 15363 for the trefoil knot
and the Hopf link, and N3 = 10243 for the MTG flow. Based on the criterion, the largest
time TR ≡ t∗|R=2 of the simulation with the satisfactory resolution is given in table 1 for
each case.

Additionally, the resolution can be assessed by the conservation of the total energy ‖u‖2
2

and the helicity H = ∫
D u · ω dV (Moreau 1961; Moffatt 1969; Meng, Shen & Yang 2023),

which are two invariants of the Euler equations. The energy loss is less than 1‰ for R ≥ 2
in figures 2(d)–2( f ), and the helicity is also well conserved in figures 2(g)–2(i).

4. Validation of non-blowup conditions for the spin Euler equation

4.1. Evolution of vortex surfaces
The DNS of the spin Euler equation (2.7) are carried out to investigate Lagrangian
dynamics of ideal flows listed in table 1, and to validate the non-blowup criterion (2.11). To
illustrate the Lagrangian vortex dynamics, figure 3 shows the top view of the isosurface of
s1 = 0.5 (i.e. vortex surface) for the trefoil knot at t∗ = 0, 0.9 and 1.8. Note that isosurfaces
of s2 and s3 can show similar structures (Tao et al. 2021), and the isosurfaces of |ω| (not
shown) fail to capture the complete vortex tube as visualized by s1 (as discussed in Xiong
& Yang 2019; Shen et al. 2023).

Near the three crossings of the initial vortex knot, adjacent parts of the vortex tube
are nearly orthogonal. Driven by the self-induced velocity with the Biot–Savart law, the
vortex tube and vortex lines are stretched and twisted. The adjacent parts of the vortex
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Figure 2. Evolution of (a–c) R(t∗) ≡ 1/(h ‖∇s(·, t∗)‖∞), (d–f ) ‖u‖2
2/‖u0‖2

2 and (g–i) the helicity, for the
(a,d,g) trefoil knot, (b,e,h) Hopf link and (c, f,i) MTG flow, with different grid resolutions. The vertical dashed
lines with different colours mark the time with R = 2 for each resolution. The simulations are well-resolved
on the left of the dashed lines.

knot approach each other, and they are progressively flattened and rolled up, instead of
undergoing the vortex reconnection in viscous flows (Yao & Hussain 2022). The regions
with large vorticity magnitude |ω| are rapidly stretched into spiral sheets with strong twist.

In figure 3, the evolving vortex surfaces and lines preserve their initial mapping to the red
circle and cyan points on S2, respectively, due to the Lagrangian nature of the spin Euler
equation. Namely, the vortex topology is preserved in ideal flows. In addition, figure 4
shows the top view of the isosurface of s1 = 0.5 for the Hopf link at t∗ = 0, 0.88 and 2.19.
The structural evolution is similar to that of the trefoil knot.

Figure 5 plots the contour of |ω| on the x–y plane at z = 2.55, and on the y–z plane
at x = 3.24 for the trefoil knot, along with the contour lines of s1. These planes intersect
the point with the largest |ω|, so their contours show the most intense swirling motion. In
figure 5(b), ‘vorticity pancakes’ (Brachet et al. 1992) form in the regions of large |ω|
among highly stretched and curved vortex surfaces. These structures appear when the
vortex surfaces approach each other and undergo strong deformation. The formation of
the high-vorticity region within sheet-like structures was observed in the collapse of vortex
pairs (e.g. Pumir & Siggia 1990; Kerr 1993) and Taylor–Green and Kida–Pelz flows (Yang
& Pullin 2010). Furthermore, we observe the energy spectra with the k−3 scaling (not
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Vortex surface

Vortex tube

Vortex line

(a) (b) (c)

(d )

Figure 3. (a–c) Evolution of the isosurface of s1 = 0.5 (vortex surfaces) colour-coded by |ω| for the trefoil
knot at t∗ = 0, 0.9 and 1.8 in the top view. Some vortex lines (cyan) are integrated and plotted on the isosurfaces.
(d) The vortex surface for s1 = 0.5, the region enclosed by this vortex surface, and the three cyan vortex lines
are mapped to the red circle, the purple spherical cap within the red circle, and the three cyan points on the
Bloch sphere S2, respectively.

|ω|
100

75

50

25

0

(a) (b) (c)

Figure 4. Evolution of the isosurface of s1 = 0.5 (vortex surface) colour-coded by |ω| for the Hopf link at
t∗ = 0, 0.88 and 2.19 in the top view. Some vortex lines (cyan) are integrated and plotted on the isosurfaces.

shown) in the evolution of the trefoil knot and Hopf link, consistent with the result for the
collision of two Lamb dipoles in Orlandi et al. (2012).

