ON THE BRANCHING THEOREM OF THE SYMPLECTIC GROUPS⁽¹⁾

BY C. Y. LEE

1. Introduction. In [1], Zhelobenko introduced the concept of a Gauss decomposition $Z^t DZ$ of a topological group and gave characterizations of irreducible representations of the classical groups. In this setting, vectors of representation spaces are polynomial solutions of a system of differential equations and the problem of obtaining branching theorem with respect to a subgroup G_0 is to find all polynomial solutions that are invariant under $Z \cap G_0$ and have dominant weight with respect to $D \cap G_0$.

Branching theorems are obtained for the classical groups in [1] and in the cases $GL(n) \supset GL(n-1)$, $SO(2k) \supset SO(2k-1)$ and $SO(2k+1) \supset SO(2k)$ invariants of $Z \cap G_0$ were explicitly constructed. However, in the proof of the case $Sp(2k) \supset Sp(2k-2)$, the principle of correspondence with $GL(k+1) \supset GL(k-1)$ was employed and the problem of explicit construction of the invariants was left open.

In this paper, an explicit construction of all the invariants of $Z \cap Sp(2k-2)$ that correspond to dominant weights with respect to $D \cap Sp(2k-2)$ is given for the case $Sp(2k) \supset Sp(2k-2)$.

In section 4, the invariants constructed are used to obtain the branching theorem with respect to another subgroup G_1 which is isomorphic to $Sp(2k-2) \times Sp(2)$. This case was studied by J. Lepowsky [2], [3].

2. Preliminaries. The symplectic group Sp(n) (where n=2k) consists of all complex $n \times n$ matrices that preserve the skew symmetric form

 $[x, y] = x_1 y_n + \dots + x_k y_{k+1} - x_{k+1} y_k - \dots - x_n y_1.$

Let Z be the subgroup of upper triangular matrices, Z^t be the set of transpositions of elements in Z and D be the subgroup of diagonal matrices of Sp(2k). The following two theorems, constructed out of Zhelobenko's work, will be used.

THEOREM 1. Every irreducible representation of Sp(2k) is induced by some character α of D, i.e., if T_g is a finite dimensional irreducible representation of Sp(2k), then T_g is defined in a class of functions on Z by right multiplication, i.e.,

Received by the editors May 23, 1973 and, in revised form, October 3, 1973.

⁽¹⁾ The results in this paper are contained in C. Y. Lee's Ph.D. thesis, written under the guidance of Professor A. Das.

[December

for any f(z) in the class, any $g \in G$ and any $z \in Z$,

(2.1)
$$T_g f(z) = \alpha(z, g) f(z \cdot g)$$

where (z, g) and $z \cdot g$ are components of zg in D and Z respectively relative to the decomposition $Z^t DZ$. In particular

C. Y. LEE

(2.2)
$$T_{\delta}f(z) = \alpha(\delta)f(\delta^{-1}z\delta), \text{ for all } \delta \text{ in } D.$$

THEOREM 2. Let

be the general form of an element in D, then every irreducible representation of Sp(2k) is induced by a character δ of D of the form $\delta_1^{m_1} \cdots \delta_k^{m_k}$ where m_i $(i=1,\ldots,k)$ are integers satisfying $m_1 \geq \cdots \geq m_k \geq 0$. If $z_{ij}(i < j, i, j=1,\ldots,2k)$ are entries of elements in Z, then the functions of this representation space consist of all polynomials f(z) of all z_{ij} satisfying the differential equations

(2.3)
$$\begin{pmatrix} \frac{\partial}{\partial z_{12}} + z_{23} \frac{\partial}{\partial z_{13}} + \dots + z_{2,2k} \frac{\partial}{\partial z_{1,2k}} \end{pmatrix}^{m_1 - m_2 + 1} f(z) = 0, \\ \begin{pmatrix} \frac{\partial}{\partial z_{23}} + \dots + z_{3,2k-1} \frac{\partial}{\partial z_{2,2k-1}} \end{pmatrix}^{m_2 - m_3 + 1} f(z) = 0, \\ \dots \\ \begin{pmatrix} \frac{\partial}{\partial z_{k-k-1}} \end{pmatrix}^{m_k + 1} f(z) = 0. \end{cases}$$

