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ORDINARY SINGULARITIES WITH DECREASING 
HILBERT FUNCTION 

LESLIE G. ROBERTS 

1. Introduction. Let A be the co-ordinate ring of a reduced curve over 
a field k. This means that A is an algebra of finite type over k, A has no 
nilpotent elements, and that if P is a minimal prime ideal of A, then A/P 
is an integral domain of Krull dimension one. Let M be a maximal ideal 
of A. Then G (A) (the graded ring of A relative to M) is defined to be 
0*Lo MyMi+l. We get the same graded ring if we first localize at M, 
and then form the graded ring of AM relative to the maximal ideal MAM. 
That is 

CO 

G U ) ^ 0 (MAMy/(MAM)i+1. 

Let Â be the integral closure of A. If Pu P2, . . . , Ps are the minimal 
primes of A then 

1 = fi (Â/PI), 

where A/P t is a domain and A/Pt is the integral closure of A/Pt in its 
quotient field. Let M\, . . . , Mn be those maximal ideals of Â that lie 
over M. That is, A C Â and Mt C\ A = M. Let 

OÙ 

J = Mi H . . . r\ Mn and G{A) = 0 7*/Ji+\ 

The maximal ideal M is called an ordinary singular point if Proj G (A) 
is reduced. Equivalently M is ordinary if MA = Mi . . . Mn (each M* 
with exponent one) and the tangent directions to the branches Mf are 
distinct. This equivalence is discussed in [2]. If G (A) is reduced, then 
Proj G (A) is reduced. Furthermore G (A) is reduced if and only if the 
induced map G (A ) —> G (Â ) is an inclusion [3]. However G (A) need not 
be reduced at an ordinary singular point, as the examples show. 

The Ml/Mi+1 are finite dimensional vector spaces over k. The hilbert 
function of M is defined by 

f(i) = dim^M'/M^1). 
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170 LESLIE G. ROBERTS 

The embedding dimension is 

/ ( l ) = dimk(M/M>). 

The function/(i) becomes constant if i is sufficiently large, this constant 
value being the multiplicity of M. We always have f(i) ^ multiplicity, 
and in the ordinary case described above the multiplicity is n. In this 
note we show how to construct examples of curves with ordinary singular 
points, and examine the behaviour of the hilbert function for these 
examples. In particular the hilbert function can decrease before ultimately 
increasing to the multiplicity. Examples of singularities with a hilbert 
function that temporarily decreases are mentioned in [4], although these 
examples are for non-ordinary singularities. 

During the preparation of this paper I had a number of helpful con
versations with B. Dayton, A. V. Geramita, and F. Orecchia. In 
particular Geramita pointed out in a seminar that little is known about 
the behaviour of the hilbert function before it stabilizes, and Orecchia 
suggested that I might try to construct ordinary singularities by an 
identification construction similar to that used for seminormal rings. 

2. Lines through a point. First we examine the case of n straight lines 
in kT, which pass through one (rational) point. Without loss of generality 
we can assume that the lines all pass through the origin, and that there 
are r linearly independent directions (otherwise choose a smaller r). We 
can choose co-ordinates so that the directions of lines 1, . . . , r are the 
co-ordinate axes. Let the directions of the lines be the columns of the 
r X n matrix C = (citj), 1 ^ i ^ r, 1 ^ j <; n where citj = ôitj if 
1 ^ j ^ r. Let B = k[Xly . . . , Xr]/I be the reduced co-ordinate ring 
of these n straight lines in kr. Then 

s = fi km, 
i=l 

and the surjection Wi : B —> k[ti] is given by 

(i.e., by the ith column of C). The image of Xj in B is then C(j)t where 
C(j) is the 7 th row of C, t = {tu . . . , tn) and the vectors are multiplied 
co-ordinatewise. Finally B is the subring of B generated by the C(j)t. 

Let N be the ideal of all functions in B vanishing at the origin. B is 
graded, with N being the ideal of elements of degree ^ 1. Elements of 
degree 1 generate B, so G(B) = B. Furthermore J = {tu . . . , tn)B so 
G (B) = B. Thus N is an ordinary singular point and Nl/Ni+l is iso
morphic to the subspace of kn (= ith graded piece of B) generated by 
the images of all monomials of degree i in the r variables Xi, . . . , XT. 
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There are such monomials. 

Thus 

bt = dim, (N{/Ni+1) ^ minimum ( (* "J"^~ J , ») . 

