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1. Introduction. In a recent ser ies of papers [3, 4, 5] , 
H. Zassenhaus considered the structure of those l inear t r a n s 
formations T on real 4-space , R4, into itself that preserve 
the quadratic form f(x).= x^ + x^ - x̂T - x^ . That i s , 

(1.1) f(T(x)) = f(x) for all x e 114. 

Define a function <b on R4 to the space M 2 of 2-square matr ices 
over the complex numbers as follows: 

X], + ix£ X3 + ix^ 

Let G2 he the vector space of matr ices generated by all real 
l inear combinations of 

(l 0\ /i 0 \ /0 1\ / 0 i ' 

It is easy to check that (i) G2 is an algebra over the real num
bers ; (ii) <p is an isomorphism of R4 onto the additive group of 
G2 over the rea ls ; (iii) d( <p (x)) = f(x) for each x € R4, where 
d denotes determinant . It is also simple to verify that 

(1.3) G2 = {AI A* = PA !P} 
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where A* is the conjugate transpose of A, A1 is the transpose 

of A and P = g$. Let SI 2 denote the set of T satisfying (1. 1). 

In view of (iii) it is clear that the structure of SI 2 will be 

completely known if we determine the structure of those S which 

are linear mappings of G2 into G2 such that d(S(A)) = d(A) 

for all A € G2» I n other words, if we denote this class of S 

by r 2 then i l 2 = <£ f 2 tf> ~ * • 

We are thus led for general n to defining a class Gn in 

the space M n of n-square matr ices over the complex numbers 

by 

(1.4) G n = [A I A* = P A ' P ] 

where P is the n-square matr ix with 1 in positions n - j , 
j + l , j = 0 , . . . , n - l and 0 elsewhere. We define f n to be 
the set of all linear transformations on Gn to Gn satisfying 

(1.5) d(S(A)) = d(A) for all A e Gn . 

2« Resul ts . Our main result is contained in the following 

THEOREM. S é C n if-and only if there exist U and V 
in Gn such that either 

(2. 1) S(A) = UAV for all A * Gn 

or 

(2.2) S (A) = UA!V for all A e Gn 

where d(UV) = 1. 

Consider the set of matr ices S 

(2.3) E s t + E n . s + 1 | n . t + 1 , i (E s t - E n -s+l ,n- t+l )> l ^ s <i t < n 

E s s + E n- s+ l ,n - s+ l> i ( E s s " E n - s + 1 , n-s+ l) > l * s ^ k ' 

where k1 = k if n = 2k and k1 = k+ 1 if n = 2k + 1. It is simple to 
verify that the elements of S a re linearly independent over 
the complex numbers . Now let A e Gn . Then, from (1.4), 

A* = PA 'P , 

a s t = a n- s+ l , n - t+ l* s , t = 1» • • • »n , 
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and we check easily that A is in the linear closure of £ over 
the rea l s • 

Since £ generates M n over the complex numbers as well, 
S may be extended linearly to a linear map of M n into itself. 
We denote the extended map by S also. 

We next observe that 

(2.4) d(S(X)) = d(X) 

for all X é M n . To see th is , let zi z„2 be indeterminate s 
•LA • > - , . » • , XI"" 

over the complex numbers , and let e^ , . . . , en2 be the elements 
of £ ar ranged in some o rde r . Define the polynomial p by 

P< z l zn*> = d ( Z ^ = 1
 ztS<et» " d< Z *=1

 ztet> ' 

Since G n is generated over the reals by £ and moreover 
d(S(A)) = d(A) for all A € G n , we conclude that p is identically 
zero for all rea l values of z j , . . . >zn2- Hence p is identically 
zero for all complex values of z ^ , . . . , zn2 . However, M n is 
the l inear closure of £ over the complex numbers and (2.4) 
follows. 

Proceeding to the proof of the theorem we use a result 
in [ l ] or [2] that states that if T is any linear t ransforma
tion on M n to M n such that d(T(X)) = d(X) for all X 6 M n 

then T(X) = UXV or T(X) = UX'V where d(UV) = 1. Actually, 
Dieudonné [ l ] shows that if T is assumed to be non-singular 
as well this resul t follows. But the non-singularity of T is a 
consequence of the fact that T is linear and preserves all 
determinants as shown in [2] . The theorem then follows from 
the 

LEMMA. IfUAV É Gn for all A é G n and U and V 
a r e non-singular , then non-singular U^ and V^ may be 
chosen in G n such that 

(2.5) UXV = UiXVi for all X. c M n . 

A s imi lar statement holds if UA'V £ Gn for all A € G n . 

Proof» We have that 

(UAV)* = P(UAV)'P for all A € G n 
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and hence 

(VI)"1PV* A*U*P(U!)"1 = A1 , 

(2 .6) [(V,)"1PV*P]AI [FU+POJ1)"1!^ A1 

for all A € Gn. Since A e Gn if and only if A1 € Gn, we con
clude from (2.6) that CAD = A for all A é Gn> C = (V*)" lPV*P, 
D = PU^P(U1)"1. It follows that CXD = X for all X e Mn and 
thus C = A.I, D = A." I, where I is the n-square identity 
matrix. 

Thus 

(2.7) V* = APV'P, U*= X - 1 P U , P . 

From (2.7) and the fact that V is non-singular, we have 
X = d(V)/d(V) and thus X = e i ô , 0 ^ 9 * 2 rr . Now choose a 

complex number u> such that | co \ =1 and 03/co = e"*1^ and 
set Vi = ^V, Ui = SU. Then UAV = | w f -2U1AV1 = UjAVi 
and moreover 

V* = êôV* = S5/<o e i ô PV^P = PV^P, 

U* = u>U* = co/S3 e-i° PU'XP = PU^P 

and the proof of the lemma is complete. 

We remark that the transformation S (A) = UAV has the 
matrix representation U ® V1 with respect to the doubly 
lexicographically ordered basis Ejj in Mn, and the matrix 
representation of <r (A) = A1 with respect to this ordered basis 
is the n^-square matrix <r ^ whose (i, j) n-square block is 
Eji for i, j = l , . . . , n . Here ® indicates Kronecker product. 

Hence we have 

COROLLARY 1. If S e T n then there exists a basis 
of Mn such that the matrix representation of S is either 

U ® V 
or 

(U ® V)cr1 

where U and V are in Gn« 

146 

https://doi.org/10.4153/CMB-1960-017-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1960-017-4


COROLLARY 2. If S e P n then there exists a basis 
of M n such that the matr ix representation of S with respect 
to this basis is in G n 2. 

Proof. F rom corollary 1 it suffices to show that if U 
and V are in Gn then U ® V € Gnz and <r̂  e Gnz. (since Gni 
is closed under multiplication). We note first that the n^-square 
mat r ix Q with 1 in the position nZ - j , j + 1, j = 0, . . . , n^ - 1 
and 0 elsewhere is- given by 

Q = P £> P . 
Then 

(U <S> V)* = U* ® V* = (PU'P) ® (PVfP) 

= (P <S> P)(U! <2> V H P ® P) 

= Q(U ® V)!Q, 

and hence (U ® V) e Gnz. Now cr j, £ Gn 2 if it commutes 
with Q. To see this without multiplying matr ices simply note 
that Q is the mat r ix representat ion with respect to the Ejj 
basis of the transformation R defined by 

R(A) = PAP. 

Then, since cr̂  is the mat r ix representat ion of a* with respect 
to the same bas i s , it suffices to show that K<r = crR. But 

R e (A) = PA 'P = (PAP)1 = <rR(A), 

and the proof is complete. 
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