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Abstract. We use elementary skein theory to prove a version of a result of
Stylianakis (Stylianakis, The normal closure of a power of a half-twist has infinite
index in the mapping class group of a punctured sphere, arXiv:1511.02912) who
showed that under mild restrictions on m and n, the normal closure of the mth power of
a half-twist has infinite index in the mapping class group of a sphere with 2n punctures.

2010 Mathematics Subject Classification. 20F38, 57M99, 57R56.

1. Introduction. Let M(0, 2n) be the mapping class group of the 2-sphere S2

fixing (setwise) a set of 2n points p1, . . . , p2n ∈ S2. It is well-known [2] that M(0, 2n)
is a quotient of the braid group B2n on 2n strands, where the braid generator σi (i =
1, . . . , 2n − 1) maps to the mapping class hi ∈ M(0, 2n) which is a half-twist permuting
pi and pi+1 and fixing all other points pj. Stylianakis recently showed the following:

THEOREM 1.1 (Stylianakis [10]). For 2n ≥ 6 and m ≥ 5, the normal closure of hm
i

has infinite index in M(0, 2n).

(Note that the normal closure does not depend on i, as the hi are all conjugate.)
For 2n = 6, this result was known and is due to Humphries [5], as it is equivalent

(by the Birman–Hilden Theorem) to Humphries’ result [5, Theorem 4] that the
normal closure of the mth power of a non-separating Dehn twist has infinite order
in the genus 2 mapping class group for m ≥ 5. Humphries’ method was to employ
the Jones representation [4] of the genus 2 mapping class group together with an
explicit computation. Stylianakis’ generalization proceeds by using certain Jones
representations of M(0, 2n), but his proof involves some non-trivial representation
theory.

In this paper, we give an elementary skein-theoretic proof of the following:

THEOREM 1.2. For 2n ≥ 4 and m ≥ 6, the normal closure of hm
i has infinite index in

M(0, 2n).

The key point in the proof of Theorem 1.2 is a simple 2 × 2 matrix calculation that
I essentially did in [8]. Note that Theorem 1.2 implies Stylianakis’ result for m ≥ 6.
Theorem 1.2 does not hold when m = 5 and 2n = 4, as M(0, 4)/(h5

i = 1) is a finite
group (the alternating group A5). I believe that the remaining case (m = 5, 2n ≥ 6)
of Stylianakis’ theorem can also be proved using the skein-theoretic method exposed
below, but it would require a calculation with 5 × 5 matrices which I have not done
(see Remark 3.5).
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2. Strategy of the proof. The proof will be based on the representation of the braid
group B2n on the Kauffman bracket [6] skein module of the 3-ball relative to 2n marked
points on the boundary. We will show that for an appropriate choice of Kauffman’s
skein variable A, this representation induces a projective-linear representation

ρ : M(0, 2n) → PGLd (�)

(where d depends on n) so that
(i) ρ(hm

i ) = 1, and
(ii) the image ρ(M(0, 2n)) is an infinite group.

Clearly, this will imply that the normal closure of hm
i has infinite index in M(0, 2n).

REMARK 2.1. Stylianakis used the same strategy applied to a certain Jones
representation of M(0, 2n). Actually, up to normalization and change of variables, the
representation ρ is equivalent to the Jones representation for the rectangular Young
diagram with two rows of length n. (We shall not make use of this fact in this paper.)
For the purpose at hand, I find the skein-theoretic approach much easier.

REMARK 2.2. Funar [3] showed that the normal closure of the mth power of
a Dehn twist has infinite index in the mapping class group of a genus g surface
(with some restrictions on m and g) using the above strategy applied to TQFT-
representations of mapping class groups. Our representation ρ can also be viewed
as a TQFT representation of M(0, 2n). But for us, TQFT is not actually needed. We
shall only need Birman’s presentation [2, Theorem 4.5] of M(0, 2n) as a quotient of
B2n and elementary skein theory.

3. Proof of Theorem 1.2. We start with the representation of the braid group B2n

on the Kauffman bracket skein module of the 3-ball relative to 2n marked points on
the boundary. Let us recall how this representation, which we denote by ρ, is defined.
The skein module is a free �[A, A−1]-module of dimension

d = 1
n + 1

(
2n
n

)
(the Catalan number).1 Its elements are represented by �[A, A−1]-linear combinations
of (0, 2n)-tangle diagrams, that is, tangle diagrams in a rectangle relative to 2n marked
points at the top of the rectangle. The diagrams are considered modulo the Kauffman
skein relations (which will be stated shortly). The skein module has a standard basis
given by tangle diagrams without crossings and without closed circles. For example, if
the number of points is 2n = 4, the dimension is d = 2 and the basis is given by the
two diagrams

D1 = D2 =

Below we specialize A to a non-zero complex number, so that the skein module with
this basis (ordered in some arbitrary fashion) is identified with �d .