(i + f — l \ 
1 by n matrix whose rows are all possible 

2-fold products of rows of C. Then bt = rank C\ 
The columns of C can be thought of as n points Qj in P / - 1 , and 

1 I if and only if the Q; lie on a hypersurface of degree i. 

The condition 6* = min (I _ I, n) is precisely the definition of 

generic position of the points Qj that is given in [3]. In [1] Theorem 4 it 
is shown that "most of the time" Qi, . . . , Qn are in generic position (at 
least for k infinite). (These values for bt are also given by Theorem 3.4 
of [2].) 

Even if the Qj are not in generic position, we know that dimk(B/B) < 
oo, so bj• = n for j large enough. The sequence {bj} can never decrease 
because B contains non-zero divisors of degree one (k infinite). In fact 
{bj} must be strictly increasing until it reaches n. 

3. The definition of A. In this section we define a one dimensional 
domain A with ordinary singular point M. We will preserve the notation 
of Section 2. Let xu . . . , xn be distinct elements of k, and let 

A = {/€ *M|/(*i) = • • • =f(xn) and / '(*,) = 2> , f i / ' ( *« ) , 

r + l ^ ' ^ » | . 

Clearly A is a &-subspace of &[£], with 

dim* (k[t]/A) ^2n - r - 1, 

because we have put 2n — r — 1 linear conditions on A. If j ^ r + 1 
and / , g Ç A then 

(fg)'(Xj) = g (*>)/'(**) + / (* j )g ' (* i ) = g(**) ]CcM/'(tf,) 
L t = l 

+ /(**) ]£C*.i2'(*<) = ]CcMfe(*,)/'(*<) + /(*<)g'(*<)l 
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172 LESLIE G. ROBERTS 

so fg £ A. Thus A is a sub-fc-algebra of &[<]. Since 

dim* (k[t]/A) < oo 

we have that k[t] is the integral closure of A, and A is a ^-algebra of 
finite type. 

Let M = {f G - 4 | / ( * Ï ) = 0}. Then 4 / M = & so M is a maximal ideal 
of A. Let 

Mt = (t - xt)k[t] (1 S i S n). 

Then clearly MtC\ A = M. Let 

F =Y\(t- xt). 

Then .F2 Ç Af, so the M* are precisely the maximal ideals of Â = &[/] 
that contain ikf, and / = Fk[t], Furthermore F2k[t] is a k[t] ideal of A 
The conductor I oî A in &[/] therefore contains F2k[t]. Thus the only 
primes of k[t] containing I are {Ml7 . . . , Afn}, and 

(Spec A) - M ^ (Spec *[*]) - {Mlf . . . , Mn] 

(as schemes). We can thus think of Spec A as having been obtained by 
identifying the Mt in a certain way to form M. If A = k[Xi, . . . , Xs] 
(so that Spec A C &s) and we define the tangent vector at xz in the naive 
way from calculus to be 

t , = (Xx'OeO.-XYOeO, . . . , X / ( x , ) ) 

then the equations defining A yield 

T 

tj = Y^Cifii U ^ r + 1), 

so intuitively at least, the tangents of the branches Mi, . . . , Mr are 
linearly independent, and the tangents of the remaining branches are 
specified linear combinations of them. A is the largest subring of k[t] in 
which Mi, . . . , Mn are identified to one point, with the specified tangent 
vectors. Example 2 in [2] shows that not all ordinary singularities are 
of the type described here. 

4. The powers of M. In this section we describe the powers M\ and 
show that G(^4) reduced = B, B as described in Section 2. Again let 

F=f\(t- Xi), 

and let 

/ , = ctF*/(t - xt), 
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with Cf = F'(Xi)-2, so that / / (x. /) = ôtj. Let 

Then h/ixj) = dtJ (1 g * , j ^ r) and */(*,) = c u ( l g i g r , r + 
1 ^ / g »). Thus ft, € 4 . Note that 

F2k[t] = {/ G *MI/(*i) = • • • =/(*») = 0,/ '(*i) 

= /'(*.) = 0} = { / G ̂ |/(x0 = . . . = /(*,) = o, 
/ '(*0 = . . . = /'(*,) =0}. 

