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Kiguradze-type Oscillation Theorems for
Second Order Superlinear Dynamic
Equations on Time Scales

Jia Baoguo, Lynn Erbe, and Allan Peterson

Abstract. Consider the second order superlinear dynamic equation

(∗) x∆∆(t) + p(t) f (x(σ(t))) = 0

where p ∈ C(T, R), T is a time scale, f : R → R is continuously differentiable and satisfies f ′(x) > 0,

and x f (x) > 0 for x 6= 0. Furthermore, f (x) also satisfies a superlinear condition, which includes

the nonlinear function f (x) = xα with α > 1, commonly known as the Emden–Fowler case. Here

the coefficient function p(t) is allowed to be negative for arbitrarily large values of t . In addition to

extending the result of Kiguradze for (∗) in the real case T = R, we obtain analogues in the difference

equation and q-difference equation cases.

1 Introduction

Consider the second order superlinear dynamic equation

(1.1) x∆∆(t) + p(t) f (xσ(t)) = 0,

where p ∈ C(T,R), T is a time scale, f : R → R is continuously differentiable and

satisfies f ′(x) > 0, and x f (x) > 0 for x 6= 0. The prototype of equation (1.1) is the

so-called superlinear Emden–Fowler equation

x∆∆(t) + p(t)xα(σ(t)) = 0,

where α > 1 is the quotient of odd positive integers. Here we are interested in the

oscillation of solutions of (1.1) when f (x) satisfies, in addition, the superlinearity

conditions

(1.2) 0 <

∫

∞

ǫ

dx

f (x)
,

∫

−ǫ

−∞

dx

f (x)
< ∞, for all ǫ > 0.

Examples of f (x) satisfying (1.2), which are not of Emden–Fowler type, are

f (x) =

n
∑

i=1

aix
αi ,
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Kiguradze-type Oscillation Theorems 581

where the constants ai > 0, 1 ≤ i ≤ n, and the αi are all quotients of odd positive

integers, with 0 < α1 < α2 < · · · < αn, and αn > 1.

When T = R, the dynamic equation (1.1) is the second order superlinear differ-

ential equation

(1.3) x ′ ′(t) + p(t) f (x(t)) = 0.

When p(t) is nonnegative, Atkinson [1] established a necessary and sufficient con-

dition for the oscillation of (1.3), which is

(1.4)

∫

∞

t p(t) dt = ∞.

When p(t) is allowed to take on negative values, Kiguradze [10] proved that (1.4) is

sufficient for all solutions of the differential equation (1.3) to be oscillatory for the

same case considered by Atkinson.

When T = Z0, the dynamic equation (1.1) is the second order superlinear differ-

ence equation

(1.5) ∆
2x(n) + p(n)xα(n + 1) = 0.

When α > 1 and p(n) is nonnegative, J. W. Hooker and W. T. Patula [8, Theo-

rem 4.1], and A. Mingarelli [11], respectively, proved that

(1.6)

∞
∑

np(n) = ∞

is a necessary and sufficient condition for the oscillation of all solutions of the differ-

ence equation (1.5) (also see [9, Theorem 6.23] for a related result).

In this paper, we obtain Kiguradze-type oscillation theorems (Theorems 2.2, 2.5,

and 2.3) for (1.1). In particular, for the case when T = R, and for f satisfying (1.2),

condition (1.4) implies that all solutions of (1.3) are oscillatory, which is a substantial

improvement of Kiguradze’s result. We also note that the proof is essentially different

from that of Kiguradze. As a special case, we get that with no sign assumption on

p(n), the condition (1.6) is sufficient for the oscillation of the difference equation

(1.5). To be precise, we prove that the superlinear difference equation

∆
2x(n) + p(n)xα(n + 1) = 0,

is oscillatory, if there exists a real number β, 0 < β ≤ 1 such that
∑

∞

n=1 nβ p(n) = ∞.

Moreover, it follows from our results that all solutions of the superlinear q-difference

equation x∆∆(t)+ p(t)xα(qt) = 0, where t ∈ qN0 , q > 1, are oscillatory, if there exists

a real number β, 0 < β ≤ 1 such that

∫

∞

1

tβ p(t)∆t = ∞.
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In particular, under the assumption (1.2), we can show that the difference equation

∆
2x(n) +

[ a

nb(n + 1)
+

c(−1)n

nb

]

f (x(n + 1)) = 0,

for a > 0, 0 < b ≤ 1, is oscillatory. In [4], this result is shown to be true only for

0 < b < 1 and 0 < bc < a < c(1 − b), since the condition (A), that is, the condition

lim sup
t→∞

∫ t

T

p(s)∆s ≥ 0

and not identically zero for all sufficiently large T, was necessary in the proof.

