ARTINIAN QUOTIENT RINGS OF GROUP RINGS

Dedicated to the memory of Hanna Neumann

IAN HUGHES

(Received February 6 1973)

Communicated by M. F. Newman

1. Introduction

Smith [6, Theorem 2.18] proved that if A is a ring which has a right artinian right quotient ring and G is a poly- (cyclic-or-finite) group, then the group ring AG has a right artinian right quotient ring. We give here a different proof (and a generalization) of this result using methods developed by Jategaonkar [3,4]. Explicitly we prove

THEOREM. Let A be a ring which has a right artinian right quotient ring, and let G be a group which has a (transfinite) ascending normal series with each factor either finite or cyclic, but only a finite number of finite factors. Then AG has a right artinian right quotient ring.

We refer to Kuroš [5, p. 173] for the definition of an ascending normal series. We note that in the case of Smith's Theorem the group ring AG is always right noetherian (if A is) whereas this is not necessarily the case in our theorem.

REMARK. The restriction that there be only a finite number of finite factors in the ascending normal series in G is necessary, as we can see from the following example.

Let G be a group which is the union of a strictly ascending sequence of finite subgroups $\{G_i, i = 1, 2, \cdots\}$ where G_i is normal in G_{i+1} for each i. Let K be a field. For each i let $\omega(G_i)$ be the right ideal of KG generated by $\{g - 1; g \in G_i\}$. It is readily seen that $\omega(G_i)$ is the right annihilator of $r_i = \sum g (g \in G_i)$ for each i. It is easy to see that $\{\omega(G_i)\}$ is strictly ascending. We thus have a strictly ascending infinite sequence of right annihilators in KG.

Now suppose KG has an artinian Quotient ring Q. Certainly Q has the ascending chain condition on right annihilators and so any subring, in particular KG, has this property. This contradicts what we have shown in the previous paragraph.

NOTATION: Let R be a ring. We denote by P(R) the prime radical of R and by $R^{\#}$ the ring R/P(R). We denote by Q(R) the right quotient ring of R when it exists. If ρ is an automorphism of R we denote by $\rho^{\#}$ the automorphism of $R^{\#}$ induced by ρ . If R is semi-simple artinian, we denote by m(R) the number of minimal two-sided ideals of R.

Let G be a group and R be a ring with identity. Suppose (η, ω) is a factor set for G over R (cf, for example, Bovdi [2]). We denote by $R[G; \eta, \omega)$ the group ring (or crossed product) of G over R with factor set (η, ω) .

For m a positive integer we denote by I_m the set $\{1, 2, \dots, m\}$.

In the remainder of this paper quotient ring will mean right quotient ring and artinian will mean right artinian.

2. Group rings of infinite cyclic groups

Let G be an infinite cyclic group with generator x, and A a ring with identity. Suppose ρ is an automorphism of A. We denote by $A[G, \rho]$ the set of finite sums $\sum x^i a_i$ where *i* is an integer and a_i is in A. We define addition in the usual way, and multiplication by assuming the distributive law and the rule $ax = x\rho(a)$ for all a in A. It is straightforward to check that $A[G, \rho]$ is an associative ring with identity. We remark that $A[G, \rho]$ is very similar to a skew polynomial ring as defined in [3]; however in our case negative powers of x occur. But our situation is somewhat more special in that ρ is an automorphism of A and not merely a monomorphism of A into itself.

Let Q be a semi-simple artinian ring, and suppose $\{f_i; i \in I_m\}$ is a complete set of primitive central idempotents in Q. Let ρ be an automorphism of Q. Then, clearly, $\rho(f_i) = f_{\pi(i)}$ where π is a permutation of I_m . Let $\pi = \pi_1 \pi_2 \cdots \pi_t$ be the (unique) decomposition of π into disjoint cycles (we write 1-cycles also). For each j in I_t let $g_j = \sum f_i (i \in \pi_j)$ where $i \in \pi_j$ denotes that i appears in the cycle notation for π_j . We denote π_j by $(j1j2\cdots jm(j))$. Thus π_j is a cycle of length m(j) and $m = \sum m(j)$ $(j \in I_t)$. If t = 1 we say that Q is ρ -transitive.