The ith braid generator σi acts on a diagram D by gluing the usual braid diagram

of σ−1
i on top of D (that is, the braid diagram which has a crossing at the ith and

1A proof of this formula can be found in [7, p. 661].
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(i + 1)-st strand and all other strands are vertical). (We use inverses here so as to get a
left action of B2n on the skein module.) The Kauffman bracket skein relation

= A + A−1

implies that

ρ(σi) = A ρ(Ei) + A−1 Id ,

where Ei has at the appropriate place and all other strands are vertical. The second
Kauffman skein relation, which fixes the value of an unknot diagram to −A2 − A−2,
implies that

ρ(Ei)2 = (−A2 − A−2) ρ(Ei) .

A simple recursion now establishes that

ρ(σ m
i ) = Pm(A) ρ(Ei) + A−m Id,

where Pm(A) = A2−m(1 − A4 + A8 − . . . + (−1)m−1A4m−4). Thus, we have the
following:

PROPOSITION 3.1. If A ∈ � satisfies Pm(A) = 0, then ρ(σ m
i ) = A−m Id is the identity

element in PGLd (�).

From now on, we assume that A is a zero of the polynomial Pm(A). Note that all
zeros of Pm(A) are roots of unity. We shall make a precise choice of A later.

PROPOSITION 3.2. For any A ∈ �∗, the homomorphism ρ : B2n → PGLd (�) factors
through M(0, 2n).

Proof. This is well-known but here is a proof. The group M(0, 2n) is the quotient
of B2n by the relations R1 = R2 = 1, where

R1 = σ1σ2 · · · σ2n−1σ2n−1σ2n−2 · · · σ1

R2 = (σ1σ2 · · · σ2n−1)2n

(see [2, Theorem 4.5]). Using the isotopy invariance of the Kauffman bracket, it is easy
to check that

ρ(R1) = (−A3)2 Id,

ρ(R2) = (−A3)2n Id .

(see [9, Section 1.3]). This proves the proposition. �
REMARK 3.3. For appropriate roots of unity A, the induced projective-linear

representation of M(0, 2n) is a TQFT representation, as follows from the skein-
theoretic construction of Witten–Reshetikhin–Turaev TQFT in [1].

By abuse of notation, we denote the induced homomorphism M(0, 2n) →
PGLd (�), which sends hi to ρ(σi), again by ρ. Thus, we have realized condition (i)
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of the strategy outlined in §2. To realize condition (ii), it suffices to find an element
φ ∈ B2n so that ρ(φ) has infinite order in PGLd (�). We now show that φ = σ 2

1 σ−2
2

works.
Recall the diagrams Di (i = 1, 2) depicted above. By taking disjoint union of Di

with some fixed (0, 2n − 4)-tangle diagram D̃ (so that the first four points are the
boundary of Di, and the remaining 2n − 4 points are the boundary of D̃), we get
two diagrams D′

1 and D′
2 which form part of a basis of our skein module. The two-

dimensional subspace spanned by D′
1 and D′

2 is preserved by both ρ(σ1) and ρ(σ2). On
this subspace, ρ(σ1) and ρ(σ2) act by the following matrices:

ρ(σ1) =
[−A3 A

0 A−1

]
, ρ(σ2) =

[
A−1 0
A −A3

]
.

(This follows immediately from the Kauffman relations.) A straightforward calculation
now gives that the matrix of ρ(σ 2

1 σ−2
2 ) acting on this two-dimensional subspace is

M =
[

2 − A4 − A−4 + A8 −A−2 + A−6

A−2 − A−6 A−8

]

Clearly, if M has infinite order in PGL2(�), then ρ(σ 2
1 σ−2

2 ) has infinite order in
PGLd (�).

LEMMA 3.4. M has infinite order in PGL2(�) provided the order r of the root of unity
q = A4 satisfies r ≥ 3 and r �∈ {4, 6, 10}.