Due to the symplectic restriction, not all entries of $z \in Z$ are independent; one may choose as independent variables the entries

3. Branching theorem and construction of invariants. Consider the subgroup G_0 of Sp(2k) consisting of all matrices that leave x_k and x_{k+1} fixed. This subgroup

is isomorphic to Sp(2k-2). Let the irreducible representation of Sp(2k) induced by the character $\delta_1^{m_1} \cdots \delta_k^{m_k}$ be denoted by (m_1, \ldots, m_k) . In [1] (see also [4]), it was proved that the irreducible representations of G_0 appearing in the irreducible representation (m_1, \ldots, m_k) of Sp(2k) are the representations (q_1, \ldots, q_{k-1}) corresponding to all possible patterns

(3.1)
$$\begin{pmatrix} m_1 \cdots m_k \\ p_1 \cdots p_k \\ q_1 \cdots q_{k-1} \end{pmatrix},$$

where p_i and q_i are integers satisfying

$$m_1 \geq p_1 \geq \cdots \geq m_k \geq p_k \geq 0,$$

$$p_1 \ge q_1 \ge \cdots \ge p_{k-1} \ge q_{k-1} \ge p_k$$

and (q_1, \ldots, q_{k-1}) denotes the irreducible representation of G_0 induced by $\delta_1^{q_1} \cdots \delta_{k-1}^{q_{k-1}}$. In what follows, M, P, and Q will denote the rows of (3.1).

PROPOSITION 1. Every matrix z in the subgroup Z of Sp(n) can be transformed to a matrix whose entries depend only on

by a right multiplication of an element of $Z \cap G_0$.

Proof. For k=2, with the symplectic restriction, one may write

$$z = \begin{pmatrix} 1 & z_{12} & z_{13} & z_{14} \\ & 1 & z_{23} & z_{13} - z_{23} z_{12} \\ & & 1 & -z_{12} \\ & & & 1 \end{pmatrix}.$$

Multiply z on the right by

$$z_0 = \begin{pmatrix} 1 & 0 & 0 & -z_{14} \\ 1 & 0 & 0 \\ & 1 & 0 \\ & & 0 \end{pmatrix},$$

it is easy to see that entries of zz_0 do not depend on z_{14} . Now suppose that the statement is true for k-1. Notice that the truncation X of z formed by elements z_{ij} whose indices take only the values 2, 3, ..., n-1 is symplectic. Write

$$z = \begin{pmatrix} 1 & t & z_{1n} \\ & X & c^t \\ & & 1 \end{pmatrix},$$

where t is a row vector and c^{t} is a column vector. Factorize z as

$$\begin{pmatrix} 1 & 0 & 0 \\ & X & 0^t \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & t & z_{1n} \\ & I_{n-2} & t^* \\ & & & 1 \end{pmatrix},$$

where t^* is the column

$$\begin{pmatrix} z_{1,n-1} \\ \cdot \\ \cdot \\ \cdot \\ z_{1,k+1} \\ -z_{1,k} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ -z_{12} \end{pmatrix}$$

Multiplying z on the right by

$$z_{1} = \begin{pmatrix} 1, -z_{12}, -z_{13}, \dots, -z_{1,k-1}, 0, 0, -z_{1,k+2}, \dots, -z_{1n} \\ I_{n-2} & t_{1}^{*} \\ 1 \end{pmatrix},$$

one obtains

It is clear that the second factor of zz_1 commutes with every matrix of the form

 $\begin{pmatrix} 1 & 0 & 0 \\ & Y & 0^t \\ & & 1 \end{pmatrix}$

in $Z \cap G_0$. By induction assumption, the proof is thus completed.

COROLLARY 1. When an irreducible representation of Sp(2k) is restricted to G_0 , the invariants of $Z \cap G_0$ can only depend on (3.2).

