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Abstract: The problem of the survival of a single mutant in a haploid genetic population
when there exists selection is considered for a type of population model in which the
generations arj overlapping. The results are compared with the previous work of Fisher
and others for other models. The need is stressed for a solution of the same problem in
a diploid population with general phenotypic selection coefficients.

R. A. Fisher [3] has discussed the survival of a single mutant in an
infinite population of haploid individuals. If p0, plt p2, • • • are the prob-
abilities of a mutant gene having 0, 1, 2, • • • offspring and f(z) =
fio + Piz + Pzz2 + ' " * is *n e corresponding generating function, a well-
known theory due to H. W. Watson and others (see Feller [2]) shows
that the mutant will ultimately die out with unit probability if /'(I) ^ 1,
and will have a probability of survival of 1 — £ > 0 if /'(I) > 1, where £
is the unique non-unit positive root of the equation z = f(z). This solves the
problem for an infinite population.

R. A. Fisher has also given an approximate solution for a finite popula-
tion of 2n haploid individuals for which the generations do not overlap
and the mutant gene has a small effective selective advantage a. The
number of offspring in this model has a distribution which is Poissonian
to a good approximation, with a mean 1 -f- a, for the offspring of a mutant
type and unity for a non-mutant type. Fisher shows that the probability
of survival is then 2a (1 — exp — 4aw)~1 to a good approximation when
a% is small, and if a is made negative so that we have a selective disad-
vantage the same result holds. When a = 0 the probability is exactly (2n)~1.

In the present note we give an exact solution starting from any initial
number of mutants in a model in which the generations overlap. This model
was introduced for other purposes in a previous paper (Moran [6]). We

! suppose we have a population of 2n haploid individuals in which k0 are
1 initially of the mutant type a and the rest A-. The development of the

process takes place in continuous time and each individual has a life time
with a negative exponential distribution whose parameter depends only
on whether the individual is a or A. The state of the system at any time t
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is then defined by the number, k, of mutant individuals. When an in-
dividual dies it is immediately replaced by a new individual which is the
offspring of the population immediately before the death. We can introduce
selection into this model in two different ways.

In the first we assume that selection acts by varying the lifetime distribu-
tion of the haploid individuals. Suppose that each mutant individual of
type a has a lifetime T which is distributed in a negative exponential
distribution of the form

whilst the distribution of the non-mutant lifetime is similar with parameter
X2. Then a = (Xx — ^A^"1 may be regarded as the selective advantage,
positive or negative, of the mutant. When the number of mutants is k,
the probability of the death of a mutant in the time interval (t, t -f- dt)
is kAildt -f o{dt), whilst the probability of an A individual dying is
X2~

1{2n — k)dt + o(dt). Thus the probability of some death occurring is
{X^k + X2~

1(2n — k)}dt + o{dt), and given that such a death does occur,
the probability that it is the death of an a-individual is

X2k{X2k + lx{2n — k)}-\

The individual born as a replacement is chosen at random from the
gametic output of the previously existing generation and so the probability
that it is a is k(2n)-1, and that it is A is (2n — k)(2n)~1.

We may now consider the discrete Markov chain embedded in this
continuous process defined for those discrete instants of time at which a
birth-death event occurs. This chain has 2n + 1 states defined by the
integer k(k = 0, 1, • • • 2n) and transition probabilities fta from state i
to state / given by the formulae

Pk, k ~ 1 Pk, k-1 Pk, fc+1-

In the second method of introducing selection we suppose that all in-
dividuals have the same negative exponential lifetime distribution so that
when a death occurs the probability that it is the death of an a-individual
is k(2n)~1, and of a.nA individual (2n—k)(2n)~1. If the relative reproductive
powers of the two kinds of gamete have the ratio ^ju^1 the probability
of the birth of an a-individual is ixxk{jixk -\-/j,2{2n — &)}"1, and of an A indi-
vidual ju2(2n — kjlfak -f- (x%(2n — k)}~x. The transition probabilities of
the embedded Markov chain are then

Pk,k-i = l"2k(2n - k){2n)~1{f,1k + [X2{2n - k)}~K
Pk,k+i = Vik{2n - fy&nyifak + ^{2n -
Pk.k = 1 — pk> k-i — Pk, k+V
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We notice that in both this and the former case the ratio fiktk+1(fth, k-i)'1

is constant, being ^JU^1 and ^A^1 respectively. This suggests that we now
embed another chain in this one by considering only those jumps of the
process at which k changes its value. Writing n = ^(^ + X2)~

x or
Pii^i + fJ'2,)~1 w e thus get a process in which the transition probabilities are

71.