In the highly symmetric MTG flow, a finite-time singularity may not occur according
to the theoretical analysis (Constantin et al. 1996). Figure 6 plots the evolution of
the isosurfaces of s1 = 0.8 (red) and s1 = −0.8 (blue) for the MTG flow. A pair of
vortex blobs are compressed and flattened into pancakes. Since the vortex surface is
compressed in a quasi-2-D configuration, preserving the smoothness ∇(ω/|ω|) of the
vorticity direction (Constantin et al. 1996), the MTG flow does not exhibit a finite-time
singularity, even though the vorticity grows rapidly (Brachet et al. 1992).

The comparison of the two types of ideal flows implies that the Euler equation cannot
form a singularity in a 2-D process. Constantin et al. (1996) proved that if u remains
uniformly bounded and ω/|ω| stays C1, then no singularity can occur. In other words, the
vorticity must change its direction very rapidly to form a potential singularity. Note that if
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100
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25

0

(a) (b)

Figure 5. Contour of the vorticity magnitude and contour lines (white) of s1 for the trefoil knot on (a) the x–y
plane at z = 2.55, and (b) the y–z plane at x = 3.24, at t∗ = 1.8. The planes intersecting the point with the
largest |ω| contain the most intense swirling motion in the flow.

(a) (b) (c)

Figure 6. Evolution of the isosurfaces of s1 = 0.8 (red) and s1 = −0.8 (blue) in the MTG flow: (a) t∗ = 0,
(b) t∗ = 2, (c) t∗ = 4.

a singularity occurs at a vorticity null for all t∗ < t∗b (e.g. Elgindi 2021), then the vorticity
direction becomes discontinuous at the time of singularity. The MTG flow vortex lines near
the vorticity nulls maintain a quasi-2-D smooth shape, which contradicts the necessary
blowup conditions. Hence the MTG flow does not exhibit finite-time singularities. By
contrast, the trefoil knot and Hopf link have large vortex-line curvature in figures 3(c) and
4(c), with a rapid change in the vorticity direction.

4.2. Assessment of the non-blowup criterion
We apply (2.11) to the three ideal flows to test the non-blowup criterion based on the
spin Euler equation, and compare our criterion to the BKM criterion (Beale et al. 1984)
by examining growth rates of the maximum vorticity and Laplacian spin vector. Before
t∗ = TR, ‖ω‖∞ increases by a factor of approximately 16 for the trefoil knot and the Hopf
link in figure 7. Both ‖ω‖∞ and ‖�s‖∞ exhibit the nearly double-exponential growth for
the trefoil knot and Hopf link. The double-exponential growth of ‖ω‖∞ is consistent with
the results in Hou & Li (2007) and Kerr (2013). As the number of grid points increases
(up to 15363), the growth rate of ‖�s‖∞ appears to remain constant for the trefoil knot
and Hopf link.
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Figure 7. Evolution of (a–c) the maximum vorticity and (d–f ) the maximum Laplacian spin vector, for (a,d)
the trefoil knot, (b,e) the Hopf link and (c, f ) MTG flow, with different grid resolutions, respectively. Note that
we plot ln ln(50‖ω‖∞) for the MTG flow, where the factor 50 is used to avoid complex values of the logarithm.
The vertical dashed lines with different colours mark the time with R = 2 for each resolution. The simulations
are well-resolved on the left of the dashed lines (shaded in corresponding colours).

The present criterion has some advantages that ln ln ‖�s‖∞ grows more slowly than
ln ln ‖ω‖∞ (4–6 times slower), and exhibits better convergence with the mesh resolution.
Therefore,�s appears to be resolved more easily than ω with the same numerical accuracy.
Moreover, the duration of the linear stage for ln ln ‖�s‖∞ exceeds that for ln ln ‖ω‖∞ more
than five-fold.

