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1. Introduction

Smith [6, Theorem 2.18] proved that if A is a ring which has a right artinian
right quotient ring and G is a poly- (cyclic-or-finite) group, then the group ring
AG has a right artinian right quotient ring. We give here a different proof (and a
generalization) of this result using methods developed by Jategaonkar [3,4].
Explicitly we prove

THEOREM. Let A be a ring which has a right artinian right quotient ring,
and let G be a group which has a (transfinite) ascending normal series with each
factor either finite or cyclic, but only a finite number of finite factors. Then AG
has a right artinian right quotient ring.

We refer to Kuros [5, p. 173J for the definition of an ascending normal
series. We note that in the case of Smith's Theorem the group ring AG is always
right noetherian (if A is) whereas this is not necessarily the case in our theorem.

REMARK. The restriction that there be only a finite number of finite factors
in the ascending normal series in G is necessary, as we can see from the following
example.

Let G be a group which is the union of a strictly ascending sequence of finite
subgroups {G;, i = 1,2,•••} where G, is normal in Gi+l for each i. Let K be a
field. For each i let co(Gi) be the right ideal of KG generated by {g - 1; g e G,).
It is readily seen that a)(G;) is the right annihilator of r; = ~Lg (g e G,) for each i.
It is easy to see that {co(G,)} is strictly ascending. We thus have a strictly ascending
infinite sequence of right annihilators in KG.

Now suppose KG has an artinian Quotient ring Q. Certainly Q has the
ascending chain condition on right annihilators and so any subring, in particular
KG, has this property. This contradicts what we have shown in the previous
paragraph.
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NOTATION: Let R be a ring. We denote by P(R) the prime radical of R and
by R* the ring RIP(R). We denote by Q(R) the right quotient ring of R when it
exists. If p is an automorphism of R we denote by p* the automorphism of
R * induced by p. If R is semi-simple artinian, we denote by m{R) the number of
minimal two-sided ideals of R.

Let G be a group and R b e a ring with identity. Suppose (t], a>) is a factor
set for G over R (cf, for example, Bovdi [2]). We denote by K[G; n, co) the group
ring (or crossed product) of G over R with factor set (n, co).

For m a positive integer we denote by Im the set {1,2, •••,m).
In the remainder of this paper quotient ring will mean right quotient ring

and artinian will mean right artinian.

2. Group rings of infinite cyclic groups

Let G be an infinite cyclic group with generator x, and A a ring with identity.
Suppose p is an automorphism of A. We denote by A[G,p] the set of finite sums
Ex'flj where i is an integer and af is in A. We define addition in the usual way, and
multiplication by assuming the distributive law and the rule ax = xp(a) for all
a in A. It is straightforward to check that yl[G,p] is an associative ring with
identity. We remark that A[G, p] is very similar to a skew polynomial ring as
defined in [3]; however in our case negative powers of x occur. But our situation
is somewhat more special in that p is an automorphism of A and not merely a
monomorphism of A into itself.

Let Q be a semi-simple artinian ring, and suppose {/;; ielm} is a complete
set of primitive central idempotents in Q. Let p be an automorphism of Q. Then,
clearly, p(/;) = fMi) where n is a permutation of Im. Let n = n1n2---x, be the
(unique) decomposition of n into disjoint cycles (we write 1-cycles also). For each
j in /, let gj = Z/;(i e nj) where i e n] denotes that i appears in the cycle notation
for Tij. We denote Uj by (jlj2---jm(j)). Thus n} is a cycle of length m(j) and
m = Em(j) (j e It). If f = 1 we say that Q is p-transitive.

Now Q = © g/j (i 6 Jm); and clearly for each j in /, there is a division ring
Dj and a positive integer n(j) such that for each i(i e nj) there is an isomorphism

et: Qft ^ Mn0,(D,).

Also, if we denote 0np
mii)0]i \ Dj by <j>j then it is easy to see that 4>j is an auto-

morphism of Dj. Also, for each j in /„ we have p(gj) = gj and if we denote
P\Q,9i by Pj then p} is an automorphism of Qgj such that Qgj is p;-transitive
We have

PROPOSITION 1. Let G be an infinite cyclic group, Q a semi-simple artinian
ring and p an automorphism of Q. Then there is an isomorphism

*: Q[G, p] -> 0 MmU) (MnU) (Dj[G, <£/])) (j e /,)
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such that for q in Q, thejth component of\]/(q) is given by a diagonal m(J) x m(j)
matrix, namely

for each) in I,, where the notation is as described in the previous two paragraphs.

We omit the proof since we use essentially the same arguments that are used
n the proofs of Theorem 2.1(a), Lemma 3.1(a) and Lemma 3.2 of [3].

We can now prove

PROPOSITION 2. Let A be a ring which has an artinian quotient ring Q and
suppose p is an automorphism of A. Let G be an infinite cyclic group. Then

(a) A\G, p] has an artinian quotient ring R.
(b)(i) P(R) = P(Q)R

(ii) P(Qf = 0 -> P(R)k = 0 (k a positive integer.)
(c) R* is the quotient ring of Q*[G,p*]
(d) m(R*) S m(Q*)
(e) If m(Q*) = m(R*) = m (say) then for each j in Im there is a positive

integer n(j) and two division rings D; and Ej where Dj is contained in E} such
that there is a commutative diagram

Q > Q**-+ QJM^DJ)

R _ * R#+-+ ®jMnU)(Ej)

where the two double-headed arrows denote isomorphisms and for the rest, each
homomorphism in the diagram is the obvious one.