(1)

If we now start the process with an initial value k0 the probabilities of
ultimate absorption Po, P2n> in the two absorbing states (k = 0, 2n) will
be the same as in the original continuous process. Po and P2n are in fact
the probabilities of the mutant form not surviving, and surviving, respective-
ly. When n > \, a has a selective advantage and when n < \, a selective
disadvantage.

The process is now identical with that of the gambler's ruin problem
(Feller [2]) from which we see that \i n ^ \ the probability of a not sur-
viving is

(l-7t\2n (l-n\k°

M P
 [~> ~ [ ^ r ) - ! P

V-J ^ 0 — / van ~ * "^n
71

where k0 is the initial value of k. When n = \ (^1=^2 o r /"i = ^2) ^ ^s

known that

(3) P2 n = ko(2n)~i = 1 - Po.

(3) also follows at once when we observe that E(kt+1 — kt\kt) = 0 and so

k0 = E(kt) = (2n)P2n.

In fact this type of argument on the moments may be used to solve the
gambler's ruin problem without using difference equations. Let X be a
real number and consider

E(X**» - Xk*\kt) = (TIX + (1 - 7z)X~1 - l)Xk'(kt ^ 0, 2n)

= 0, (kt = 0, 1)

Thus if we write X = (1 — TIJTI'1 we find that
h* - Xk*\kt) = 0

whatever the value of kt. However, ultimately kt will be either 0 or 2«
since these are the only two absorbing states and so
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and therefore, since P2n = 1 — Po,

po = (X*n - Xk°)/(X2n - 1)

which is the above solution. In terms of the selective advantage a we have

and therefore

1 - (1 + a)2n-*°

^ ' ° ~ ~1 — (1 + a ) 2 "

_ J l + a)2"-fcQ - (1 + a ) 2 "
W 2« 1 - (1 + a)2*

and for a = 0(n~1), P2n is given approximately for n large by

or

(6) a&0(l - «

when <x£0 is small and positive. In particular this is so if k0 — 1 when
we get

which is of the same form as Fisher's result but with his a multiplied by \.
If we now keep a fixed and let n tend to infinity in (4) and (5) we find

Po = 1 for a < 0 and Po = (1 + a)"*0 for a > 0. This result can be
checked by considering the non-unit positive root of the equation z = f(z)
where f{z) is the generating function of the limiting probability distribu-
tion of the number of offspring generated by a single individual.

To obtain this consider the process as defined for discrete time intervals
at the end of each of which a birth death event occurs, and suppose that the
population size In is large compared with the number of mutants. Then the
probability of a particular mutant gene having a life time exactly equal
to t(t = 1, 2, • • •) is (1 — A)A*-1, where

A = 1— AsfinXj)-1

in the first model of selection. If it does survive for exactly t units of time
and then dies it has t chances of being a parent, each with probability
(2M)"1 and the total probability generating function of the number of its
offspring is therefore

and letting 2n tend to infinity this becomes
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= • (1+ (l +

The positive root of f(z) = z not equal to unity is then (1 + a)"1

so the probability of a single mutant not surviving is (1 + a)"1. Thus the
probability of k0 initial mutants not surviving is equal to (1 + a)"*0 as
before.

It has long been known that the form of the distribution of the number
of offspring has an effect on the rate of progress to homozygosity in the
absence of mutation and on the probability of survival of a mutant (Hal-
dane [5], Fisher [4]). The above theory provides an exact solution for the
latter problem in a special case but unfortunately this method of embedding
one Markov chain in another does not provide any method of determining
the asymptotic rate of progress to homozygosity when there are selective
effects, a problem which has been discussed by Wright and Kerr[7] (see
also Crow and Kimura [1]).

It would be of considerable importance to obtain solutions for the prob-
ability of survival of a mutant when the individuals concerned are diploid
but this appears to be very difficult in general. Consider first the case where
the mutant has no selective advantage or disadvantage. Then for random
mating and most types of non-random mating it is easy to obtain thq
probability of survival in a finite population. If the mutant is dominant
and selectively advantageous or disadvantageous, and the population is
very large, it would seem that the above theory and Fisher's theory hold
in their respective cases. If the mutant is not dominant these theories
should hold for large population in which the issue of survival or not is
decided before the number of mutants is large enough to give an appreciable
probability of their being any diploid homozygous mutants. If finally the
mutant is recessive and the population large it would appear that the prob-
ability of survival would be close to that obtained by supposing no selection
since the number of mutants would have to be large before dominants ap-
peared and selection operated. Phenotypic assortative mating would not
change this but inbreeding based on family relationships would have a
powerful effect although one difficult to treat mathematically.

I am indebted to to Mr. G. A. Watterson for some helpful criticism.
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