From corollary 1, polynomials corresponding to patterns (3.1) must depend only on (3.2). For clarity, write (3.2) as

$$a_1, b_1$$

 \cdots \cdots
 \cdots \cdots
 a_{k-1}, b_{k-1}

Thus when restricted to these polynomials, (2.3) becomes

To construct these polynomials, for each fixed pattern (3.1), define the following functions:

$$(3.4) f_{i}(M, P, Q) = \begin{cases} a_{i}^{p_{i}-q_{i}}b_{i}^{m_{i}-p_{i}}, & (q_{i} \ge m_{i+1}, q_{i-1} \ge m_{i}) \\ a_{i}^{p_{i}-q_{i}}b_{i}^{q_{i-1}-p_{i}}, & (q_{i} \ge m_{i+1}, q_{i-1} < m_{i}) \\ a_{i}^{p_{i}-m_{i+1}}b_{i}^{q_{i-1}-p_{i}}(b_{i+1}a_{i}-a_{i+1}b_{i})^{m_{i+1}-q_{i}}, & (q_{i} < m_{i+1}, q_{i-1} < m_{i}) \\ a_{i}^{p_{i}-m_{i+1}}b_{i}^{m_{i}-p_{i}}(b_{i+1}a_{i}-a_{i+1}b_{i})^{m_{i+1}-q_{i}}, & (q_{i} < m_{i+1}, q_{i-1} \ge m_{i}). \end{cases}$$

Where $a_k = a_{k+1} = b_{k+1} = 1$, $q_0 = m_1$ and $q_k = m_{k+1} = 0$. Now consider the function

(3.5)
$$F(M, P, Q) \equiv \prod_{i=1}^{k} f_i(M, P, Q)$$

It will be proved that (3.5) corresponds (3.1).

THEOREM 3. The functions (3.5) constructed for each pattern (3.1) satisfy (3.3) and have weights $(q_1, q_2, \ldots, q_{k-1}) = Q$ with respect to $D \cap G_0$. Furthermore, they are linearly independent.

Proof. To show that these functions satisfy (3.3), consider the first differential equation

$$\left(a_2\frac{\partial}{\partial a_1}+b_2\frac{\partial}{\partial b_1}\right)^{m_1-m_2+1}f(a,b)=0.$$

For F(M, P, Q) to satisfy this differential equation, it is sufficient that f_1 of F(M, P, Q) satisfies it. One considers the following cases.

(i) If $q_1 \ge m_2$, then

$$(p_1 - q_1) + (m_1 - p_1) = m_1 - q_1 < m_1 - m_2 + 1,$$

https://doi.org/10.4153/CMB-1974-095-7 Published online by Cambridge University Press

1974]

[December

hence each term of the expansion of the differential operator annihilates f_1 .

(ii) For $q_1 < m_2$, notice that

$$\left(a_{2}\frac{\partial}{\partial a_{1}}+b_{2}\frac{\partial}{\partial b_{1}}\right)\left(b_{2}a_{1}-a_{2}b_{1}\right)^{k}=0, \quad (k=0,\,1,\,2,\ldots)$$

$$(p_{1}-m_{2})+(m_{1}-p_{1})< m_{1}-m_{2}+1.$$

and

hence again each term of the expansion of the differential operator annihilates
$$f_1$$
. In a similar way, one can prove that $F(M, P, Q)$ satisfies the rest of (3.3).

To show that F(M, P, Q) has weight $Q = (q_1, \ldots, q_{k-1})$ with respect to $D \cap G_0$, use (2.2). For

in $D \cap G_0$, one has

(3.6) $T_{\delta_0}f(z) = \delta_1^m \cdots \delta_{k-1}^{m_{k-1}} f(\delta_0^{-1} z \delta_0),$

where $f(\delta_0^{-1} z \delta_0)$ can be written as

 $\delta_1^{r_1}\cdots\delta_{k-1}^{r_{k-1}}f(z)$

for some negative integers r_1, \ldots, r_{k-1} and the weights of f(z) with respect to $D \cap G_0$ is $(m_1+r_1, \ldots, m_{k-1}+r_{k-1})$. Multiplying out $\delta_0^{-1}z\delta_0$, one finds that for $i \leq k-1$, a_i and b_i are changed to $\delta_i^{-1}a_i$ and $\delta_i^{-1}b_i$ respectively. To obtain the weight of F(M, P, Q) with respect to $D \cap G_0$, one first considers δ_1 and the following cases.