Now $Q = \bigoplus Qf_i$ $(i \in I_m)$; and clearly for each j in I, there is a division ring D_j and a positive integer n(j) such that for each $i(i \in \pi_j)$ there is an isomorphism

$$\theta_i \colon Qf_i \to M_{n(j)}(D_j).$$

Also, if we denote $\theta_{j1}\rho^{m(j)}\theta_{j1}^{-1}|D_j$ by ϕ_j then it is easy to see that ϕ_j is an automorphism of D_j . Also, for each j in I_i , we have $\rho(g_j) = g_j$ and if we denote $\rho |Qg_j|$ by ρ_j then ρ_j is an automorphism of Qg_j such that Qg_j is ρ_j -transitive We have

PROPOSITION 1. Let G be an infinite cyclic group, Q a semi-simple artinian ring and ρ an automorphism of Q. Then there is an isomorphism

$$\psi: Q[G,\rho] \to \bigoplus M_{m(j)}(M_{n(j)}(D_j[G,\phi_j])) \qquad (j \in I_j)$$

such that for q in Q, the jth component of $\psi(q)$ is given by a diagonal $m(j) \times m(j)$ matrix, namely

$$\psi(q)_j = \operatorname{diag}(\theta_{j1}(qf_{j1}), \theta_{j2}(qf_{j2}), \cdots, \theta_{jm(j)}(qf_{jm(j)}))$$

for each j in I_{i} , where the notation is as described in the previous two paragraphs.

We omit the proof since we use essentially the same arguments that are used n the proofs of Theorem 2.1(a), Lemma 3.1(a) and Lemma 3.2 of [3].

We can now prove

PROPOSITION 2. Let A be a ring which has an artinian quotient ring Q and suppose ρ is an automorphism of A. Let G be an infinite cyclic group. Then

- (a) $A[G, \rho]$ has an artinian quotient ring R.
- (b) (i) P(R) = P(Q)R
 - (ii) $P(Q)^k = 0 \rightarrow P(R)^k = 0$ (k a positive integer.)
- (c) $R^{\#}$ is the quotient ring of $Q^{\#}[G, \rho^{\#}]$
- (d) $m(R^{\#}) \leq m(Q^{\#})$

(c) If $m(Q^{\#}) = m(R^{\#}) = m$ (say) then for each j in I_m there is a positive integer n(j) and two division rings D_j and E_j where D_j is contained in E_j such that there is a commutative diagram

where the two double-headed arrows denote isomorphisms and for the rest, each homomorphism in the diagram is the obvious one.

PROOF. We apply Proposition 1 to $Q^{\#}$ and use the same notation as we did in that proposition. By the usual argument using the division algorithm, for each j we see that $D_j[G, \phi_j]$ is a principal right ideal domain and so has a quotient division ring which we denote by E_j . It follows from Proposition 1, that $Q^{\#}[G, \rho^{\#}]$ has a semi-simple artinian quotient ring which is isomorphic to $\bigoplus_j M_{m(j)n(j)}(E_j)$ $(j \in I_i)$.

The proofs of (a), (b) (i) and (b) (ii) are now essentially the same as the proof of Theorem 3.1 of [4]. We therefore omit their proofs. Now (c) follows from (b) (i) using a routine argument; (d) follows from (c) since $m(R^{\#}) = t \leq m = m(Q^{\#})$.

We now prove (e). Since we are supposing $m(Q^{\#}) = m(R^{\#})$, we see that m(j) = 1 for each j. We may clearly assume that π_j is the 1-cycle (j).

