ON THE BRANCHING THEOREM OF THE SYMPLECTIC GROUPS ${ }^{(1)}$

BY
C. Y. LEE

1. Introduction. In [1], Zhelobenko introduced the concept of a Gauss decomposition $Z^{t} D Z$ of a topological group and gave characterizations of irreducible representations of the classical groups. In this setting, vectors of representation spaces are polynomial solutions of a system of differential equations and the problem of obtaining branching theorem with respect to a subgroup G_{0} is to find all polynomial solutions that are invariant under $Z \cap G_{0}$ and have dominant weight with respect to $D \cap G_{0}$.

Branching theorems are obtained for the classical groups in [1] and in the cases $G L(n) \supset G L(n-1), S O(2 k) \supset S O(2 k-1)$ and $S O(2 k+1) \supset S O(2 k)$ invariants of $Z \cap G_{0}$ were explicitly constructed. However, in the proof of the case $S p(2 k) \supset$ $S p(2 k-2)$, the principle of correspondence with $G L(k+1) \supset G L(k-1)$ was employed and the problem of explicit construction of the invariants was left open.

In this paper, an explicit construction of all the invariants of $Z \cap S p(2 k-2)$ that correspond to dominant weights with respect to $D \cap S p(2 k-2)$ is given for the case $S p(2 k) \supset S p(2 k-2)$.

In section 4, the invariants constructed are used to obtain the branching theorem with respect to another subgroup G_{1} which is isomorphic to $S p(2 k-2) \times S p(2)$. This case was studied by J. Lepowsky [2], [3].
2. Preliminaries. The symplectic group $\operatorname{Sp}(n)$ (where $n=2 k$) consists of all complex $n \times n$ matrices that preserve the skew symmetric form

$$
[x, y]=x_{1} y_{n}+\cdots+x_{k} y_{k+1}-x_{k+1} y_{k}-\cdots-x_{n} y_{1}
$$

Let Z be the subgroup of upper triangular matrices, Z^{t} be the set of transpositions of elements in Z and D be the subgroup of diagonal matrices of $S p(2 k)$. The following two theorems, constructed out of Zhelobenko's work, will be used.

Theorem 1. Every irreducible representation of $S p(2 k)$ is induced by some character α of D, i.e., if T_{g} is a finite dimensional irreducible representation of $S p(2 k)$, then T_{g} is defined in a class of functions on Z by right multiplication, i.e.,

[^0]for any $f(z)$ in the class, any $g \in G$ and any $z \in Z$,
\[

$$
\begin{equation*}
T_{g} f(z)=\alpha(z, g) f(z \cdot g) \tag{2.1}
\end{equation*}
$$

\]

where (z, g) and $z \cdot g$ are components of $z g$ in D and Z respectively relative to the decomposition $Z^{t} D Z$. In particular

$$
\begin{equation*}
T_{\delta} f(z)=\alpha(\delta) f\left(\delta^{-1} z \delta\right), \text { for all } \delta \text { in } D \tag{2.2}
\end{equation*}
$$

Theorem 2. Let

be the general form of an element in D, then every irreducible representation of $S p(2 k)$ is induced by a character δ of D of the form $\delta_{1}^{m_{1}} \cdots \delta_{k}^{m_{k}}$ where $m_{i}(i=1, \ldots$, $k)$ are integers satisfying $m_{1} \geq \cdots \geq m_{k} \geq 0$. If $z_{i j}(i<j, i, j=1, \ldots, 2 k)$ are entries of elements in Z, then the functions of this representation space consist of all polynomials $f(z)$ of all $z_{i j}$ satisfying the differential equations

$$
\begin{gather*}
\left(\frac{\partial}{\partial z_{12}}+z_{23} \frac{\partial}{\partial z_{13}}+\cdots+z_{2,2 k} \frac{\partial}{\partial z_{1,2 k}}\right)^{m_{1}-m_{2}+1} f(z)=0, \\
\left(\frac{\partial}{\partial z_{23}}+\cdots+z_{3,2 k-1} \frac{\partial}{\partial z_{2.2 k-1}}\right)^{m_{2}-m_{3}+1} f(z)=0, \tag{2.3}
\end{gather*}
$$

$$
\left(\frac{\partial}{\partial z_{k, k+1}}\right)^{m_{k}+1} f(z)=0
$$

Due to the symplectic restriction, not all entries of $z \in Z$ are independent; one may choose as independent variables the entries