(i) If $q_1 \ge m_2$, then by (3.6) and substitution of $\delta_1^{-1}a_1$ and $\delta_1^{-1}b_1$ for a_1 and b_1 in (3.4) one obtains

$$r_1 = -(p_1 - q_1) - (m_1 - p_1) = -m_1 + q_1,$$

thus the power of δ_1 is q_1 .

(ii) If $q_1 < m_2$, then r_1 is

$$-(p_1-m_2)-(m_1-p_1)-(m_2-q_1) = -m_1+q_1,$$

again, the power of δ_1 is q_1 .

https://doi.org/10.4153/CMB-1974-095-7 Published online by Cambridge University Press

The powers of $\delta_2, \ldots, \delta_{k-1}$ may be obtained by using (3.6) and (3.4). It turns out that they are q_2, \ldots, q_{k-1} respectively.

Finally, to show linear independence of these functions, it is sufficient to consider functions having the same weight with respect to $D \cap G_0$. Hence it suffices to consider functions $\{F_1, \ldots, F_i\} = \mathcal{F}_Q$ corresponding to patterns with the same Q. Suppose F_i in \mathcal{F}_Q is a linear combination of $S \subseteq \mathcal{F}_Q$. One again examines the following different cases.

(i) If $q_1 \ge m_2$, then the powers of a_1 and b_1 in the functions F_i of \mathscr{F}_Q are $p_1^{(i)} - q_1$ and $m_1 - p_1^{(i)}$. Since all functions of \mathscr{F}_Q are polynomials, F_i can be a linear combination of S only when every pattern corresponding to functions in S has the same $p_1 = p_1^{(i)}$.

(ii) If $q_1 < m_2$, then the highest power of a_1 appearing in F_i is $p_1^{(i)}$.

In a similar way, one can examine all cases in (3.4) and conclude that functions in S must correspond to F_i . But then elements of S must be a scalar times F_i , hence \mathcal{F}_Q is a linear independent set.

4. An application of the invariants. Let G_1 be the subgroup of Sp(n) generated by G_0 and all elements of Sp(n) leaving $x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{2k}$ invariant. Then $G_1 \simeq Sp(2k-2) \times Sp(2)$ and an irreducible representation of G_1 is characterized by integers $(q_1, \ldots, q_{k-1}; q)$ satisfying $q_1 \ge q_2 \ge \cdots \ge q_{k-1} \ge 0$ and $q \ge 0$. Let $m(q_1, \ldots, q_{k-1}; q)$ denote the multiplicity of the representation $(q_1, \ldots, q_{k-1}; q)$, it suffices [1, p. 12, Corollary] to look for independent functions in (m_1, \ldots, m_k) that satisfy

(4.1)
$$T_{z_0}f(z) = f(z_0) = f(z_0), \quad \forall z_0 \in Z(G_1)$$

and

(4.2)
$$T_{\delta}f(z) = \delta_1^{q_1} \cdots \delta_{k-1}^{q_{k-1}} \delta_k^q f(z), \quad \forall \delta \in D(G_1)$$

Since $Z \cap G_1 \supseteq Z \cap G_0$ and $D \cap G_1 \supseteq D \cap G_0$, these functions are constructable from the functions $\prod_{i=1}^{k} f_i(M, P, Q)$.

Let $Q = (q_1, \ldots, q_{k-1})$ be fixed, \mathscr{F}_Q be the collection of all functions $\prod_{i=1}^{k} f_i(M, P, Q)$ with this Q and $V(\mathscr{F}_Q)$ be the space spanned by \mathscr{F}_Q ; $m(q_1, \ldots, q_{k-1}; q)$ is then equal to the number of independent functions in $V(\mathscr{F}_Q)$ that satisfy (4.1) and (4.2).