Clearly M2 C ^2&M C l C ^ . W e claim that the ht (1 £ i £ r) form 
a &-basis of M/F2Jfe[/]. Suppose f € M with / ' (*,) = a* ( U i ^ r) . 
T h e n / — ^5=i a*&* = h satisfies h(xt) = 0 and hf{Xi) = 0 (1 ^ i ^ r) . 
Since ^ 6 i this also holds for r + 1 ^ i ^ n. Thus fe G F2k[i\. If 
]C*=i #^* G F2k[t] evaluate the derivative at xt (1 ^ i ^ r). This yields 
a,i — 0, so the hi (1 ^ i ^ r) are linearly independent in M/F2k[t], and 
thus form a basis of M/F2k[t]. 

Now we claim that 

(*lf . . . , ftr> / ? 2 )^] = /%[/]. 

All the /̂ z- are divisible by F, so it suffices to show that t — x{ has 
exponent one in at least one of the ht. First suppose 1 ^ i ^ r. Then h{ 

has one term (/*) in which (t — xt) has exponent one, and all the rest 
divisible by (t — xt)

2. Now recall that the tangent directions are assumed 
to be non-zero. For each i ^ r + 1, there exists j such that cjti 9e 0. 
Then hj has one term (i.e., cjtifi) in which (t — xt) has exponent one 
and all other terms divisible by (t — Xi)2. This proves 

LEMMA 1. If the columns of C are all non-zero then 

(*!, . . . , hr, F2)k[t] = Fk[t], 

Now we can describe the powers M\ First of all 

M= {hu...,hr,F
2k[t}}. 

By this notation we mean linear combinations of hi, . . . , hT, F2 in which 
the hi have coefficient in k, and F2 has coefficient in k[t]. Using the same 
notation 

M2 = {hthjthjPklt], F*k[t)\ 

and by Lemma 1, this equals {hthj, Fzk[t]) (1 ^ i, j ^ r). Next 

M3 = M2M = {fciM*. hihjF2k[t], htF*k[t], F*k[t]\. 

The contribution from the last three types of generator is (hihjF2, hiF*, 
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Fb)k[t]. All generators are divisible by F\ and 

(hF\ . . . , hTF\ F*)k[t] = F*(hu . . . , hr, F
2)k[t] = F*k[t], 

using Lemma 1. Thus 

(hihjF2, htF\ F*)k[t] = F*k[t] and 

HP = {hfah, F*k[t]). 

A simple induction then yields 

LEMMA 2. / / the columns of C are all non-zero then Fi+1k[t] C M\ Also 
Mi is the k-span of all monomials of degree i in the hj, and Fi+1k[t]. 

We should perhaps check that the discussion of tangent directions in 
the preceding section is compatible with the more usual approach. Since 
Mk[t] = Mi . . . Mn we have M/M2 -> MJM^ onto, and Hom*(M,/ 
Mi2, k) is a subspace of Horn (M/M2, k) (the Zariski tangent space at 
M) ([2] Lemma 1.6). Hom^ (Mi/Mi2, k) is one dimensional, generated 
by f—>f'(xi) (f <E Mi). Let t* (1 ^ i ^ n) denote the image of this 
form in Horn, (M/M2, k). Then 

ti(hj) = h/(xt) = Btj (lûi£ r) 

so the tt are linearly independent (1 ^ i ^ r). The defining relations 
for A then yield 

t , ( / ) = £,cttjtt(f) for all / C M , 
i = i 

i.e., 
r 

tj = Z Cijtt in Horn, (M/M2 , *) (r+l^j^n). 
*=i 

This is the relation among the tangent directions that was claimed 
earlier. As we will see later, the tt need not span Horn* (M/M2, k). If 
the columns of C are pairwise linearly independent, the t t are distinct, 
so M is an ordinary singularity. 

Now we consider the homomorphism 

G(A)->G(Â) = © r/Ji+\ 

We have J = Fk[t] so 

G(A) = 0 F'm/F^klt] ^ f l k[tt], 
1=0 t = 1 

where tt is the image of t — xt in the ith component of 

Fk[t]/p*k[t] = f l at - *«)*[/]/(< - *<)2). 
2 = 1 
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We wish to find the image of M'/M**1 in F^t}/Fi+lk[t}. To do this it 
suffices to find the image of ht in Fk[t]/F2k[t], because G(A) —> G(Â) is 
a ring homomorphism and Fi+1k[t] C M* gets sent to zero in F*k[t] 
/Fi+1k[t], In the first co-ordinate every term of hi vanishes except / i , 
which maps to 

C\{t — Xi)Ff(xi)2 = t — xi = h. 

If j £> r + 1, all terms of hi map to zero except cXjf j which maps to 

cifj(t - x^F'ixj)2 = Cijtj. 