3. Branching theorem and construction of invariants. Consider the subgroup G_{0} of $S p(2 k)$ consisting of all matrices that leave x_{k} and x_{k+1} fixed. This subgroup
is isomorphic to $S p(2 k-2)$. Let the irreducible representation of $S p(2 k)$ induced by the character $\delta_{1}^{m_{1}} \cdots \delta_{k}^{m_{k}}$ be denoted by (m_{1}, \ldots, m_{k}). In [1] (see also [4]), it was proved that the irreducible representations of G_{0} appearing in the irreducible representation (m_{1}, \ldots, m_{k}) of $S p(2 k)$ are the representations $\left(q_{1}, \ldots, q_{k-1}\right)$ corresponding to all possible patterns

$$
\left(\begin{array}{c}
m_{1} \cdots \cdots \cdots \cdots m_{k} \tag{3.1}\\
p_{1} \cdots \cdots \cdots \cdot p_{k} \\
q_{1} \cdots \cdots q_{k-1}
\end{array}\right)
$$

where p_{i} and q_{i} are integers satisfying

$$
\begin{array}{r}
m_{1} \geq p_{1} \geq \cdots \geq m_{k} \geq p_{k} \geq 0 \\
p_{1} \geq q_{1} \geq \cdots \geq p_{k-1} \geq q_{k-1} \geq p_{k}
\end{array}
$$

and $\left(q_{1}, \ldots, q_{k-1}\right)$ denotes the irreducible representation of G_{0} induced by $\delta_{1}^{q_{1}} \cdots \delta_{k-1}^{a_{k-1}}$. In what follows, M, P, and Q will denote the rows of (3.1).

Proposition 1. Every matrix z in the subgroup Z of $S p(n)$ can be transformed to a matrix whose entries depend only on

$$
\begin{array}{lll}
z_{1 k}, & z_{1, k+1} \tag{3.2}\\
z_{2 k}, & z_{2, k+1} \\
\cdot & \cdot & \\
\cdot & \cdot & \\
z_{k-1, k}, & z_{k-1, k+1} \\
& & z_{k, k+1}
\end{array}
$$

by a right multiplication of an element of $Z \cap G_{0}$.
Proof. For $k=2$, with the symplectic restriction, one may write

$$
z=\left(\begin{array}{llll}
1 & z_{12} & z_{13} & z_{14} \\
& 1 & z_{23} & z_{13}-z_{23} z_{12} \\
& & 1 & -z_{12} \\
& & & 1
\end{array}\right)
$$

Multiply z on the right by

$$
z_{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & -z_{14} \\
& 1 & 0 & 0 \\
& & 1 & 0 \\
& & & 0
\end{array}\right)
$$

it is easy to see that entries of $z z_{0}$ do not depend on z_{14}. Now suppose that the statement is true for $k-1$. Notice that the truncation X of z formed by elements $z_{i j}$ whose indices take only the values $2,3, \ldots, n-1$ is symplectic. Write

$$
z=\left(\begin{array}{ccc}
1 & t & z_{1 n} \\
& X & c^{t} \\
& & 1
\end{array}\right)
$$

where t is a row vector and c^{t} is a column vector. Factorize z as

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
& X & 0^{t} \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & t & z_{1 n} \\
& I_{n-2} & t^{*} \\
& & 1
\end{array}\right)
$$

where t^{*} is the column

$$
\left(\begin{array}{c}
z_{1, n-1} \\
\cdot \\
\cdot \\
\cdot \\
z_{1, k+1} \\
-z_{1, k} \\
\cdot \\
\cdot \\
\cdot \\
-z_{12}
\end{array}\right)
$$

Multiplying z on the right by

$$
z_{1}=\left(\begin{array}{cc}
1,-z_{12},-z_{13}, \ldots,-z_{1, k-1}, 0,0,-z_{1, k+2}, \ldots, & -z_{1 n} \\
I_{n-2} & t_{1}^{*} \\
1
\end{array}\right)
$$

one obtains

$$
z z_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
& X & 0^{t} \\
& & 1
\end{array}\right)\left(\begin{array}{c}
1,0,0, \ldots, z_{1 k}, z_{1, k+1}, 0, \ldots, 0 \\
\cdot \\
\cdot \\
I_{n-2}
\end{array}\right.
$$

It is clear that the second factor of $z z_{1}$ commutes with every matrix of the form

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
& Y & 0^{t} \\
& & 1
\end{array}\right)
$$

in $Z \cap G_{0}$. By induction assumption, the proof is thus completed.
Corollary 1. When an irreducible representation of $S p(2 k)$ is restricted to G_{0}, the invariants of $Z \cap G_{0}$ can only depend on (3.2).