The highly symmetric MTG flow shows no evidence of a finite-time singularity. The
profile of ln ln ‖�s‖∞ in figure 7( f ) clearly bends downwards before t∗ = TR with N3 =
10243. The growth rate of ‖�s‖∞ is weaker than double-exponential, whereas the growth
of ‖ω‖∞ remains double-exponential in figure 7(c) when t∗ < TR. Therefore, the criterion
based on �s can effectively identify the flows that are unlikely to develop a finite-time
singularity.

Assuming that the double-exponential growth is bounded in a finite time t, the time
integral of ‖�s‖p+1

∞ becomes∫ t

0
‖�s( · , τ )‖p+1

∞ dτ ≤ (ec1t − 1) exp[( p + 1) ec1t+c2]
c1ec1t , (4.1)

with constants c1 and c2. According to the non-blowup condition (2.11), the Euler equation
can avoid singularity formation in finite time for the double-exponential growth of ‖�s‖∞.

4.3. Difference of non-blowup criteria
We highlight the major difference between (2.11) and the BKM criterion, and explain why
‖�s‖∞ grows more slowly than ‖ω‖∞. Figure 8 plots the trajectories of arg max |ω| and
arg max |�s|, colour-coded by t∗, and their projections on the x–y plane for the trefoil knot
and Hopf link. The trajectories of arg max |ω| and arg max |�s| starting from the same
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Figure 8. Three groups of trajectories of the maximum points of |ω| (from blue to green) and |�s| (from red
to yellow) during t∗ ∈ [0, 2.2] for (a) the trefoil knot and (b) the Hopf link, along with their projections on
the x–y plane (shaded in grey). The two trajectories of maximum |ω| and |�s| in each group start at the same
location.

0 1 2
1.8

2.4

3.0

z

arg max |∆s|
arg max |ω|

Lagrangian

Centroid

0.381t∗ + 1.83

0 1 2
1.8

2.4

3.0
(a) (b)

t∗ t∗

arg max |∆s|
arg max |ω|

Lagrangian

Centroid

0.305t∗ + 1.93

Figure 9. Evolution of the z-direction coordinates of the maximum points of |ω| and |�s|, the Lagrangian
tracing particle located at the maximum point at t∗ = 0, and the centroid position for (a) the trefoil knot and
(b) the Hopf link.

locations do not collapse, implying that the present criterion is distinct from the BKM
criterion.

The continuous trajectory of arg max |�s| is more tractable than the discontinuous one
of arg max |ω| in figure 8. Figure 9 illustrates the z-coordinates of the maximum |ω| and
|�s|, the Lagrangian trajectory of particles that locate at the position of the maximum
values at t∗ = 0, and the evolution of the centroid positions zc = ∫

s1≥0 z dV/
∫

s1≥0 dV of
the trefoil knot and Hopf link. We find that arg max |�s| remains continuous over time and
moves at a constant speed in the z-direction in both flows, which is close to the Lagrangian
velocity of the particle at the location of arg max |�s| (or arg max |ω|) at t∗ = 0. This
implies that the maximum |�s| could have some Lagrangian nature.

By contrast, arg max |ω| exhibits a sharp jump at t∗ = 1.26 for the trefoil knot and t∗ =
1.98 for the Hopf link. The speed of arg max |ω| in the z-direction is close to that of the
centroid of the vortex at early times. During the growth of |ω|, the locus of the peak
vorticity exhibits a notable displacement, converging to arg max |�s| (marked in a dashed
box in figure 9).
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|ω|/‖ω‖∞ |ω|/‖ω‖∞

Figure 10. Scatter plots of |�s| and |ω| normalized with their maximum values for (a) the trefoil knot at
t∗ = 1.8, and (b) the Hopf link at t∗ = 2.19, along with the correlation coefficients ρ and linear fits (dashed
lines) of data points. The scattered points are coloured from purple to red by the density of data points.
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Figure 11. P.d.f.s of normalized |�s| and |ω| for (a) the trefoil knot at t∗ = 1.8, and (b) the Hopf link at
t∗ = 2.19.

We examine the correlation and distribution of the values of |�s| and |ω|, normalized
by their respective maxima, for the trefoil knot at t∗ = 1.8 and the Hopf link at t∗ = 2.19.
The scatter plots in figure 10 show a low positive correlation between |�s|/‖�s‖∞ and
|ω|/‖ω‖∞, with correlation coefficients ρ = 0.675 for the trefoil knot, and ρ = 0.627
for the Hopf link. Therefore, the criterion based on �s in (2.11) has a notable statistical
difference from that based on ω.