Every z_0 in $Z(G_1)$ can be written as z_1z_2 where $z_1 \in Z(G_0)$ and z_2 is of the form

$$\begin{pmatrix} I_{k-1} & & & \\ & 1 & c & \\ & 0 & 1 & \\ & & & I_{k-1} \end{pmatrix}$$

where all other entries are zero. If f(z) is in the space spanned by the functions

1974]

C. Y. LEE

 $\prod_{i=1}^{k} f_i(M, P, Q)$, then

$$T_{z_1 z_2} f(z) = T_{z_2} f(z z_1) = T_{z_2} f(z) = f(z z_2).$$

Under right multiplication by z_2 , the variables $a_1, \ldots, a_{k-1}, b_1, \ldots, b_k$ are changed as

(4.3)

$$a_{1} \rightarrow a_{1}, \qquad b_{1} \rightarrow b_{1} + a_{1}c$$

$$\vdots \qquad \vdots$$

$$a_{k-1} \rightarrow a_{k-1}, \qquad b_{k-1} \rightarrow b_{k-1} + a_{k-1}c$$

$$b_{k} \rightarrow b_{k} + c.$$

Hence (4.1) is equivalent to invariance under the transformation (4.3).

LEMMA 1. A polynomial function $f(a_1, \ldots, a_{k-1}; b_1, \ldots, b_k)$ is invariant under the transformation (4.3) iff $f(a_1, \ldots, a_{k-1}; b_1, \ldots, b_k)$ is of the form

(4.4)
$$\sum_{s,t} r_{t_1,\ldots,t_{k-1}}^{s_1,\ldots,s_{k-1}} a_1^{s_1}\cdots a_{k-1}^{s_{k-1}} (b_1-a_1b_k)^{t_1}\cdots (b_{k-1}-a_{k-1}b_k)^{t_{k-1}}.$$

Proof. Under (4.3), $b_i - a_i b_k$ is transformed to $b_i + a_i c - a_i (b_k + c) = b_i - a_i b_k$. Therefore, (4.4) is invariant.

Conversely, suppose a polynomial

$$f(a_1,\ldots,a_{k-1};b_1,\ldots,b_k) = \sum_{s,t} r_{t_1,\ldots,t_k}^{s_1,\ldots,s_{k-1}} a_1^{s_1} \cdots a_{k-1}^{s_{k-1}} b_1^{t_1} \cdots b_k^{t_k}$$

is invariant under the transformation (4.3). By setting $c = -b_k$, it follows that all $r_{t_1,\ldots,t_k}^{s_1,\ldots,s_{k-1}}$ for which $t_k \neq 0$ are zero and $f(a_1, a_{k-1}; b_1, \ldots, b_k)$ is of the form (4.4).

For any $\delta \in D$, multiplying out $\delta^{-1}z\delta$, the variables $a_1, \ldots, a_{k-1}, b_1, \ldots, b_k$ are changed as

(4.5)
$$a_{1} \rightarrow a_{1} \delta_{1}^{-1} \delta_{k}, \qquad b_{1} \rightarrow b_{1} \delta_{1}^{-1} \delta_{k}^{-1}, \\ \cdot & \cdot \\ \cdot & \cdot \\ a_{k-1} \rightarrow a_{k-1} \delta_{1}^{-1} \delta_{k}, \qquad b_{k-1} \rightarrow b_{k-1} \delta_{k-1}^{-1} \delta_{k}^{-1}, \\ b_{k} \rightarrow b_{k} \delta_{k}^{-2}.$$

If $f(a_1, ..., a_{k-1}; b_1, ..., b_k)$ satisfies (4.1) and (4.2), then from (4.5), the equations