From corollary 1, polynomials corresponding to patterns (3.1) must depend only on (3.2). For clarity, write (3.2) as

$$
\begin{array}{ll}
a_{1}, & b_{1} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
a_{k-1}, & b_{k-1} \\
& b_{k} .
\end{array}
$$

Thus when restricted to these polynomials, (2.3) becomes

$$
\begin{gather*}
\left(a_{2} \frac{\partial}{\partial a_{1}}+b_{2} \frac{\partial}{\partial b_{1}}\right)^{m_{1}-m_{2}+1} f(a, b)=0 \tag{3.3}\\
\cdots \\
\left(\frac{\partial}{\partial b_{k}}\right)^{m_{k}+1} f(a, b)=0
\end{gather*}
$$

To construct these polynomials, for each fixed pattern (3.1), define the following functions:
(3.4)
$f_{i}(M, P, Q)= \begin{cases}a_{i}^{p_{i}-q_{i}} b_{i}^{m_{i}-p_{i}}, & \left(q_{i} \geq m_{i+1}, q_{i-1} \geq m_{i}\right) \\ a_{i}^{p_{i}-q_{i}} b_{i}^{i_{i-1}-p_{i}}, & \left(q_{i} \geq m_{i+1}, q_{i-1}<m_{i}\right) \\ a_{i}^{p_{i}-m_{i+1}} b_{i}^{q_{i-1}-p_{i}}\left(b_{i+1} a_{i}-a_{i+1} b_{i}\right)^{m_{i+1}-q_{i}}, & \left(q_{i}<m_{i+1}, q_{i-1}<m_{i}\right) \\ a_{i}^{p_{i}-m_{i+1}} b_{i}^{m_{i-p_{i}}}\left(b_{i+1} a_{i}-a_{i+1} b_{i}\right)^{m_{i+1}-q_{i}}, \quad\left(q_{i}<m_{i+1}, q_{i-1} \geq m_{i}\right) .\end{cases}$

Where $a_{k}=a_{k+1}=b_{k+1}=1, q_{0}=m_{1}$ and $q_{k}=m_{k+1}=0$. Now consider the function

$$
\begin{equation*}
F(M, P, Q) \equiv \prod_{i=1}^{k} f_{i}(M, P, Q) \tag{3.5}
\end{equation*}
$$

It will be proved that (3.5) corresponds (3.1).
Theorem 3. The functions (3.5) constructed for each pattern (3.1) satisfy (3.3) and have weights $\left(q_{1}, q_{2}, \ldots, q_{k-1}\right)=Q$ with respect to $D \cap G_{0}$. Furthermore, they are linearly independent.

Proof. To show that these functions satisfy (3.3), consider the first differential equation

$$
\left(a_{2} \frac{\partial}{\partial a_{1}}+b_{2} \frac{\partial}{\partial b_{1}}\right)^{m_{1}-m_{2}+1} f(a, b)=0 .
$$

For $F(M, P, Q)$ to satisfy this differential equation, it is sufficient that f_{1} of $F(M, P, Q)$ satisfies it. One considers the following cases.
(i) If $q_{1} \geq m_{2}$, then

$$
\left(p_{1}-q_{1}\right)+\left(m_{1}-p_{1}\right)=m_{1}-q_{1}<m_{1}-m_{2}+1
$$

hence each term of the expansion of the differential operator annihilates f_{1}.
(ii) For $q_{1}<m_{2}$, notice that

$$
\left(a_{2} \frac{\partial}{\partial a_{1}}+b_{2} \frac{\partial}{\partial b_{1}}\right)\left(b_{2} a_{1}-a_{2} b_{1}\right)^{k}=0, \quad(k=0,1,2, \ldots)
$$

and

$$
\left(p_{1}-m_{2}\right)+\left(m_{1}-p_{1}\right)<m_{1}-m_{2}+1
$$

hence again each term of the expansion of the differential operator annihilates f_{1}. In a similar way, one can prove that $F(M, P, Q)$ satisfies the rest of (3.3).

To show that $F(M, P, Q)$ has weight $Q=\left(q_{1}, \ldots, q_{k-1}\right)$ with respect to $D \cap G_{0}$, use (2.2). For

in $D \cap G_{0}$, one has

$$
\begin{equation*}
T_{\delta_{0}} f(z)=\delta_{1}^{m} \cdots \delta_{k-1}^{m_{k}-1} f\left(\delta_{0}^{-1} z \delta_{0}\right) \tag{3.6}
\end{equation*}
$$

where $f\left(\delta_{0}^{-1} z \delta_{0}\right)$ can be written as

$$
\delta_{1}^{r_{1}} \cdots \delta_{k-1}^{r_{k-1}} f(z)
$$

for some negative integers r_{1}, \ldots, r_{k-1} and the weights of $f(z)$ with respect to $D \cap G_{0}$ is $\left(m_{1}+r_{1}, \ldots, m_{k-1}+r_{k-1}\right)$. Multiplying out $\delta_{0}^{-1} z \delta_{0}$, one finds that for $i \leq k-1, a_{i}$ and b_{i} are changed to $\delta_{i}^{-1} a_{i}$ and $\delta_{i}^{-1} b_{i}$ respectively. To obtain the weight of $F(M, P, Q)$ with respect to $D \cap G_{0}$, one first considers δ_{1} and the following cases.
(i) If $q_{1} \geq m_{2}$, then by (3.6) and substitution of $\delta_{1}^{-1} a_{1}$ and $\delta_{1}^{-1} b_{1}$ for a_{1} and b_{1} in (3.4) one obtains

