A NOTE ON A GROUP DEFINED BY A QUADRATIC FORM

Marvin Marcus ${ }^{1)}$ and Nisar A. Khan ${ }^{2}$)

(received January 18, 1960)

1. Introduction. In a recent series of papers [3, 4, 5], H. Zassenhaus considered the structure of those linear transformations T on real 4-space, R_{4}, into itself that preserve the quadratic form $f(x)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}$. That is,

$$
\begin{equation*}
f(T(x))=f(x) \text { for all } x \in R_{4} \tag{1.1}
\end{equation*}
$$

Define a function ϕ on R_{4} to the space M_{2} of 2 -square matrices over the complex numbers as follows:

$$
\phi(x)=\phi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\begin{array}{cc}
x_{1}+i x_{2} & x_{3}+i x_{4} \tag{1.2}\\
x_{3}-i x_{4} & x_{1}-i x_{2}
\end{array}\right)
$$

Let G_{2} be the vector space of matrices generated by all real linear combinations of

$$
g_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad g_{2}=\left(\begin{array}{cc}
\mathrm{i} & 0 \\
0 & -\mathrm{i}
\end{array}\right), \quad g_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad g_{4}=\left(\begin{array}{cc}
0 & \mathrm{i} \\
-\mathrm{i} & 0
\end{array}\right) .
$$

It is easy to check that (i) G_{2} is an algebra over the real numbers; (ii) ϕ is an isomorphism of R_{4} onto the additive group of G_{2} over the reals; (iii) $d(\phi(x))=f(x)$ for each $x \in R_{4}$, where d denotes determinant. It is also simple to verify that

$$
\begin{equation*}
G_{2}=\left\{A \mid A^{*}=P A^{\prime} P\right\} \tag{1.3}
\end{equation*}
$$

1) The work of this author was supported by U.S. National Science Foundation Grant, NSFG5416.
2)

The work of this author was completed under a National Research Council of Canada Post-doctorate Fellowship.

Can. Math. Bull. vol. 3, no. 2, May 1960
where $A *$ is the conjugate transpose of A, A^{\prime} is the transpose of A and $P=g_{3}$. Let Ω_{2} denote the set of T satisfying (l.1). In view of (iii) it is clear that the structure of Ω_{2} will be completely known if we determine the structure of those S which are linear mappings of G_{2} into G_{2} such that $d(S(A))=d(A)$ for all $A \in G_{2}$. In other words, if we denote this class of S by Γ_{2} then $\Omega_{2}=\phi \Gamma_{2} \phi^{-1}$.

We are thus led for general n to defining a class G_{n} in the space M_{n} of n-square matrices over the complex numbers by

$$
\begin{equation*}
G_{n}=\left\{A \mid A *=P A^{\prime} P\right\} \tag{1.4}
\end{equation*}
$$

where P is the n-square matrix with l in positions $n-j$, $j+1, j=0, \ldots, n-1$ and 0 elsewhere. We define Γ_{n} to be the set of all linear transformations on G_{n} to G_{n} satisfying

$$
\begin{equation*}
d(S(A))=d(A) \text { for all } A \in G_{n} \tag{1.5}
\end{equation*}
$$

2. Results. Our main result is contained in the following

THEOREM. $S \in \Gamma_{n}$ if and only if there exist U and V in G_{n} such that either

$$
\begin{equation*}
S(A)=U A V \text { for all } A \in G_{n} \tag{2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
S(A)=U A^{\prime} V \text { for all } A \in G_{n} \tag{2.2}
\end{equation*}
$$

where $d(U V)=1$.
Consider the set of matrices \mathcal{E}

$$
\begin{align*}
& E_{s t}+E_{n-s+1, n-t+1}, i\left(E_{s t}-E_{n-s+1, n-t+1}\right), \quad 1 \leqslant s<t \leqslant n \tag{2.3}\\
& E_{s s}+E_{n-s+1, n-s+1}, i\left(E_{s s}-E_{n-s+1, n-s+1}\right), \quad 1 \leqslant s \leq k '
\end{align*}
$$

where $k^{\prime}=k$ if $n=2 k$ and $k^{\prime}=k+1$ if $n=2 k+1$. It is simple to verify that the elements of \mathcal{E} are linearly independent over the complex numbers. Now let $A \in G_{n}$. Then, from (l.4),

$$
\begin{gathered}
A^{*}=P A^{\prime} P \\
\bar{a}_{s t}=a_{n-s+1, n-t+1}, \quad s, t=1, \ldots, n
\end{gathered}
$$

and we check easily that A is in the linear closure of \mathcal{E} over the reals.