(4.6)
$$s_i + t_i = m_i - q_i, \quad (i = 1, \dots, k-1) \\ (t_1 + \dots + t_{k-1}) - (s_1 + \dots + s_{k-1}) = m_k - q$$

must be satisfied for each summand $a_1^{s_1} \cdots a_{k-1}^{s_{k-1}} (b_1 - a_1 b_k)^{t_1} \cdots (b_{k-1} - a_{k-1} b_k)^{t_{k-1}}$. Using (4.5), the weight of the function $\prod_{i=1}^{k} f_i(M, P, Q)$ is found to be

(4.7)
$$\delta_1^{q_1} \cdots \delta_{k-1}^{q_{k-1}} \delta_k^{2(p_1+\cdots+p_k)-(m_1+\cdots+m_k)-(q_1+\cdots+q_{k-1})}$$

[December

542

Thus if $f(a_1, \ldots, a_{k-1}; b_1, \ldots, b_k) = \sum_{F_i \in \mathscr{F}_0} r_i F_i$, then P of each F_i must satisfy

(4.8)
$$2(p_1^{(i)} + \cdots + p_k^{(i)}) - (m_1 + \cdots + m_k) - (q_1 + \cdots + q_{k-1}) = q$$

Suppose that $Q = (q_1, \ldots, q_{k-1})$ satisfies

$$(4.9) q_1 \ge m_2, \ldots, q_{k-1} \ge m_k.$$

In this case, the functions in \mathscr{F}_Q are monomials. Let \mathscr{B} be the subset of \mathscr{F}_Q that satisfy (4.8), then

$$\mathscr{B} = \left\{ a_1^{p_1-q_1} b_1^{m_1-p_1} \cdots a_{k-1}^{p_{k-1}-q_{k-1}} b_{k-1}^{m_{k-1}-p_{k-1}} b_k^{m_k-p_k} \right| 2 \sum_{i=1}^k p_i - \sum_{i=1}^k m_i - \sum_{i=1}^{k-1} q_i = q \right\}.$$

LEMMA 2. If the function (4.4) satisfies (4.2) and belongs to the space $V(\mathcal{B})$ spanned by \mathcal{B} , then every summand

$$(4.10) a_1^{s_1} \cdots a_{k-1}^{s_{k-1}} (b_1 - a_1 b_k)^{t_1} \cdots (b_{k-1} - a_{k-1} b_k)^{t_{k-1}}$$

of it also belongs to $V(\mathcal{B})$.

Proof. If (4.4) satisfies (4.2), then every summand of it also satisfies (4.2). Since each summand is invariant under (4.3), it belongs to $V(\mathcal{F}_Q)$. $V(\mathcal{B})$ is obviously the subspace of $V(\mathcal{F}_Q)$ that satisfies (4.2), thus each summand of (4.4) belongs to $V(\mathcal{B})$.

Thus assuming (4.9) is satisfied to find $m(q_1, \ldots, q_{k-1}; q)$, it suffices to find the number of independent polynomials of the form (4.10) that are in $V(\mathcal{B})$. Notice that the power of b_k of any element in \mathcal{B} does not exceed m_k .

LEMMA 3. The polynomial (4.10) is in $V(\mathscr{B})$ iff $a_1^{s_1+t_1}\cdots a_{k-1}^{s_{k-1}+t_{k-1}}b_k^{t_1+\cdots+t_{k-1}}$ is in \mathscr{B} .

Proof. If $a_1^{s_1+t_1} \cdots a_{k-1}^{s_{k-1}+t_{k-1}} b_k^{t_1+\dots+t_{k-1}} \in \mathscr{B}$, then

(4.11)
$$\begin{array}{c} s_i + t_i = m_i - q_i, \quad (i = 1, \dots, k-1) \\ (s_1 + \dots + s_{k-1}) - (t_1 + \dots + t_{k-1}) = q - m_m, \\ t_1 + \dots + t_{k-1} \le m_k. \end{array}$$

A general term of the expansion of (4.10) is

$$a_1^{s_1+(t_1-j_1)}\cdots a_{k-1}^{s_{k-1}+(t_{k-1}-j_{k-1})}b_1^{j_1}\cdots b_{k-1}^{j_{k-1}}b_k^{(t_1+\cdots+t_{k-1})-(j_1+\cdots+j_{k-1})}$$