$$
r_{1}=-\left(p_{1}-q_{1}\right)-\left(m_{1}-p_{1}\right)=-m_{1}+q_{1}
$$

thus the power of δ_{1} is q_{1}.
(ii) If $q_{1}<m_{2}$, then r_{1} is

$$
-\left(p_{1}-m_{2}\right)-\left(m_{1}-p_{1}\right)-\left(m_{2}-q_{1}\right)=-m_{1}+q_{1}
$$

again, the power of δ_{1} is q_{1}.

The powers of $\delta_{2}, \ldots, \delta_{k-1}$ may be obtained by using (3.6) and (3.4). It turns out that they are q_{2}, \ldots, q_{k-1} respectively.

Finally, to show linear independence of these functions, it is sufficient to consider functions having the same weight with respect to $D \cap G_{0}$. Hence it suffices to consider functions $\left\{F_{1}, \ldots, F_{i}\right\}=\mathscr{F}_{Q}$ corresponding to patterns with the same Q. Suppose F_{i} in \mathscr{F}_{Q} is a linear combination of $S \subseteq \mathscr{F}_{Q}$. One again examines the following different cases.
(i) If $q_{1} \geq m_{2}$, then the powers of a_{1} and b_{1} in the functions F_{j} of \mathscr{F}_{Q} are $p_{1}^{(j)}-q_{1}$ and $m_{1}-p_{1}^{(j)}$. Since all functions of \mathscr{F}_{Q} are polynomials, F_{i} can be a linear combination of S only when every pattern corresponding to functions in S has the same $p_{1}=p_{1}^{(i)}$.
(ii) If $q_{1}<m_{2}$, then the highest power of a_{1} appearing in F_{i} is $p_{1}^{(i)}$.

In a similar way, one can examine all cases in (3.4) and conclude that functions in S must correspond to F_{i}. But then elements of S must be a scalar times F_{i}, hence \mathscr{F}_{Q} is a linear independent set.
4. An application of the invariants. Let G_{1} be the subgroup of $S p(n)$ generated by G_{0} and all elements of $S p(n)$ leaving $x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{2 k}$ invariant. Then $G_{1} \simeq S p(2 k-2) \times S p(2)$ and an irreducible representation of G_{1} is characterized by integers $\left(q_{1}, \ldots, q_{k-1} ; q\right)$ satisfying $q_{1} \geq q_{2} \geq \cdots \geq q_{k-1} \geq 0$ and $q \geq 0$. Let $m\left(q_{1}, \ldots, q_{k-1} ; q\right)$ denote the multiplicity of the representation (q_{1}, \ldots, $\left.q_{k-1} ; q\right)$ in the representation $\left(m_{1}, \ldots, m_{k}\right)$ of $S p(2 k)$. To find $m\left(q_{1}, \ldots, q_{k-1} ; q\right)$, it suffices [1, p. 12, Corollary] to look for independent functions in (m_{1}, \ldots, m_{k}) that satisfy

$$
\begin{equation*}
T_{z_{0}} f(z)=f\left(z z_{0}\right)=f\left(z_{0}\right), \quad \forall z_{0} \in Z\left(G_{1}\right) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{\delta} f(z)=\delta_{1}^{q_{1}} \cdots \delta_{k-1}^{a_{k}-1} \delta_{k}^{a} f(z), \quad \forall \delta \in D\left(G_{1}\right) \tag{4.2}
\end{equation*}
$$

Since $Z \cap G_{1} \supset Z \cap G_{0}$ and $D \cap G_{1} \supset D \cap G_{0}$, these functions are constructable from the functions $\prod_{1}^{k} f_{i}(M, P, Q)$.