Since ε generates M_{n} over the complex numbers as well, S may be extended linearly to a linear map of M_{n} into itself. We denote the extended map by S also.

We next observe that

$$
\begin{equation*}
d(S(X))=d(X) \tag{2.4}
\end{equation*}
$$

for all $X \in M_{n}$. To see this, let $z_{l}, \ldots, z_{n^{2}}$ be indeterminates over the complex numbers, and let $e_{1}, \ldots, e_{n^{2}}$ be the elements of ε arranged in some order. Define the polynomial p by

$$
p\left(z_{1}, \ldots, z_{n^{2}}\right)=d\left(\sum_{t=1}^{n^{2}} z_{t} S\left(e_{t}\right)\right)-d\left(\sum_{t=1}^{n^{2}} z_{t} e_{t}\right)
$$

Since G_{n} is generated over the reals by \mathcal{E} and moreover $d(S(A))=d(A)$ for all $A \in G_{n}$, we conclude that p is identically zero for all real values of $z_{1}, \ldots, z_{n} 2$. Hence p is identically zero for all complex values of $z_{1}, \ldots, z_{n^{2}}$. However, M_{n} is the linear closure of \mathcal{E} over the complex numbers and (2.4) follows.

Proceeding to the proof of the theorem we use a result in [1] or [2] that states that if T is any linear transformation on M_{n} to M_{n} such that $d(T(X))=d(X)$ for all $X \in M_{n}$ then $T(X)=U X V$ or $T(X)=U X^{\prime} V$ where $d(U V)=1$. Actually, Dieudonné [1] shows that if T is assumed to be non-singular as well this result follows. But the non-singularity of T is a consequence of the fact that T is linear and preserves all determinants as shown in [2]. The theorem then follows from the

LEMMA. If $U A V \in G_{n}$ for all $A \in G_{n}$ and U and V are non-singular, then non-singular U_{1} and V_{1} may be chosen in G_{n} such that

$$
\begin{equation*}
U X V=U_{1} X V_{1} \text { for all } X \in M_{n} \tag{2.5}
\end{equation*}
$$

A similar statement holds if $U A^{\prime} V \in G_{n}$ for all $A \in G_{n}$.
Proof. We have that

$$
(U A V)^{*}=P(U A V)^{\prime} P \text { for all } A \in G_{n}
$$

and hence

$$
\begin{gather*}
\left(V^{\prime}\right)^{-1} P V * A * U * P\left(U^{\prime}\right)^{-1}=A^{\prime} \\
{\left[\left(V^{\prime}\right)^{-1} P V * P\right] A^{\prime}\left[P U * P\left(U^{\prime}\right)^{-1}\right]=A^{\prime}} \tag{2.6}
\end{gather*}
$$

for all $A \in G_{n}$. Since $A \in G_{n}$ if and only if $A^{\prime} \in G_{n}$, we conclude from (2.6) that $C A D=A$ for all $A \in G_{n}, C=\left(V^{\prime}\right)^{-1} P V * P$, $D=P U * P\left(U^{\prime}\right)^{-1}$. It follows that $C X D=X$ for all $X \in M_{n}$ and thus $C=\lambda I, D=\lambda^{-1} I$, where I is the n-square identity matrix.

