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Context

Modern cyber-physical systems (CPS) integrate machine learning and deep learning
components for a variety of tasks, including sensing, control, anomaly detection and learning
process dynamics from data. Formal verification of CPS is paramount to ensure their correct
behaviour in many safety-critical application domains (including robotics, avionics, health and
automotive). However, traditional CPS verification methods are designed to work with mecha-
nistic CPS models, and hence cannot deal in general with data-driven components. Therefore,
how to guarantee the correct behaviour of learning-enabled CPS is still an open question which
must be addressed in order to deploy these systems in real-world safety-critical settings.

Within this research question, we welcome contributions about the formal analysis of
learning-enabled CPSs. Examples include but are not limited to:

• Verifying systems with machine-learning components in the loop (including model
checking and theorem proving).

• Formal reasoning about the model’s (epistemic) uncertainty.
• Learning safe data-driven models for CPS monitoring and control.
• Dealing with distribution shifts induced by (possibly adversarial) runtime changes of
the CPS (e.g., detecting when existing system properties cease to hold and adapting the
verification methods to account for such runtime changes).

How to contribute to this Question

If you believe you can contribute to answering this Question with your research outputs, find out
how to submit in the Instructions for authors (https://www.cambridge.org/core/journals/
research-directions-cyber-physical-systems/information/author-instructions/preparing-your-
materials). This journal publishes Results, Analyses, Impact papers and additional content such
as preprints and “grey literature”. Questions will be closed when the editors agree that enough
has been published to answer the Question so before submitting, check if this is still an active
Question. If it is closed, another relevant Question may be currently open, so do review all the
openQuestions in your field. For any further queries, check the information pages (https://www.
cambridge.org/core/journals/research-directions-cyber-physical-systems/information/about-this-
journal) or contact this email (cps@cambridge.org).
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