Let $Q=\left(q_{1}, \ldots, q_{k-1}\right)$ be fixed, \mathscr{F}_{Q} be the collection of all functions $\prod_{1}^{k} f_{i}(M, P$, $Q)$ with this Q and $V\left(\mathscr{F}_{Q}\right)$ be the space spanned by $\mathscr{F}_{Q} ; m\left(q_{1}, \ldots, q_{k-1} ; q\right)$ is then equal to the number of independent functions in $V\left(\mathscr{F}_{Q}\right)$ that satisfy (4.1) and (4.2).
Every z_{0} in $Z\left(G_{1}\right)$ can be written as $z_{1} z_{2}$ where $z_{1} \in Z\left(G_{0}\right)$ and z_{2} is of the form

$$
\left(\begin{array}{cccc}
I_{k-1} & & & \\
& 1 & c & \\
& 0 & 1 & \\
& & & I_{k-1}
\end{array}\right)
$$

where all other entries are zero. If $f(z)$ is in the space spanned by the functions
$\prod_{1}^{k} f_{i}(M, P, Q)$, then

$$
T_{z_{1} z_{2}} f(z)=T_{z_{2}} f\left(z z_{1}\right)=T_{z_{2}} f(z)=f\left(z z_{2}\right)
$$

Under right multiplication by z_{2}, the variables $a_{1}, \ldots, a_{k-1}, b_{1}, \ldots, b_{k}$ are changed as

$$
\begin{array}{ccc}
a_{1} \rightarrow a_{1}, & b_{1} \rightarrow b_{1}+a_{1} c \\
\cdot & \cdot & \cdot \tag{4.3}\\
\cdot & \cdot & \cdot \\
a_{k-1} \rightarrow a_{k-1}, & b_{k-1} \rightarrow b_{k-1}+a_{k-1} c \\
b_{k} \rightarrow & b_{k}+c .
\end{array}
$$

Hence (4.1) is equivalent to invariance under the transformation (4.3).
Lemma 1. A polynomial function $f\left(a_{1}, \ldots, a_{k-1} ; b_{1}, \ldots, b_{k}\right)$ is invariant under the transformation (4.3) iff $f\left(a_{1}, \ldots, a_{k-1} ; b_{1}, \ldots, b_{k}\right)$ is of the form

Proof. Under (4.3), $b_{i}-a_{i} b_{k}$ is transformed to $b_{i}+a_{i} c-a_{i}\left(b_{k}+c\right)=b_{i}-a_{i} b_{k}$. Therefore, (4.4) is invariant.

Conversely, suppose a polynomial

$$
f\left(a_{1}, \ldots, a_{k-1} ; b_{1}, \ldots, b_{k}\right)=\sum_{s, t} r_{t 1}^{s_{1}, \ldots, s_{k}} s_{k-1} a_{1}^{s_{1}} \cdots a_{k-1}^{s_{k-1}} b_{1}^{t_{1}} \cdots b_{k}^{t_{k}}
$$

is invariant under the transformation (4.3). By setting $c=-b_{k}$, it follows that all $r_{t_{1} \ldots, t_{k}}^{s_{1}, \ldots, s_{k-1}}$ for which $t_{k} \neq 0$ are zero and $f\left(a_{1}, a_{k-1} ; b_{1}, \ldots, b_{k}\right)$ is of the form (4.4).

For any $\delta \in D$, multiplying out $\delta^{-1} z \delta$, the variables $a_{1}, \ldots, a_{k-1}, b_{1}, \ldots, b_{k}$ are changed as

$$
\begin{array}{rlrl}
a_{1} & \rightarrow a_{1} \delta_{1}^{-1} \delta_{k}, & b_{1} & \rightarrow b_{1} \delta_{1}^{-1} \delta_{k}^{-1}, \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \tag{4.5}\\
a_{k-1} & \rightarrow a_{k-1} \delta_{1}^{-1} \delta_{k}, & b_{k-1} & \rightarrow b_{k-1} \delta_{k-1}^{-1} \delta_{k}^{-1}, \\
& b_{k} & \rightarrow b_{k} \delta_{k}^{-2} .
\end{array}
$$

If $f\left(a_{1}, \ldots, a_{k-1} ; b_{1}, \ldots, b_{k}\right)$ satisfies (4.1) and (4.2), then from (4.5), the equations

$$
\left.\begin{array}{c}
s_{i}+t_{i}=m_{i}-q_{i}, \quad(i=1, \ldots, k-1) \tag{4.6}\\
\left(t_{1}+\cdots+t_{k-1}\right)-\left(s_{1}+\cdots+s_{k-1}\right)=m_{k}-q
\end{array}\right\}
$$

must be satisfied for each summand $a_{1}^{s_{1}} \cdots a_{k-1}^{s_{k-1}}\left(b_{1}-a_{1} b_{k}\right)^{t_{1}} \cdots\left(b_{k-1}-a_{k-1} b_{k}\right)^{t_{k-1}}$.
Using (4.5), the weight of the function $\prod_{1}^{k} f_{i}(M, P, Q)$ is found to be

$$
\begin{equation*}
\delta_{1}^{q_{1}} \cdots \delta_{k-1}^{q_{k-1}} \delta_{k}^{2\left(p_{1}+\cdots+p_{k}\right)-\left(m_{1}+\cdots+m_{k}\right)-\left(q_{1}+\cdots+a_{k}-1\right)} \tag{4.7}
\end{equation*}
$$