The probability density functions (p.d.f.s) of the normalized values of |�s| and |ω| for
the trefoil knot at t∗ = 1.8 and the Hopf link at t∗ = 2.19 are shown in figure 11. For both
configurations, the p.d.f. profiles of |�s|/‖�s‖∞ are smoother than those of |ω|/‖ω‖∞,
and they obey a Pareto distribution (Arnold 2015) with the −2 power law except for very
large values, indicating that the extreme values at a few locations can dominate norms of
�s and ω.
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5. Conclusions

We develop a new framework for describing ideal flows using the spin Euler equation (2.7).
The spin Euler equation can be considered as a special Landau–Lifshitz equation with an
effective magnetic field m in (2.6), implying a possible connection between the ideal flow
and magnetic material.

Compared to the classical Euler equation, the spin Euler equation provides a feasible
approach to study Lagrangian fluid dynamics, because the isosurfaces of a spin-vector
component are vortex surfaces and material surfaces for all t ≥ 0. In particular, we derive a
non-blowup condition (2.11) for the spin Euler equation – if the solution becomes singular
at some finite time, then |�s| must become unbounded. Moreover, the ideal flow dynamics
is formulated as a Hamiltonian simulation of a quantum mechanical system using the spin
Euler equation, which can inspire the development of relevant quantum algorithms (Meng
& Yang 2023).

On the other hand, the spin Euler equation does not seem to admit arbitrary velocity
fields as initial conditions. The theoretical construction of a globally smooth s0 for a given
velocity field remains an open problem, and it can be approximated only numerically at
present.

We conduct the DNS of three ideal flows of the trefoil knot, Hopf link and MTG by
solving (3.1) using the pseudo-spectral method, and compare the BKM criterion with
the present one. The evolution of the vortex surface (isosurface of s1) illustrates that the
regions with large |ω| are rapidly stretched into spiral sheets for the trefoil knot and Hopf
link.

For the trefoil knot and Hopf link, the double-exponential growth of ‖�s‖∞ is more
pronounced than that of ‖ω‖∞, and ln ln ‖�s‖∞ grows at a rate 4–6 times slower than
ln ln ‖ω‖∞. The duration of the double-exponential growth stage for ‖�s‖∞ exceeds that
for ‖ω‖∞ by more than five times. According to the non-blowup condition (2.11), the Euler
equation can avoid the singularity formation at finite time if the growth rate of ‖�s‖∞ is
lower than double-exponential at late times.

The highly symmetric MTG flow can avoid finite-time singularities due to the formation
of quasi-2-D vortex surfaces from theoretical analysis (Constantin et al. 1996). The growth
rate of ‖�s‖∞ is lower than double-exponential at late times, whereas the growth rate of
‖ω‖∞ remains double-exponential. Thus the present criterion based on �s appears to be
more sensitive than the BKM criterion based on ω in detecting the flows that are incapable
of producing finite-time singularities.

The present non-blowup criterion based on |�s| is distinct from the BKM
criterion based on |ω|. By tracing the maxima of |�s| and |ω| for vortex
knots and link, we find that the trajectory for |�s| is continuous and consistent
with the tracer particle, benefited from the Lagrangian nature of the spin Euler
equation. In contrast, the trajectory for |ω| with a large jump deviates from the
Lagrangian trajectory. Furthermore, |�s| and |ω| have only a low positive correlation
coefficient.

In future work, the bound estimate of |�s| requires further refinement, and the duration
in the simulation can be prolonged with more computational resources for examining
longer growth behaviour of ‖�s‖∞. Furthermore, the spin Euler equation can be recast as
a nonlinear Schrödinger equation that is useful in quantum computing of fluid dynamics
(Meng & Yang 2023).

Acknowledgements. The authors thank S. Xiong for helpful discussion. Numerical simulations were carried
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Appendix A. Spherical Clebsch representation of the vorticity

Chern (2017) applied exterior calculus and quaternion formulation to derive the spherical
Clebsch representation of ω in (2.4). Here, we re-express this derivation using regular
calculus. Note that equivalent forms of (2.4) appeared in Faddeev (1976) and Kuznetsov
& Mikhailov (1980) without derivation.