Proof. For r ≥ 5 and r �∈ {6, 10}, this is shown in [8], as one can check that the
matrix M is conjugate to the one computed in [8]. We can also apply the argument of
[8] directly to our matrix, as follows. Note that M has determinant 1 and trace

t = 2 − q − q−1 + q2 + q−2

where q = A4. If M has finite order in PGL2(�), then its eigenvalues λ and λ−1 must
satisfy λN = λ−N for some N, so λ is a root of unity. But this is impossible, as we
can find a primitive rth root q ∈ � such that |t| = |λ + λ−1| > 2 (see [8]). Thus, M has
infinite order in PGL2(�).

In the remaining case r = 3, it suffices to observe that in this case we have t = 2,
so M is conjugate to [

1 c
0 1

]
with c �= 0 (since M is not the identity matrix). �

The proof of Theorem 1.2 is now completed as follows. For m ≥ 6, we choose A
to be a primitive Nth root of unity, as follows:

• For m = 6, we take N = 12.
• For m = 10, we take N = 20.
• For odd m ≥ 7, we take N = 8m.
• For even m ≥ 8, m �= 10, we take N = 4m.

Then, Pm(A) = 0, so Proposition 3.1 applies. Also, q = A4 has order r ≥ 3,
r �∈ {4, 6, 10}, so Lemma 3.4 applies. Thus, ρ satisfies condition (i) because of
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Proposition 3.1, and ρ satisfies condition (ii) because the matrix ρ(σ 2
1 σ−2

2 ) has infinite
order in PGLd (�). This completes the proof.

REMARK 3.5. I expect that the remaining case (m = 5, 2n ≥ 6) of Stylianakis’
theorem (see Theorem 1.1) can also be proved using the skein-theoretic representation
ρ evaluated at a root of unity A so that P5(A) = 0. It suffices to find φ ∈ B6 so that the
5 × 5 matrix ρ(φ) has infinite order in PGL5(�). This will imply the result for M(0, 2n)
with 2n ≥ 6 for the same reason as above. Stylianakis describes such an element φ and
shows that it has infinite order in the Jones representation he uses. Actually φ is closely
related to the element originally used by Humphries [5]. Note that modulo identifying
our skein-theoretic representation of M(0, 6) with the Jones representation used by
Humphries, the fact that ρ(φ) has infinite order is already shown by Humphries. There
seems to be no advantage in redoing the relevant 5 × 5 matrix computation directly
from the skein-theoretic approach, and I have not attempted to do so.

REMARK 3.6. The proof of Proposition 3.2 shows that one can rescale ρ to get a
representation ρ̂ of B2n which descends to M(0, 2n) as a linear representation: put

ρ̂(σi) = θ−1ρ(σi),

where θ4n−2 = (−A3)2 = A6; then ρ̂(R1) = ρ̂(R2) = Id . Note that

ρ̂(σ m
i ) = (θA)−m Id .

One may wonder whether θ can be chosen so that (θA)−m = 1. In general, the answer
is no. For example, if m is odd, then Pm(A) = 0 implies A4m = −1, and one computes
(using θ4n−2 = A6) that

((θA)−m)4n−2 = A−4m(n+1) = (−1)n+1 .

Thus, (θA)−m �= 1 if m is odd and n is even.

ACKNOWLEDGEMENTS. This research was supported in part by the center of
excellence grant “Center for Quantum Geometry of Moduli Spaces (QGM)” DNRF95
from the Danish National Research Foundation.

REFERENCES

1. C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Topological quantum field
theories derived from the Kauffman bracket, Topology 34(4) (1995), 883–927.

2. J. Birman, Braids, links, and mapping class groups. Ann. of Math. Studies, vol. 82
(Princeton University Press, Princeton, NJ, 1975).

3. L. Funar, On the TQFT representations of the mapping class groups, Pacific J. Math.
188 (1999), 251–274.

4. V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials,
Ann. Math. 126(2) (1987), 335–388.

5. S. P. Humphries, Normal closures of powers of Dehn twists in mapping class groups,
Glasgow Math. J. 34(3) (1992), 314–317.

6. L. H. Kauffman, State models and the Jones polynomial, Topology 26(3) (1987), 395–
407.

7. W. B. R. Lickorish, Three-manifolds and the Temperley–Lieb algebra, Math. Ann. 290
(1991) 657–670.

https://doi.org/10.1017/S0017089517000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089517000143


338 GREGOR MASBAUM

8. G. Masbaum, An element of infinite order in TQFT-representations of mapping class
groups, Contemp. Math. 233 (1999) 137–139.

9. R. Santharoubane, Limites homologiques de représentations quantiques et applications
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