Thus if $f\left(a_{1}, \ldots, a_{k-1} ; b_{1}, \ldots, b_{k}\right)=\sum_{F_{i} \in \mathscr{F}_{e}} r_{i} F_{i}$, then P of each F_{i} must satisfy

$$
\begin{equation*}
2\left(p_{1}^{(i)}+\cdots+p_{k}^{(i)}\right)-\left(m_{1}+\cdots+m_{k}\right)-\left(q_{1}+\cdots+q_{k-1}\right)=q \tag{4.8}
\end{equation*}
$$

Suppose that $Q=\left(q_{1}, \ldots, q_{k-1}\right)$ satisfies

$$
\begin{equation*}
q_{1} \geq m_{2}, \ldots, q_{k-1} \geq m_{k} \tag{4.9}
\end{equation*}
$$

In this case, the functions in \mathscr{F}_{Q} are monomials. Let \mathscr{B} be the subset of \mathscr{F}_{Q} that satisfy (4.8), then

$$
\mathscr{B}=\left\{a_{1}^{p_{1}-q_{1}} b_{1}^{m_{1}-p_{1}} \cdots a_{k-1}^{p_{k-1}-q_{k-1}} b_{k-1}^{m_{k-1}-p-k-1} b_{k}^{m_{k}-p_{k}} \mid 2 \sum_{1}^{k} p_{i}-\sum_{1}^{k} m_{i}-\sum_{1}^{k-1} q_{i}=q\right\}
$$

Lemma 2. If the function (4.4) satisfies (4.2) and belongs to the space $V(\mathscr{B})$ spanned by \mathscr{B}, then every summand

$$
\begin{equation*}
a_{1}^{s_{1}} \cdots a_{k-1}^{s_{k}-1}\left(b_{1}-a_{1} b_{k}\right)^{t_{1}} \cdots\left(b_{k-1}-a_{k-1} b_{k}\right)^{t_{k}-1} \tag{4.10}
\end{equation*}
$$

of it also belongs to $V(\mathscr{B})$.
Proof. If (4.4) satisfies (4.2), then every summand of it also satisfies (4.2). Since each summand is invariant under (4.3), it belongs to $V\left(\mathscr{F}_{Q}\right) . V(\mathscr{B})$ is obviously the subspace of $V\left(\mathscr{F}_{Q}\right)$ that satisfies (4.2), thus each summand of (4.4) belongs to $V(\mathscr{B})$.

Thus assuming (4.9) is satisfied to find $m\left(q_{1}, \ldots, q_{k-1} ; q\right)$, it suffices to find the number of independent polynomials of the form (4.10) that are in $V(\mathscr{B})$. Notice that the power of b_{k} of any element in \mathscr{B} does not exceed m_{k}.

Lemma 3. The polynomial (4.10) is in $V(\mathscr{B})$ iff $a_{1}^{s_{1}+t_{1}} \cdots a_{k-1}^{s_{k-1}+t_{k-1}} b_{k}^{t_{1}+\cdots+t_{k-1}}$ is in \mathscr{B}.

Proof. If $a_{1}^{s_{1}+t_{1}} \cdots a_{k-1}^{s_{k-1}+t_{k-1}} b_{k}^{t_{1}+\cdots+t_{k-1}} \in \mathscr{B}$, then

$$
\left.\begin{array}{c}
s_{i}+t_{i}=m_{i}-q_{i}, \quad(i=1, \ldots, k-1) \tag{4.11}\\
\left(s_{1}+\cdots+s_{k-1}\right)-\left(t_{1}+\cdots+t_{k-1}\right)=q-m_{m}, \\
t_{1}+\cdots+t_{k-1} \leq m_{k} .
\end{array}\right\}
$$

A general term of the expansion of (4.10) is
$a_{1}^{s_{1}+\left(t_{1}-j_{1}\right)} \cdots a_{k-1}^{s_{k-1}+\left(t_{k-1}-j_{k-1}\right)} b_{1}^{j_{1}} \cdots b_{k-1}^{j_{k-1}-1} b_{k}^{\left(t_{1}+\cdots+t_{k-1}\right)-\left(j_{1}+\cdots+j_{k-1}\right)}$
By (13), $\left[s_{i}+\left(t_{i}-j_{i}\right)\right]+j_{i}=m_{i}-q_{i}(i=1, \ldots, k-1), \sum_{1}^{k-1}\left[s_{i}+\left(t_{i}-j_{i}\right)\right]-\sum_{1}^{k-1} j_{i}-$ $2\left[\sum_{1}^{k-1} t_{i}-\sum_{1}^{k-1} j_{i}\right]=q$ and $\left(t_{1}+\cdots+t_{k-1}\right)-\left(j_{1}+\cdots+j_{k-1}\right) \leq t_{1}+\cdots+t_{k-1} \leq m_{k}$. Thus every general term is in \mathscr{B}. The converse is obvious.