We let $Q \stackrel{\#}{\leftrightarrow} \bigoplus_{j} M_{n(j)}(D_j)$ $(j \in I_m)$ be the isomorphism defined by the θ_j and let $R^{\#} \leftrightarrow \bigoplus_{j} M_{n(j)}(E_j)$ $(j \in I_m)$ be the isomorphism defined by ψ is Proposition 1.

Ian Hughes

We have thus obtained the required diagram. The commutativity of the left square follows from (b) (i) and that of the right square from the formula for $\psi(q)$ (q in Q^{*}) given in Proposition 1. The proof is complete.

3. Proof of theorem

We assume the hypotheses of the theorem. A straight-forward argument shows that we may replace A by its quotient ring. We may thus assume that A is an artinian ring with identity.

Let the ascending normal series in G be $\{G_{\alpha}, \alpha \text{ an ordinal}, G_{\Gamma} = G\}$. For each $\alpha < \Gamma$ we denote $G_{\alpha+1}/G_{\alpha}$ by X_{α} . By assumption X_{α} is either finite or infinite cyclic. In the case where X_{α} is finite, we fix a set of coset representatives for G_{α} in $G_{\alpha+1}$ containing the identity of G_{α} . It is easy to see that a factor set $(\eta_{\alpha}, \omega_{\alpha})$ for X_{α} over AG_{α} is then determined and that the obvious map from $AG_{\alpha+1}$ to $AG_{\alpha}[X_{\alpha}; \eta_{\alpha}, \omega_{\alpha}]$ is an isomorphism.

In the case where X_{α} is infinite cyclic, we choose as set of coset representatives of G_{α} in $G_{\alpha+1}$ the powers of an appropriate element x in $G_{\alpha+1}$. The map $\rho_{\alpha}: G_{\alpha} \to G_{\alpha}$ given by $\rho_{\alpha}(g) = x^{-1}gx$ for each g in G_{α} extends uniquely to an automorphism of AG_{α} . It is easy to see that the obvious map from $AG_{\alpha+1}$ to $AG_{\alpha}[X_{\alpha}, \rho_{\alpha}]$ is an isomorphism.

For each $\alpha \leq \Gamma$ we prove by transfinite induction on α that

- (a) AG_{α} has an artinian quotient ring, which we denote by Q_{α} .
- (b) For $\gamma < \beta \leq \alpha$ such that there are no finite jumps between γ and β
- (i) $m(Q_{\gamma}^{\#}) \geq m(Q_{\gamma}^{\#})$
- (ii) $P(Q_{\beta}) = P(Q_{\gamma})Q_{\beta}$
- (iii) $P(Q_{\gamma})^{k} = 0 \Rightarrow P(Q_{\beta})^{k} = 0$ (k a positive integer).

If in addition, $m(Q_{\gamma}^{\#}) = m(Q_{\beta}^{\#}) = m$ (say) then

(iv) For each j in I_m there is a positive integer n(j) and division rings $D_{\gamma,j}$ and $D_{\beta,j}$ such that $D_{\gamma,j} \subseteq D_{\beta,j}$ and such that there is a commutative diagram

where the two double-headed arrows denote isomorphisms and for the rest each homomorphism in the diagram is the obvious one.

[4]

We now prove these assertions. Suppose firstly that α is not a limit ordinal. If $X_{\alpha-1}$ is finite then as indicated above AG_{α} is isomorphic to

$$AG_{\alpha-1}[X_{\alpha-1};\eta_{\alpha-1},\omega_{\alpha-1}].$$

It is clear that the factor set $(\eta_{\alpha-1}, \omega_{\alpha-1})$ can be extended to $Q_{\alpha-1}$. It is then straightforward to prove that $Q_{\alpha-1}[X_{\alpha-1}; \eta_{\alpha-1}, \omega_{\alpha-1}]$ is the quotient ring of AG_{α} and that it is artinian. This proves (a) in this case. It is obvious that (b) is true also.