First, we express the vorticity using Clebsch potentials by taking the curl of the velocity
as

ω = ∇ × (a ∇b − b ∇a + c ∇d − d ∇c) = 2(∇a × ∇b + ∇c × ∇d). (A1)

Then we take gradient of the three components of the spin vector as

∇s1 = 2(a ∇a + b ∇b − c ∇c − d ∇d),

∇s2 = 2(b ∇c + c ∇b − a ∇d − d ∇a),

∇s3 = 2(a ∇c + c ∇a + b ∇d + d ∇b).

⎫⎪⎬
⎪⎭ (A2)

Combining ∇s1 × ∇s2, ∇s2 × ∇s3 and ∇s3 × ∇s1, and using the normalization condition
a2 + b2 + c2 + d2 = 1, yields

s3 ∇s1 × ∇s2 + s1 ∇s2 × ∇s3 + s2 ∇s3 × ∇s1

= 4(c2 + d2)∇a × ∇b + 4(ad − bc)∇a × ∇c − 4(ac + bd)∇a × ∇d

+ 4(ac + bd)∇b × ∇c + 4(ad − bc)∇b × ∇d + 4(a2 + b2)∇c × ∇d. (A3)

Taking the gradient of the normalization condition yields

a ∇a + b ∇b + c ∇c + d ∇d = 0. (A4)

From (A4) and outer products of two of ∇a, ∇b, ∇c and ∇d, we have

b ∇a × ∇b + c ∇a × ∇c + d ∇a × ∇d = 0,

a ∇a × ∇b − c ∇b × ∇c − d ∇b × ∇d = 0,

a ∇a × ∇c + b ∇b × ∇c − d ∇c × ∇d = 0,

a ∇a × ∇d + b ∇b × ∇d + c ∇c × ∇d = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A5)

Substituting (A5) into (A3) yields

s3 ∇s1 × ∇s2 + s1 ∇s2 × ∇s3 + s2 ∇s3 × ∇s1

= 4(a2 + b2 + c2 + d2)∇a × ∇b + 4(a2 + b2 + c2 + d2)∇c × ∇d

= 4(∇a × ∇b + ∇c × ∇d). (A6)
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Finally, substituting (A6) into (A1) yields (2.4), i.e.

ω = 1
2 (s1 ∇s2 × ∇s3 + s2 ∇s3 × ∇s1 + s3 ∇s1 × ∇s2) . (A7)

Appendix B. Comparison of the spin Euler system and the isotropic Heisenberg spin
system

It is interesting that the spin Euler equation (2.7) can be considered as the Landau–Lifshitz
equation

∂ts + s × H eff = 0 (B1)

without a damping term (Landau & Lifshitz 1935), which is used to analyse
magnetodynamic processes in magnetic materials. Equation (B1) is also recognized as the
Heisenberg model with various applications (Lakshmanan & Porsezian 1990; Porsezian
& Lakshmanan 1991; Kamppeter et al. 2001). The Landau–Lifshitz equation plays an
important role in elucidating magnetization dynamics, analogous to the role of the
Navier–Stokes equation in fluid dynamics.

The mean spin of electrons, i.e. the magnetization (or spin vector) s at the macroscopic
scale, determines the unit volume magnetic dipole moment in magnetic crystals.
A continuous function s(x, t) describes the macroscopic magnetization dynamics in
the limit of vanishing lattice partition size, if the angle between the spin vectors of
neighbouring lattice atoms in a crystal is sufficiently small (Heisenberg 1928). This
resembles the continuum assumption in fluid mechanics, but unlike isotropic fluids, most
crystal structures are anisotropic.

In (B1), H eff is the effective magnetic field, corresponding to (minus) the L2-derivative
of the magnetic energy of the material with respect to s. This implies a deep connection
between the ideal flow and magnetic material. The spin Euler equation has H eff = m,
where the magnetic energy of a material is replaced by the total kinetic energy of a fluid.
Therefore, the ideal flow might be physically interpreted as a specific magnetic material
by (2.7).