It is now clear that when (4.9) is satisfied $m\left(q_{1}, \ldots, q_{k-1} ; q\right)$ is equal to the number of non-negative integer solutions $\left(s_{1}, \ldots, s_{k-1} ; t_{1}, \ldots, t_{k-1}\right)$ to (4.11). The general case is included in the following:

Theorem 4. $m\left(q_{1}, \ldots, q_{k-1} ; q\right)$ is equal to the number of non-negative integer solutions $\left(s_{1}, \ldots, s_{k-1} ; t_{1}, \ldots, t_{k-1}\right)$ of

$$
\left.\begin{array}{c}
s_{i}+t_{i}=m_{i}^{\prime \prime}-q_{i}, \quad(i=1, \ldots, k-1) \tag{4.12}\\
\left(s_{1}+\cdots+s_{k-1}\right)-\left(t_{1}+\cdots+t_{k-1}\right)=q-m_{k}^{\prime \prime} \\
t_{1}+\cdots+t_{k-1} \leq m_{k}^{\prime \prime}
\end{array}\right)
$$

where

$$
\begin{gathered}
m_{1}^{\prime \prime}=m_{1}-\left(m_{1}^{\prime}+m_{2}^{\prime}\right), \\
m_{2}^{\prime \prime}=m_{2}-\left(m_{2}^{\prime}+m_{3}^{\prime}\right), \ldots, m_{k-1}^{\prime \prime}=m_{k-1}-\left(m_{k-1}^{\prime}+m_{k}^{\prime}\right), \\
m_{k}^{\prime \prime}=m_{k}-m_{k}^{\prime}
\end{gathered}
$$

and

$$
\begin{gathered}
m_{1}^{\prime}=0 \\
m_{2}^{\prime}=\max \left(0, m_{2}-q_{1}\right), \ldots, m_{k}^{\prime}=\max \left(0, m_{k}-q_{k-1}\right)
\end{gathered}
$$

Proof. The case when (4.9) is satisfied is treated previously. For the general case, consider a fixed Q and the subset \mathscr{S} of \mathscr{F}_{Q} consisting of functions that satisfy (10). By definition, the polynomial

$$
\begin{equation*}
\left(a_{1} b_{2}-b_{1} a_{2}\right)^{m_{2}^{\prime}} \cdots\left(a_{k-1} b_{k}-b_{k-1}\right)^{m_{k^{\prime}}} \tag{4.13}
\end{equation*}
$$

is a common factor for all functions in \mathscr{S}. (4.13) is invariant under (4.3); under (4.5), it is changed to

$$
\delta_{1}^{-m_{2}^{\prime}} \delta_{2}^{-\left(m_{2}^{\prime}+m_{3}^{\prime}\right)} \cdots \delta_{k-1}^{\left.-\left(m_{k}-11^{\prime}+m_{k^{\prime}}\right)^{\prime}\right)} \delta_{k}^{-m_{k^{\prime}}}\left(a_{1} b_{2}-b_{1} a_{2}\right)^{m_{2}^{\prime}} \cdots\left(a_{k-1} b_{k}-b_{k-1}\right)^{m_{k^{\prime}}}
$$

Write $\mathscr{S}=\left(a_{1} b_{2}-b_{1} a_{2}\right)^{m 2^{\prime}} \cdots\left(a_{k-1} b_{k}-b_{k-1}\right)^{m k^{\prime}} \mathscr{B}^{\prime}$, where

$$
\begin{aligned}
& \mathscr{B}^{\prime}=\left\{a_{1}^{p_{1}-\left(m_{2}{ }^{\prime}+a_{1}\right)} b_{1}^{\left(m_{1}-m_{1}^{\prime}\right)-p_{1}} \cdots a_{k-1}^{p_{k}-1-\left(m_{k}{ }^{\prime}+q_{k-1}\right)} b_{k-1}^{\left(m_{k-1}-m_{k}-1^{\prime}\right)-p_{k}-1}\right. \\
& \left.\times b_{k}^{\left(m_{k}-m_{k}{ }^{\prime}\right)-p_{k} \mid 2 \sum_{V_{1}} \sum_{i}^{k} p_{i} \sum_{1}^{k} \sum_{m_{i}-\sum_{1}^{k}}^{k-1} a_{i}=a}\right\} .
\end{aligned}
$$

Replacing the set \mathscr{B} in Lemmas 2 and 3 by \mathscr{B}^{\prime}, the result follows immediately.
Branching theorems are usually stated by means of patterns similar to (3.1). The following theorem gives this description for the case studied in Theorem 4.