If 2 g j ^ r, / i maps to zero. Thus in /?&[*]/F2&[/] = (kn)t, hi maps to 
the first row of the matrix C. Similarly ht maps to the ith row of C. Now 
we have G(Â) = B (B, B as in Section 2) and the image of G(A) in 
B = n^= i k[tt] is the same as the image of B. For i large enough we 
observed in Section 2 that (so long as the columns of C are pairwise 
linearly independent) 

jsfyNi+l -> F ^ ] / 7 ^ + I & M 

is onto (in fact this was an isomorphism). For such i, 

MyMi+l -> F'klt]/'F^lk{t) 

is onto. Since Ml contains Fi+lk[t] this implies that Mi = F^lt], i large 
enough. The homomorphisms 

Ml/Mi+l -> F'kWFl+lk[t] 

eventually become isomorphisms. Now suppose that 

u G ker [G(A)-> G(A)] 

(u homogeneous). If 

Ml/Mi+l -> F'kit}/F^kit] 

is an isomorphism for i ^ i0 then *̂o = 0, so ker [G{A) —* G(Â)] consists 
of nilpotent elements. Since G (À) is reduced, the kernel is precisely the 
nilradical of G (A), and 

G {A ) reduced = B. 

The nilpo tents in low degree disappear in Proj G (A), so we see that 
Proj G (A) is reduced, again verifying that M is an ordinary singularity 
of A. These results can be summarized as follows: 

THEOREM 3. Let A be as defined in Section 3, with maximal ideal M. If 
the tangents of the branches at M are pairwise linearly independent, then M 
is an ordinary singular point, and G (̂ 4) reduced ~ B = co-ordinate ring of 
the reducible variety consisting of the tangents to the branches. 
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The following somewhat more general result appears to be true. Let M 
be a singular point with nonsingular branches on any algebraic curve 
Spec A (that is MÂ = Mi . . . MSÂ, i.e., exponents one). As usual we 
assume A/Mi = k. Then the kernel of G (A) —> G(A) is nilpotent, and 
G (A) reduced = co-ordinate ring of the tangents to the branches. (Some 
of the tangent directions may co-incide, so G (A) —> G(A) need not be 
onto in high degrees.) 

5. The calculation of the hilbert function. We are now ready to cal
culate the hilbert function of M. We have the following commutative 
diagram, where all the arrows are inclusions. The number denotes the 
codimension over k. In particular ct = dimk(M

i/'Mi+l) is the hilbert 
function of M. 

M—^-* Fk[t) 

f« \n 
M* Î - * Pk[t] 

-M3 L > fzk[t] 

Since Ml contains Fi+1k[t], dt is equal to the codimension of the image 
of M*/Mi+1 in F^t]/Fi+lk[t\. Thus dt = n - bt (bt as in Section 2. 
Recall that the image of G (A) in G (A) is the same as that of B). This 
yields the formulas 

Ci + d{ = di+1 + n or ct = di+1 — dt + n. 

Then 

Ci+i ~ ci = di+2 — 2di+i + di = —bi+2~\- 2bi+1 — bt. 

This is the negative second difference of the bf. Thus as long as the 
sequence {bf} is "concave upwards" we have a decreasing hilbert 
function. 

If r = 2, then bt = i + 1 (i ^ n — 1), and bt = n (i ^ n — 1). 
(Points in P1 are always in generic position.) Thus ct = bt — bi+x + n = 
n — 1 for i ^ n — 2, and ct = n for i ^ n — 1. Thus cf does not 
decrease, but if four or more points are identified, the embedding dimen
sion Ci is ^ 3, even though the tangent directions lie in a plane. This at 
first seemed surprising to me. 
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The simplest case of a hilbert function with a decrease appears to be 
r = 3, n = 10. Assume that the ten tangent directions are in generic 
position. Then using the above equations we can produce the following 
table: 

i bf dt ct 

1 3 7 7 
2 6 4 6 
3 10 0 10 

The values for i ^ 4 are the same as for i = 3. Here we have embedding 
dimension 7. 