We then discuss the similarity and difference between the spin Euler system in (2.7) and
the isotropic Heisenberg spin system in (B1) with H eff = �s. After some algebra, we find

m = 1
2 �s + m′, (B2)

where the term

m′ = (−a�a − b�b + c�c + d�d, a�d + d�a − b�c − c�b,

− a�c − c�a − b�d − d�b) (B3)

highlights the difference between the spin Euler system and the Heisenberg spin system.
Projecting m′ onto s yields

s · m′ = −(a�a + b�b + c�c + d�d) = |∇ψ |2 ≥ 0, (B4)

i.e. the angle between m′ and s is acute or normal.
As sketched in figure 12, the range of the angle θ ≡ arccos((s · H eff )/|H eff |) between

s and H eff depends on the spin system. The isotropic Heisenberg spin system has θ ∈
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s

θ ∈ [π/2,π]

Heff = ∆s

s
m′

Heff = 1−2∆s + m′

 1−2∆s

θ ∈ [0,π]

(b)(a)

Figure 12. Schematic of orientations of the spin vector s and the effective field H eff in (a) the isotropic
Heisenberg spin system, and (b) the spin Euler system. The variation of �s is restricted to the southern
hemisphere (shaded in blue), whereas m′ is restricted to the northern hemisphere (shaded in red).

[π/2,π] with

s · H eff = s ·�s = −|∇s|2 ≤ 0, (B5)

whereas the spin Euler system has θ ∈ [0,π] with

s · H eff = s ·
(

1
2 �s + m′

)
= |u|2 − 1

4 |∇s|2. (B6)

Assuming that H eff is directed to the north pole, s in the isotropic Heisenberg spin system
is confined to the southern hemisphere, whereas there is no such restriction in the spin
Euler system due to the additional term m′. Therefore, the spin Euler system for ideal
flows can have greater degrees of freedom and more complex dynamics than the isotropic
Heisenberg spin system for magnetic crystals.

Appendix C. Derivation for the non-blowup condition of the spin Euler equation

We provide the detailed derivation for the non-blowup condition (2.11) of the spin Euler
equation. By taking the double inner product of ∇s and the gradient of (2.7), and
multiplying by p |∇s|2( p−1), we obtain

∂t|∇s|2p = 2p |∇s|2( p−1)∇s : (∇m × s), (C1)

where p ≥ 1 is a constant, the double inner product is defined as A : B ≡ AijBij with two
second-order tensors A and B, and the vector product of the second-order tensor ∇m and
the vector s is defined as ∇m × s ≡ εljk ∂imjsk eiel with the basis {e1, e2, e3}. Using the
identity s ·�s = −|∇s|2 for the unit vector s, we have

|∇s|2 ≤ |�s|. (C2)
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Integrating (C1) over a periodic domain D or a domain bounded by solid wall boundaries,
and using (C2), yields

∣∣∣∣∂t

∫
D

|∇s|2p dV
∣∣∣∣ = 2p

∣∣∣∣
∫
D

|∇s|2( p−1)∇s : (∇m × s) dV
∣∣∣∣

≤ 2p ‖�s‖p−1
∞

∣∣∣∣
∫
D

[∇ · (∇s · (m × s))+ m · (∇ · (∇s × s))] dV
∣∣∣∣

= 2p ‖�s‖p−1
∞

∣∣∣∣∣
�
∂D

∂s
∂n

· (m × s) dS

+
∫
D

[�s · (s × m)+ ∇s : (∇s × m)] dV
∣∣∣∣

= 2p ‖�s‖p−1
∞

∣∣∣∣
∫
D

m · (�s × s) dV
∣∣∣∣ , (C3)

where the Neumann boundary condition ∂s/∂n|∂D = 0 is imposed on the solid wall
boundary. Applying the Hölder inequality to (C3) yields

∂t‖∇s‖2p
2p ≤ 2p ‖m‖1 ‖�s‖p

∞. (C4)

Here, the Lp-norm of a function f is defined as

‖ f ‖p ≡

⎧⎪⎨
⎪⎩
(∫

D
| f |p dV

)1/p

, 1 ≤ p < ∞,

esssup | f |, p = ∞.