PROOF. We apply Proposition 1 to Q* and use the same notation as we did
in that proposition. By the usual argument using the division algorithm, for each
j we see that Dj [G, <j>j] is a principal right ideal domain and so has a quotient
division ring which we denote by Ej. It follows from Proposition 1, that
<2#[G,p#] has a semi-simple artinian quotient ring which is isomorphic to
®jMm0>U)(Ej) (jelt).

The proofs of (a), (b) (i) and (b) (ii) are now essentially the same as the proof
of Theorem 3.1 of [4]. We therefore omit their proofs. Now (c) follows from (b) (i)
using a routine argument; (d) follows from (c) since m(R#) = t ^ m = m(Q#).

We now prove (e). Since we are supposing m(Q*) = m(R#), we see that
m(j) = 1 for each j . We may clearly assume that nj is the 1-cycle (j).

We let Q *<->• ©jMnU)(Dj) (jelm) be the isomorphism defined by the Oj and
let R* <-> ®jMnij\{Ej) (J e Im) be the isomorphism defined by \jt is Proposition 1.
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We have thus obtained the required diagram. The commutativity of the left square
follows from (b) (i) and that of the right square from the formula for ij/(q) (q in
Q*) given in Proposition 1. The proof is complete.

3. Proof of theorem

We assume the hypotheses of the theorem. A straight-forward argument
shows that we may replace A by its quotient ring. We may thus assume that A is
an artinian ring with identity.

Let the ascending normal series in G be {Gx, a an ordinal, Gr = G}. For each
a < F we denote Ga+1jG0L by Xa. By assumption Xx is either finite or infinite
cyclic. In the case where Xa is finite, we fix a set of coset representatives for Gx

in Ga+1 containing the identity of Ga. It is easy to see that a factor set (^jCoJ for
Xa over AGa is then determined and that the obvious map from AGa + l to
AG^X^, r]x, a>a~] is an isomorphism.

In the case where Xx is infinite cyclic, we choose as set of coset representatives
of Ga in Ga + j the powers of an appropriate element xinGx+1. The map pa: Ga -> G,
given by pa(g) = x~igx for each g in Ga extends uniquely to an automorphism of
AGa. It is easy to see that the obvious map from AGa+i to AGll\_X0l,pa] is an
isomorphism.

For each a ^ F we prove by transfinite induction on a that

(a) AGX has an artinian quotient ring, which we denote by Qx.

(b) For y < j8 g a such that there are no finite jumps between y and /}

(i) m(Q?)^m(Qt)

(ii) P{Qfi) = P(Qy)Qp

(iii) P(Qy)
k = 0 => P(Qpf = 0 (k a positive integer).

If in addition, m(Q*) = m(Qf) = m(say) then

(iv) For each j in Im there is a positive integer n(j) and division rings DyjJ

and Dp,j such that Dy,j £ Dftj and such that there is a commutative diagram

Qy > Q* «"> ®jMn,j){Dyj) (jelj

Q? Q* - - ®iMnU){Dpj)

where the two double-headed arrows denote isomorphisms and for the rest each
homomorphism in the diagram is the obvious one.
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We now prove these assertions. Suppose firstly that a is not a limit ordinal.
If Xx_x is finite then as indicated above AGX is isomorphic to

It is clear that the factor set (j/a_l,cox_i) can be extended to Qx-i. It is then
straightforward to prove that QCI_1[XX_1; t]a_uoja_l'\ is the quotient ring of
AGa and that it is artinian. This proves (a) in this case. It is obvious that (b) is
true also.

If Xa_! is infinite cyclic, then by the above AGX is isomorphic to

and both (a) and (b) are true by Proposition 2.

We may thus assume that a is a limit ordinal. Since our ascending normal
series in G has only a finite number of finite factors, there is an ordinal <5 < a
such that Gd contains every finite jump preceeding Gx. By applying (b) (i) of the
inductive hypothesis it is clear, by enlarging <5 if necessary, that we may assume
that m{Q*) = m{Qf) = m(say) for all y satisfying 3 <; y < a.

We consider Qa - inj limit Qy (S ^ y < a). It is easy to see that it is a quotient
ring of AGa (we use the fact that if an element is regular in AGy then it is regular
in AGX for y < a).

For each j in Im we let Da} = inj limit Dy f (8 g y < a). We also let
Qx = inj limit Q*(<5 ^ y < a). Using (b)(iv) of the inductive hypothesis, it is
straightforward to show that if in the diagram in (b) (iv) we replace /? by a and
Q* by Qt then the diagram is commutative, where the maps are the obvious
ones. It follows that Q* is semi-simple artinian.

If we can show that Qx = Q* then (b) follows easily. To prove (a), that is
that Qx is artinian, it suffices to show (cf [ l j , p. 71) that

(1) Q* is a semi-simple artinian ring

(2) P(QJ is a nilpotent

(3) P(QJ is finitely generated as a right ideal of Qx.

Using (b) (ii) of the inductive hypothesis it is easy to see that /„ = ker(ga -> Q*)
is equal to P(Qy)Qa for any y satisfying 5 ^ y < a. For each such y, we have that
Qy is an artinian ring with identity and so right noetherian. It follows that Ia is
finitely generated as a right ideal of Qx. By applying (b) (iii) of the inductive
hypothesis it is easy to see Ix is a nilpotent ideal and since Qa/Ia = Q* is semi-
simple artinian it follows that Ia = P(Qa). Thus Q* = Q+ as required and (1),
(2) and (3) are proved. Thus Qx is artinian and the inductive proof is complete.
The theorem follows by letting a = F.
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