By (13), $[s_i+(t_i-j_i)]+j_i=m_i-q_i$ $(i=1,\ldots,k-1)$, $\sum_{1}^{k-1}[s_i+(t_i-j_i)]-\sum_{1}^{k-1}j_i-2[\sum_{1}^{k-1}t_i-\sum_{1}^{k-1}j_i]=q$ and $(t_1+\cdots+t_{k-1})-(j_1+\cdots+j_{k-1}) \le t_1+\cdots+t_{k-1} \le m_k$. Thus every general term is in \mathscr{B} . The converse is obvious.

It is now clear that when (4.9) is satisfied $m(q_1, \ldots, q_{k-1}; q)$ is equal to the number of non-negative integer solutions $(s_1, \ldots, s_{k-1}; t_1, \ldots, t_{k-1})$ to (4.11). The general case is included in the following:

C. Y. LEE

THEOREM 4. $m(q_1, \ldots, q_{k-1}; q)$ is equal to the number of non-negative integer solutions $(s_1, \ldots, s_{k-1}; t_1, \ldots, t_{k-1})$ of

(4.12)
$$s_{i}+t_{i} = m_{i}''-q_{i}, \quad (i = 1, \dots, k-1) \\ (s_{1}+\dots+s_{k-1})-(t_{1}+\dots+t_{k-1}) = q-m_{k}'' \\ t_{1}+\dots+t_{k-1} \le m_{k}''$$

where

$$m_1'' = m_1 - (m_1' + m_2'),$$

$$m_2'' = m_2 - (m_2' + m_3'), \dots, m_{k-1}'' = m_{k-1} - (m_{k-1}' + m_k'),$$

$$m_k'' = m_k - m_k'$$

~

and

$$m'_1 = 0,$$

 $m'_2 = \max(0, m_2 - q_1), \dots, m'_k = \max(0, m_k - q_{k-1}).$

Proof. The case when (4.9) is satisfied is treated previously. For the general case, consider a fixed Q and the subset \mathscr{S} of \mathscr{F}_Q consisting of functions that satisfy (10). By definition, the polynomial

$$(4.13) (a_1b_2-b_1a_2)^{m_2'}\cdots(a_{k-1}b_k-b_{k-1})^{m_k}$$

is a common factor for all functions in \mathscr{S} . (4.13) is invariant under (4.3); under (4.5), it is changed to

$$\delta_{1}^{-m_{2}'} \delta_{2}^{-(m_{2}'+m_{3}')} \cdots \delta_{k-1}^{-(m_{k-1}'+m_{k}')} \delta_{k}^{-m_{k}'} (a_{1}b_{2}-b_{1}a_{2})^{m_{2}'} \cdots (a_{k-1}b_{k}-b_{k-1})^{m_{k}'}.$$
Write $\mathscr{S} = (a_{1}b_{2}-b_{1}a_{2})^{m_{2}'} \cdots (a_{k-1}b_{k}-b_{k-1})^{m_{k}'} \mathscr{B}',$ where
$$\mathscr{B}' = \{a_{1}^{p_{1}-(m_{2}'+q_{1})}b_{1}^{(m_{1}-m_{1}')-p_{1}} \cdots a_{k-1}^{p_{k-1}-(m_{k}'+q_{k-1})}b_{k-1}^{(m_{k}-1-m_{k-1}')-p_{k-1}} \times b_{k}^{(m_{k}-m_{k}')-p_{k}|2}\sum_{l=1}^{k} \sum_{m_{l}}^{k} \sum_{l=1}^{k} \sum_{m_{l}}^{k} \sum_{l=1}^{k} \sum_{m_{l}}^{k} \sum_{l=1}^{k} \sum_{m_{l}}^{k} \sum_{l=1}^{k} \sum_{m_{l}}^{k} \sum_{l=1}^{k} \sum_{l=1}^{k} \sum_{m_{l}}^{k} \sum_{m_{l}}^{k} \sum_{l=1}^{k} \sum_{m_{l}}^{k} \sum_{m_{l}}^{k$$

Replacing the set \mathscr{B} in Lemmas 2 and 3 by \mathscr{B}' , the result follows immediately.