(C5)

We estimate the upper bound of ‖ω‖p in terms of ‖∇s‖2p. From (2.4), using |s| = 1 and
basic inequalities, we obtain

|ω| ≤ 1
2 (|∇s1| |∇s2| + |∇s2| |∇s3| + |∇s3| |∇s1|)

≤ 1
2

[
1
2(|∇s1|2 + |∇s2|2)+ 1

2(|∇s2|2 + |∇s3|2)+ 1
2(|∇s3|2 + |∇s1|2)

]
= 1

2 |∇s|2, (C6)

so that

‖ω‖p ≤ 1
2 ‖∇s‖2

2p. (C7)

Then we estimate the upper bound of ‖m‖1 in terms of ‖∇s‖2 and ‖�s‖∞. Substituting
(C6) into (2.6), we have

|m|2 = |∇a|4 + |∇b|4 + |∇c|4 + |∇d|4 + 2 |∇a|2 |∇b|2 + 2 |∇c|2 |∇d|2

− 2 |∇a|2 |∇c|2 − 2 |∇a|2 |∇d|2 − 2 |∇b|2 |∇c|2 − 2 |∇b|2 |∇d|2

+ 4[(∇b · ∇c)2 + (∇a · ∇d)2 − 2(∇b · ∇c)(∇a · ∇d)]
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+ 4[(∇a · ∇c)2 + (∇b · ∇d)2 + 2(∇a · ∇c)(∇b · ∇d)]

≤ (|∇a|2 + |∇b|2 + |∇c|2 + |∇d|2)2
+ 8[(∇a · ∇c)(∇b · ∇d)− (∇a · ∇d)(∇b · ∇c)]

= |∇ψ |4 + 8(∇a × ∇b) · (∇c × ∇d)

=
(

1
4

|∇s|2 + |u|2
)2

+ 4
( |ω|2

4
− |∇a × ∇b|2 − |∇c × ∇d|2

)

≤ 1
8

|∇s|4 + 2 |u|4 + |ω|2

≤ 3
8

|∇s|4 + 2 |u|4, (C8)

so that

|m| ≤
(

3
8 |∇s|4 + 2 |u|4

)1/2

=
[(√

6
4 |∇s|2 +

√
2 |u|2

)2 −
√

3 |∇s|2 |u|2
]1/2

≤
√

6
4 |∇s|2 +

√
2 |u|2. (C9)

Integrating (C9) over the domain D yields

‖m‖1 ≤
√

6
4 ‖∇s‖2

2 +
√

2 ‖u‖2
2. (C10)

By virtue of the Sobolev–Poincaré inequality (Moffatt & Tsinober 1992),

‖u‖2
2 ≤ Cω ‖ω‖2

2 (C11)

holds, with a positive constant Cω independent of u. Combining (C2), (C7), (C10) and
(C11), we derive

‖m‖1 ≤
√

6
4 ‖∇s‖2

2 +
√

2Cω ‖ω‖2
2

≤
√

6
4 ‖∇s‖2

2 +
√

2
4 Cω ‖∇s‖4

4

≤
√

6
4 ‖∇s‖2

2 +
√

2
4 Cω ‖∇s‖2

2 ‖�s‖∞

= 1
4 ‖∇s‖2

2

(√
6 +

√
2Cω ‖�s‖∞

)
. (C12)

Finally, substituting (C12) into (C4) and applying the Hölder inequality, we have

1
‖∇s‖2

2p
∂t‖∇s‖2p

2p ≤ p
2
μ( p−1)/p(D)

(√
6 +

√
2Cω ‖�s‖∞

)
‖�s‖p

∞, (C13)

where μ(D) is the finite measure of domain D. Integrating (C13) over time yields

‖∇s( · , t)‖2
2 ≤ Cs exp

(
1
2

∫ t

0

(√
6 +

√
2Cω ‖�s( · , τ )‖∞

)
‖�s( · , τ )‖∞ dτ

)
(C14)
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for p = 1, with a constant Cs = exp(‖∇s(·, 0)‖2
2), and

‖∇s( · , t)‖2( p−1)
2p ≤ p − 1

2
μ( p−1)/p(D)

∫ t

0

(√
6+

√
2Cω ‖�s( · , τ )‖∞

)
‖�s( · , τ )‖p

∞ dτ

(C15)
for p > 1.