If r = 3 and there are more lines the hilbert function decreases by 1 

for awhile since the second difference of the sequence bt = I 9 I is 

{1}. Then it increases to the multiplicity in one or two steps depending 

on whether or not n + 1 is a binomial coefficient I 9 I. Here are two 

examples illustrating this (with tangents in generic position): 

n = = 21 n -= 23 
i bt dt ct i bt d, ct 

1 3 18 18 1 3 20 20 
2 6 15 17 2 6 17 19 
3 10 11 16 3 10 13 18 
4 15 6 15 4 15 8 17 
5 21 0 21 5 21 2 21 
6 21 0 21 6 23 0 23 

For i ^ 7 the values are the same as for i = 6. 
If r ^ 4 the hilbert function decreases even more rapidly because the 

_ - J is a polynomial of degree 

r - 3 è 1. The final increase to the multiplicity n + 1 will be in one 
or two steps. Here are three examples with r = 4. (Tangents are in 
generic position.) 

n = 35 n = 37 n = 53 
i bt ct i hi Ci i bi C( 

1 4 29 1 4 31 1 4 47 
2 10 25 2 10 27 2 10 43 
3 20 20 3 20 22 3 20 38 
4 35 35 4 35 35 4 35 35 
5 35 35 5 37 37 5 53 53 
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For i ^ 6 the values are the same as for i = 5. The n = 53 example 
shows that the final increase can come in one step, even though 53 is 

not of the form 

The fact that bt = ct one step before the final stabilization in all the 
above examples is not an accident, but rather is a consequence of the 
formula cf = bt — bi+i + n and bi+i = n. 

At first glance these examples seem to contradict Theorem 3.3 of [2]. 
However here generic position means generic in the subspace of 
Homfc(M/M2, k) spanned by the tangent directions whereas in [2] 
generic position means generic in the (possibly larger) space Homk(M 
/M2, k). See Theorem 4 below. 

6. Further remarks. Let 

Ni = ker ( M ' / M * 1 -> F«*[/]/F'+1). 

The image of M*/Mi+1 has dimension bu so 

nt = dim*iV\ = ct — bi. 

From the above examples we see that n* can be quite large. Furthermore 
Ci — bi — n — bi+i so the sequence \rii) is strictly decreasing (until 0 is 
reached). Thus G(A ) is reduced if and only if ri\ — 0. This is equivalent to 

F2k[t) C\M = M2. 

But F2k[t] C M so »i = 0 is equivalent to F2k[t] = M2. This proves 

THEOREM 4. The following are equivalent {for A as defined in Section 3): 
(a) G (A) is reduced. 
(b) «i = 0. 
(c) M2 = F2k[t}. 
(d) b2 = n. 
(e) G(A) ^ J 3 . 
(f ) The embedding dimension equals the dimension of the space spanned 

by the tangent directions. 
(g) r(r + l ) / 2 ^ n and the tangent directions are in generic position 

in Prl. 

Here are a couple of examples to show that the isomorphism class of A 
depends on the tangent vectors themselves, and not just on their 
directions. Let 

A = { / € * W | / ( 0 ) = / ( l ) = / ( - l ) , 4 / ' ( 0 ) + / ' ( l ) + / ' ( - l ) = 0}. 

One can show that A = k[t* — t, t* — t2], so A is a plane curve. 

en 
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t = 0 4 

FIGURE 1. The curve X = I3 — t, Y = t4 — t2 and its tangent vectors at X = 0, 7 = 0. 

Now let 

A' = {/€*[*] l /U) = / ( - ! ) = / ( 0 ) , / ' (0) = / ' ( l ) + / ' ( - l ) } . 

One can show that 

A' = k[t*-t\ ( i 2 - | ) (*«-*) ,* (*»- / )«] . 

However topological considerations show that A' cannot be a plane 
curve (i.e., A' is not generated as a ^-algebra by two elements), at least 
if k = R. The tangent vectors of A' at / = — 1 , 0, 1 are as in figure 2. 

It is clear that one cannot draw a real plane curve with tangents at 
t = — 1, 0, 1 in the indicated directions, and no singular points except 
the origin. If k = C this topological argument does not seem to work, 
but A' still appears not to be a plane curve. 

Our basic construction can be used if some tangent directions are 
equal. For example 

A = {/G *W | /(1) = / ( - ! ) , / ' ( ! ) + / ' ( - ! ) = 0 } 

t = - 1 

FIGURE 2. 
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yields the tacnode A = k[t2, tb - 2t% + t]. If instead we try 

A' = {/€*[*] 1/(1) = / ( - l ) , / ' ( l ) = / ' ( - l ) } 

then A' cannot be a plane curve (at least if k = R) , by a topological 
argument similar to that given above. Finally if we repeat one of the 
columns of C then bt stays the same and the calculation in Section 5 
shows that ct is increased by one. Thus our method also gives non-
ordinary singularities with nonsingular branches and decreasing hilbert 
function. 
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