Branching theorems are usually stated by means of patterns similar to (3.1). The following theorem gives this description for the case studied in Theorem 4.

THEOREM 5 The irreducible representations of G_1 appearing in (m_1, \ldots, m_k) of Sp(2k) can be put in one-to-one correspondence with all patterns of integers

(4.14)
$$\begin{pmatrix} m_1 \cdots \cdots m_k \\ p_1 \cdots p_{k-1} \\ q_1 \cdots q_{k-1} \\ q \end{pmatrix}$$

where $m_1 \ge p_1 \ge m_2 \cdots \ge p_{k-1} \ge m_k$, $p_1 \ge q_1 \ge p_2 \cdots \ge p_{k-1} \ge q_{k-1} \ge 0$,

(4.15)
$$q = m_k'' + \sum_{1}^{k-1} (p_i - q_i - m_{i+1}') - \sum_{1}^{k-1} (m_i'' - p_i + m_{i+1}'),$$

[December

and $\sum_{1}^{k-1} (m''_i - p_i + m'_{i+1}) \le m''_k$ Furthermore each pattern corresponds to $(q_1, \ldots, q_{k-1}; q)$ of G_1 .

Proof. In the particular case when (4.9) holds, recall that $m(q_1, \ldots, q_{k-1}; q)$ is the number of monomials $a_1^{s_1+t_1} \cdots a_{k-1}^{s_{k-1}+t_{k-1}} b_k^{t_1+\cdots+t_{k-1}}$ (where $s_1, \ldots, s_{k-1}, t_1, \ldots, t_{k-1}$ satisfy (4.11)) that belong to \mathscr{B} . Hence every $(q_1, \ldots, q_{k-1}; q)$ is associated with partitions of the integers $m_i - q_i$ $(i=1, \ldots, k-1)$ into s_i and t_i such that $\sum_{1}^{k-1} s_i - \sum_{1}^{k-1} t_i = q - m_k$ and $t_1 + \cdots + t_{k-1} \le m_k$. Let $t_i = m_i - p_i$, then $s_i = p_i - q_i, q = m_k + \sum_{1}^{k-1} (p_i - q_i) - \sum_{1}^{k-1} (m_i - p_i)$ and $(q_1, \ldots, q_{k-1}; q)$ can then be associated with the pattern

(4.16)
$$\begin{pmatrix} m_1 \cdots \cdots m_k \\ p_1 \cdots p_{k-1} \\ q_1 \cdots q_{k-1} \end{pmatrix} q = m_k + \sum_{i=1}^{k-1} (p_i - q_i) - \sum_{i=1}^{k-1} (m_i - p_i) \end{pmatrix}.$$

It is now clear that when (4.9) holds, all $(q_1, \ldots, q_{k-1}; q)$ that are contained in (m_1, \ldots, m_k) can be put in one-to-one correspondence with patterns (4.16) where $m_k - \sum_{1}^{k-1} (m_i - p_i) \ge 0$.

The general case can be proved analogously by considering the set \mathscr{B}' as defined in the proof of Theorem 1 and letting $s_i = p_i - q_i - m'_{i+1}$, $t_i = m''_i - p_i + m'_{i+1}$ in (4.12).

REFERENCES

1. D. P. Zhelobenko, *The classical groups. Spectral analysis of their finite-dimensional representations*, Russian Math. Surveys 17 (1962), 1–94.

2. J. Lepowsky, thesis, M.I.T. (1970).

3. J. Lepowsky, Multiplicity formulas for certain semisimple Lie groups, Bull. Amer. Math. Soc. 4, vol. 77 (1971) 601-605.

4. G. C. Hegerfeldt, Branching theorem for the symplectic groups, J. Math. Phys. 8 (1967), 1195-1196.

DEPARTMENT OF MATHEMATICS SIMON FRASER UNIVERSITY BURNABY 2, B.C.

6