For completeness, (see [5,6] for elementary results for the time scale calculus), we

recall some basic results for dynamic equations and the calculus on time scales. Let

T be a time scale, i.e., a closed nonempty subset of R, with sup T = ∞. The forward

jump operator is defined by σ(t) = inf{s ∈ T : s > t}, and the backward jump

operator is defined by ρ(t) = sup{s ∈ T : s < t}, where sup∅ = inf T, where ∅

denotes the empty set. If σ(t) > t , we say t is right-scattered, while if ρ(t) < t , we say

t is left-scattered. If σ(t) = t , we say t is right-dense, while if ρ(t) = t and t 6= inf T,

we say t is left-dense. Given a time scale interval [c, d]T := {t ∈ T : c ≤ t ≤ d}
in T the notation [c, d]κT denotes the interval [c, d]T in case ρ(d) = d and denotes

the interval [c, d)T in case ρ(d) < d. The graininess function µ for a time scale T

is defined by µ(t) = σ(t) − t , and for any function f : T → R the notation f σ(t)

denotes f (σ(t)). We say that x : T → R is differentiable at t ∈ T provided

x∆(t) := lim
s→t

x(t) − x(s)

t − s
,

exists when σ(t) = t (here by s → t it is understood that s approaches t in the time

scale) and when x is continuous at t and σ(t) > t

x∆(t) :=
x(σ(t)) − x(t)

µ(t)
.

Note that if T = R , then the delta derivative is just the standard derivative, and when

T = Z the delta derivative is just the forward difference operator. Hence our results

contain the discrete and continuous cases as special cases and generalize these results

to arbitrary time scales.

2 Main Theorem

In the case when T is such that µ(t) is not eventually identically zero, we define the set

of all right-scattered points by T̂ := {t ∈ T : µ(t) > 0} and note that T̂ is necessarily

countable. We let χ denote the characteristic function of T̂. The following condition,

which will be needed later, imposes a lower bound on the graininess function µ(t),

for t ∈ T̂. More precisely, we introduce the following (see [7]).
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Condition (C) We say that T satisfies condition (C) if there is an M > 0 such that

χ(t) ≤ Mµ(t), t ∈ T.

We note that if T satisfies condition (C), then the subset Ť of T defined by

Ť = {t ∈ T | t > 0 is right-scattered or left-scattered}

is also necessarily countable and, of course, T̂ ⊂ Ť. So we can suppose that

Ť = {ti ∈ T | 0 < t1 < t2 < · · · < tn < · · · }.

We will need the following second mean value theorem (see [6, Theorem 5.45]).

Lemma 2.1 Let h be a bounded function that is integrable on [a, b]T. Let mH and

MH be the infimum and supremum, respectively, of the function H(t) :=
∫ t

a
h(s)∆s on

[a, b]T. Suppose that g is nonincreasing with g(t) ≥ 0 on [a, b]T. Then there is some

number Λ with mH ≤ Λ ≤ MH such that

∫ b

a

h(t)g(t)∆t = g(a)Λ.

To clarify the arguments below, we let A := {n ∈ N : (tn−1, tn) ⊂ T} so that we

can write T = Ť ∪ [
⋃

n∈A(tn−1, tn)].

Theorem 2.2 Assume that T satisfies condition (C) and that f satisfies (1.2). Let

Ť = {ti ∈ T| 0 < t1 < t2 < · · · < tn < · · · }.

If there exists a real number β, 0 < β ≤ 1 such that
∫

∞

t1

(σ(t))β p(t)∆t = ∞,

then (1.1) is oscillatory.

Proof Assume that (1.1) is nonoscillatory. Then without loss of generality there is a

solution x(t) of (1.1) and a T ∈ T with x(t) > 0, for all t ∈ [T,∞)T. Multiplying

(1.1) by (σ(t))β

f (x(σ(t)))
, integrating from T to t , and using integration by parts [5, Theo-

rem 1.77(v)] on the first term we get

tβx∆(t)

f (x(t))
−

Tβx∆(T)

f (x(T))
−

∫ t

T

( sβ

f (x(s))

)∆s

x∆(s)∆s +

∫ t

T

(σ(s))β p(s)∆s = 0.