Thus

$$
\begin{equation*}
\mathrm{V}^{*}=\lambda \mathrm{P} V^{\prime} \mathrm{P}, \quad \mathrm{U} *=\lambda^{-1} \mathrm{P} U^{\prime} \mathrm{P} . \tag{2.7}
\end{equation*}
$$

From (2.7) and the fact that V is non-singular, we have $\lambda=\overline{d(V)} / \mathrm{d}(\mathrm{V})$ and thus $\lambda=\mathrm{e}^{i \theta}, 0 \leqslant \theta<2 \pi$. Now choose a complex number ω such that $|\omega|=1$ and $\bar{\omega} / \omega=e^{-i \theta}$ and set $V_{1}=\omega V, U_{1}=\bar{\omega} U$. Then $U A V=|\omega|^{-2} U_{1} A V_{1}=U_{1} A V_{1}$ and moreover

$$
\begin{aligned}
& V_{1}^{*}=\bar{\omega} V *=\bar{\omega} / \omega e^{i \theta} P V_{1}^{\prime} P=P V_{1}^{\prime} P \\
& U_{1}^{*}=\omega U^{*}=\omega / \bar{\omega} e^{-i \theta} P U_{1}^{\prime} P=P U_{1}^{\prime} P
\end{aligned}
$$

and the proof of the lemma is complete.
We remark that the transformation $S(A)=U A V$ has the matrix representation $U \otimes V^{\prime}$ with respect to the doubly lexicographically ordered basis $E_{i j}$ in M_{n}, and the matrix representation of $\sigma(A)=A^{\prime}$ with respect to this ordered basis is the n^{2}-square matrix σ_{1} whose (i, j) n-square block is $E_{j i}$ for $i, j=1, \ldots, n$. Here \otimes indicates Kronecker product.

Hence we have

COROLLARY 1. If $S \in \Gamma_{\mathrm{n}}$ then there exists a basis of M_{n} such that the matrix representation of S is either

$$
U \otimes V
$$

or

$$
(U \otimes V) \sigma_{1}
$$

where U and V are in G_{n}.

COROLLARY 2. If $S \in \Gamma_{n}$ then there exists a basis of M_{n} such that the matrix representation of S with respect to this basis is in $G_{n^{2}}$.

Proof. From corollary 1 it suffices to show that if U and V are in G_{n} then $U \otimes V \in G_{n^{2}}$ and $\sigma_{1} \in G_{n^{2}}$ (since $G_{n^{2}}$ is closed under multiplication). We note first that the n^{2}-square matrix Q with 1 in the position $n^{2}-j, j+1, j=0, \ldots, n^{2}-1$ and 0 elsewhere is given by

$$
Q=P \otimes P .
$$

Then

$$
\begin{aligned}
(U \otimes V) * & =U * \otimes V *=\left(P U^{\prime} P\right) \otimes\left(P V^{\prime} P\right) \\
& =(P \otimes P)\left(U^{\prime} \otimes V^{\prime}\right)(P \otimes P) \\
& =Q(U \otimes V)^{\prime} Q
\end{aligned}
$$

and hence $(U \otimes V) \in G_{n^{2}}$. Now $\sigma_{1} \in G_{n^{2}}$ if it commutes with Q. To see this without multiplying matrices simply note that Q is the matrix representation with respect to the $E_{i j}$ basis of the transformation R defined by

$$
R(A)=P A P
$$

Then, since σ_{1} is the matrix representation of σ with respect to the same basis, it suffices to show that $R \sigma=\sigma R$. But

$$
R \sigma(A)=P A^{\prime} P=(P A P)^{\prime}=\sigma R(A),
$$

and the proof is complete.

REFERENCES

1. J. Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables. Arch. Math. l(1949), 282-287.
2. M. Marcus and B.N. Moyls, Linear transformations on algebras of matrices I, Canad. J. Math. 11 (1959), 61-66.
3. H.J. Zassenhaus, On a normal form of the orthogonal transformation I, Canad. Math. Bull. l (1958), 31-39.
4., On a normal form of the orthogonal transformation II, Canad. Math. Bull. l (1958), 101-111.
5. On a normal form of the orthogonal transformation III, Canad. Math. Bull. l (1958), 183-191.

The University of British Columbia
Muslim University, Aligarh, India