Theorem 5 The irreducible representations of G_{1} appearing in $\left(m_{1}, \ldots, m_{k}\right)$ of $\operatorname{Sp}(2 k)$ can be put in one-to-one correspondence with all patterns of integers

$$
\left(\left.\begin{array}{c}
m_{1} \cdots \cdots \cdots m_{k} \tag{4.14}\\
p_{1} \cdots \cdots p_{k-1} \\
q_{1} \cdots \cdots q_{k-1}
\end{array}\right|_{q}\right)
$$

where $m_{1} \geq p_{1} \geq m_{2} \cdots \geq p_{k-1} \geq m_{k}, p_{1} \geq q_{1} \geq p_{2} \cdots \geq p_{k-1} \geq q_{k-1} \geq 0$,

$$
\begin{equation*}
q=m_{k}^{\prime \prime}+\sum_{1}^{k-1}\left(p_{i}-q_{i}-m_{i+1}^{\prime}\right)-\sum_{1}^{k-1}\left(m_{i}^{\prime \prime}-p_{i}+m_{i+1}^{\prime}\right) \tag{4.15}
\end{equation*}
$$

and $\sum_{1}^{k-1}\left(m_{i}^{\prime \prime}-p_{i}+m_{i+1}^{\prime}\right) \leq m_{k}^{\prime \prime}$ Furthermore each pattern corresponds to $\left(q_{1}, \ldots\right.$, $\left.q_{k-1} ; q\right)$ of G_{1}.

Proof. In the particular case when (4.9) holds, recall that $m\left(q_{1}, \ldots, q_{k-1} ; q\right)$ is the number of monomials $a_{1}^{s_{1}+t_{1}} \cdots a_{k-1}^{s_{k-1}+t_{k-1}} b_{k}^{t_{1}+\cdots+t_{k-1}}$ (where s_{1}, \ldots, s_{k-1}, t_{1}, \ldots, t_{k-1} satisfy (4.11)) that belong to \mathscr{B}. Hence every ($q_{1}, \ldots, q_{k-1} ; q$) is associated with partitions of the integers $m_{i}-q_{i}(i=1, \ldots, k-1)$ into s_{i} and t_{i} such that $\sum_{1}^{k-1} s_{i}-\sum_{1}^{k-1} t_{i}=q-m_{k}$ and $t_{1}+\cdots+t_{k-1} \leq m_{k}$. Let $t_{i}=m_{i}-p_{i}$, then $s_{i}=p_{i}-q_{i}, q=m_{k}+\sum_{1}^{k-1}\left(p_{i}-q_{i}\right)-\sum_{1}^{k-1}\left(m_{i}-p_{i}\right)$ and $\left(q_{1}, \ldots, q_{k-1} ; q\right)$ can then be associated with the pattern

$$
\left(\left.\begin{array}{c}
m_{1} \cdots \cdots \cdots \cdots m_{k} \tag{4.16}\\
p_{1} \cdots \cdots \cdots p_{k-1} \\
q_{1} \cdots \cdots \cdots q_{k-1}
\end{array} \right\rvert\, q=m_{k}+\sum_{1}^{k-1}\left(p_{i}-q_{i}\right)-\sum_{1}^{k-1}\left(m_{i}-p_{i}\right)\right) .
$$

It is now clear that when (4.9) holds, all $\left(q_{1}, \ldots, q_{k-1} ; q\right)$ that are contained in (m_{1}, \ldots, m_{k}) can be put in one-to-one correspondence with patterns (4.16) where $m_{k}-\sum_{1}^{k-1}\left(m_{i}-p_{i}\right) \geq 0$.

The general case can be proved analogously by considering the set \mathscr{B}^{\prime} as defined in the proof of Theorem 1 and letting $s_{i}=p_{i}-q_{i}-m_{i+1}^{\prime}, t_{i}=m_{i}^{\prime \prime}-p_{i}+m_{i+1}^{\prime}$ in (4.12).

Rererences

1. D. P. Zhelobenko, The classical groups. Spectral analysis of their finite-dimensional representations, Russian Math. Surveys 17 (1962), 1-94.
2. J. Lepowsky, thesis, M.I.T. (1970).
3. J. Lepowsky, Multiplicity formulas for certain semisimple Lie groups, Bull. Amer. Math. Soc. 4, vol. 77 (1971) 601-605.
4. G. C. Hegerfeldt, Branching theorem for the symplectic groups, J. Math. Phys. 8 (1967), 1195-1196.

Department of Mathematics

Simon Fraser University
Burnaby 2, B.C.

[^0]: Received by the editors May 23, 1973 and, in revised form, October 3, 1973.
 ${ }^{(1)}$ The results in this paper are contained in C. Y. Lee's Ph.D. thesis, written under the guidance of Professor A. Das.