If $X_{\alpha-1}$ is infinite cyclic, then by the above AG_{α} is isomorphic to

$$AG_{\alpha-1}[X_{\alpha-1}, \rho_{\alpha-1}]$$

and both (a) and (b) are true by Proposition 2.

We may thus assume that α is a limit ordinal. Since our ascending normal series in G has only a finite number of finite factors, there is an ordinal $\delta < \alpha$ such that G_{δ} contains every finite jump preceeding G_{α} . By applying (b) (i) of the inductive hypothesis it is clear, by enlarging δ if necessary, that we may assume that $m(Q_{\gamma}^{\#}) = m(Q_{\delta}^{\#}) = m(\text{say})$ for all γ satisfying $\delta \leq \gamma < \alpha$.

We consider $Q_{\alpha} = \text{inj limit } Q_{\gamma} (\delta \leq \gamma < \alpha)$. It is easy to see that it is a quotient ring of AG_{α} (we use the fact that if an element is regular in AG_{γ} then it is regular in AG_{α} for $\gamma < \alpha$).

For each j in I_m we let $D_{\alpha j} = \text{inj limit } D_{\gamma j}$ ($\delta \leq \gamma < \alpha$). We also let $Q_{\alpha}^+ = \text{inj limit } Q_{\gamma}^{\#} (\delta \leq \gamma < \alpha)$. Using (b)(iv) of the inductive hypothesis, it is straightforward to show that if in the diagram in (b) (iv) we replace β by α and $Q_{\beta}^{\#}$ by Q_{α}^+ then the diagram is commutative, where the maps are the obvious ones. It follows that Q_{α}^+ is semi-simple artinian.

If we can show that $Q_{\alpha}^{+} = Q_{\alpha}^{\#}$ then (b) follows easily. To prove (a), that is that Q_{α} is artinian, it suffices to show (cf [1], p. 71) that

- (1) $Q_{\alpha}^{\#}$ is a semi-simple artinian ring
- (2) $P(Q_{\alpha})$ is a nilpotent
- (3) $P(Q_{\alpha})$ is finitely generated as a right ideal of Q_{α} .

Using (b) (ii) of the inductive hypothesis it is easy to see that $I_{\alpha} = \ker(Q_{\alpha} \to Q_{\alpha}^{+})$ is equal to $P(Q_{\gamma})Q_{\alpha}$ for any γ satisfying $\delta \leq \gamma < \alpha$. For each such γ , we have that Q_{γ} is an artinian ring with identity and so right noetherian. It follows that I_{α} is finitely generated as a right ideal of Q_{α} . By applying (b) (iii) of the inductive hypothesis it is easy to see I_{α} is a nilpotent ideal and since $Q_{\alpha}/I_{\alpha} = Q_{\alpha}^{+}$ is semisimple artinian it follows that $I_{\alpha} = P(Q_{\alpha})$. Thus $Q_{\alpha}^{\#} = Q_{\alpha}^{+}$ as required and (1), (2) and (3) are proved. Thus Q_{α} is artinian and the inductive proof is complete. The theorem follows by letting $\alpha = \Gamma$.

Ian Hughes

References

- [1] N. Bourbaki, Éléments de Mathématique, Algèbre chapitre 8, Modules et anneaux semisimples, (Hermann, Paris, 1958.)
- [2] A. A. Bovdi, 'Crossed products of a semigroup and a ring', Dokl. Akad. Nauk SSSR 137 (1961), 1267-1268.
- [3] A. V. Jategaonkar, 'Skew polynomial rings over semisimple rings', J. Algebra 19 (1971), 315–328.
- [4] A. V. Jategaonkar, 'Skew polynomial rings over orders in artinian rings', J. Algebra 21 (1972), 51-59.
- [5] A. Kurosh, The Theory of Groups, Vol. 2, (Chelsea, New York, 1956.)
- [6] P. F. Smith, 'Quotient rings of group rings', J. London Math. Soc. (2) 3 (1971), 645-660.

Department of Mathematics Queen's University Kingston, Ontario, Canada