As the Hölder inequality leads to

∫ t

0
‖�s( · , τ )‖p

∞ dτ ≤ t1/( p+1)
(∫ t

0
‖�s( · , τ )‖p+1

∞ dτ
)p/( p+1)

, (C16)

we have

∫ t

0

(√
6 +

√
2Cω ‖�s( · , τ )‖∞

)
‖�s( · , τ )‖p

∞ dτ

≤
√

6t1/( p+1)
(∫ t

0
‖�s( · , τ )‖p+1

∞ dτ
)p/( p+1)

+
√

2Cω

∫ t

0
‖�s( · , τ )‖p+1

∞ dτ

≤ Cp(t)
∫ t

0
‖�s( · , τ )‖p+1

∞ dτ, ∀p ≥ 1, (C17)

where Cp(t) = √
6t1/( p+1) + √

2Cω is a finite coefficient when t < ∞. Using (C7), (C14)
and (C17), the L1-norm of the vorticity can be estimated by

‖ω‖1 ≤ Cs

2
exp

(
C1(t)

2

∫ t

0
‖�s( · , τ )‖2

∞ dτ
)
. (C18)

Moreover, using (C7), (C15) and (C17), the Lp-norm (p > 1) of the vorticity can be
estimated by

‖ω‖p ≤ 1
2

(
p − 1

2
μ( p−1)/p(D)Cp(t)

∫ t

0
‖�s( · , τ )‖p+1

∞ dτ
)1/( p−1)

. (C19)

From (C18) and (C19), we obtain a sufficient condition for bounded ‖ω‖p as

∫ t

0
‖�s( · , τ )‖p+1

∞ dτ < ∞, ∀p ≥ 1, (C20)

i.e. (2.11). Note that it is straightforward to deduce the special case of (C20) with p = 2
from (C6) using the BKM theorem (Beale et al. 1984).

Appendix D. Upper bound estimation for ‖�s‖
We show an attempt to estimate the upper bound of |�s|, which is an important ingredient
in the non-blowup criterion in (2.11). Taking the inner product of �s and the Laplacian of
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(2.7) yields the evolution equation for |�s|:

∂t|�s|2 + 2�s ·�(s × m) = 0. (D1)

Integrating (D1) over D yields

∂t‖�s‖2
2 = −2

∫
D
εjrs�sj

∂

∂xk

(
∂sr

∂xk
ms + sr

∂ms

∂xk

)
dV

= −2
�
∂D

εjrsnk �sj

(
∂sr

∂xk
ms + sr

∂ms

∂xk

)
dS

+ 2
∫
D
εjrs

∂�sj

∂xk

(
∂sr

∂xk
ms + sr

∂ms

∂xk

)
dV

= 2
�
∂D

εjrsnk
∂�sj

∂xk
srms dS − 2

∫
D
εjrs�

2sjsr ms dV

= −2
∫
D
�2s · (s × m) dV. (D2)

Applying the Hölder inequality to (D2), we obtain

∂t‖�s‖2
2 ≤ 1

2

(√
6 ‖�s‖1 +

√
2Cω ‖�s‖2

2

)
‖�2s‖∞

≤ 1
2

(√
6μ1/2(D) ‖�s‖2 +

√
2Cω ‖�s‖2

2

)
‖�2s‖∞, (D3)

which yields

∂t‖�s‖2 ≤ 1
4

(√
6μ1/2(D)+

√
2Cω‖�s‖2

)
‖�2s‖∞. (D4)

Integrating (D4) over time yields

‖�s‖2 ≤ Cs1 exp

(√
2Cω
4

∫ t

0
‖�2s( · , τ )‖∞ dτ

)
+ Cs2, (D5)

with constants

Cs1 = 1√
2Cω

(√
6μ1/2(D)+

√
2Cω ‖�s( · , 0)‖2

)
, Cs2 = −

√
3μ1/2(D)

Cω
. (D6a,b)

The inequality (D5) implies a closure problem in the bound estimation – the growth of
the L2-norm of �s depends on its higher-order derivatives. In addition, using the identity

�s ·�(s × m) = �s · (s ×�m)+ 2 ∇s : (∇m ×�s), (D7)

we estimate the growth rate of the L∞-norm of �s as

∂t‖�s‖∞ ≤ ‖�m‖∞ + ‖∇m‖∞ ‖�s‖1/2
∞ . (D8)

However, it appears to be challenging to estimate ‖�m‖∞ and ‖∇m‖∞ in terms of
‖�s‖∞. Thus the estimations of (D5) and (D8) need to be improved in future work.
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