Then using the quotient rule [5, Theorem 1.20] and the Pötzsche chain rule [5, The-

orem 1.90], we get

(2.1)
tβx∆(t)

f (x(t))
−

Tβx∆(T)

f (x(T))
−

∫ t

T

(sβ)∆s x∆(s)

f (x(σ(s)))
∆s,

+

∫ t

T

sβ
∫ 1

0
f ′(xh(s)) dh[x∆(s)]2

f (x(s)) f (x(σ(s)))
∆s +

∫ t

T

(σ(s))β p(s)∆s = 0,
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where xh(t) = x(t) + hµ(t)x∆(t) = (1 − h)x(t) + hx(σ(t)) > 0.

Since 0 < β ≤ 1, one can use the Pötzsche chain rule to show that (tβ)∆ is

nonincreasing. Using the second mean value theorem (Lemma 2.1) we get that for

each t ∈ [T,∞)T

(2.2)

∫ t

T

(sβ)∆x∆(s)

f (x(σ(s)))
∆s = (sβ)∆|s=TΛ(t),

where mx ≤ Λ(t) ≤ Mx, and where mx and Mx denote the infimum and supremum,

respectively, of the function
∫ s

T
x∆(τ )

f (x(σ(τ )))
∆τ for s ∈ [T, t]T.

Let F(x) :=
∫

∞

x
dv

f (v)
. In the following, we will obtain an estimate for Mx, i.e., an

upper bound for the function
∫ t

T
x∆(s)

f (x(σ(s)))
∆s.

Assume that t = ti−1 < ti = σ(t). Then

(2.3)

∫ σ(t)

t

x∆(s)

f (x(σ(s)))
∆s =

x∆(t)µ(t)

f (x(σ(t)))
=

x(σ(t)) − x(t)

f (x(σ(t)))
.

We consider the two possible cases:

(i) x(t) ≤ x(σ(t)),

(ii) x(t) > x(σ(t)).

First, if x(t) ≤ x(σ(t)), we have that

(2.4)
x(σ(t)) − x(t)

f (x(σ(t)))
≤

∫ x(σ(t))

x(t)

1

f (v)
dv = F(x(t)) − F(x(σ(t))),

since f is increasing. On the other hand, if x(t) > x(σ(t)), then

x(t) − x(σ(t))

f
(

x(σ(t))
) ≥

∫ x(t)

x(σ(t))

1

f (v)
ds = F(x(σ(t))) − F(x(t)),

which implies that

(2.5)
x(σ(t)) − x(t)

f (x(σ(t)))
≤ F(x(t)) − F(x(σ(t))).

Hence, whenever ti−1 = t < σ(t) = ti , we have from (2.3) and (2.4) in the first case

and (2.3) and (2.5) in the second case, that

(2.6)

∫ ti

ti−1

x∆(s)

f (x(σ(s)))
∆s ≤ F(x(ti−1)) − F(x(ti)).

If the real interval [ti−1, ti] ⊂ T, then

(2.7)

∫ ti

ti−1

x∆(s)

f (x(s))
∆s =

∫ x(ti )

x(ti−1)

1

f (v)
dv = F(x(ti−1)) − F(x(ti)),
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and so (2.6) also holds in this case.

Note that since T satisfies condition (C), we have from (2.6), (2.7), and the addi-

tivity of the integral that for t ∈ [T,∞)T

∫ t

T

x∆(s)

f (x(σ(s)))
∆s ≤ F(x(T)) − F(x(t)) ≤ F(x(T)).

So

(2.8) Λ(t) ≤ Mx ≤ F(x(T))

for t ∈ [T,∞)T. From (2.1), (2.2), and (2.8), we have that

tβx∆(t)

f (x(t))
−

Tβx∆(T)

f (x(T))
− (sβ)∆|s=TF(x(T))

+

∫ t

T

sβ
∫ 1

0
f ′(xh(s)) dh[x∆(s)]2

f (x(s)) f (x(σ(s)))
∆s +

∫ t

T

(σ(s))β p(s)∆s ≤ 0.

Since
∫

∞

T
(σ(s))β p(s)∆s = ∞, there exists a sufficiently large T1 > T such that for

t ≥ T1

(2.9)
tβx∆(t)

f (x(t))
+

∫ t

T1

sβ
∫ 1

0
f ′(xh(s))dh[x∆(s)]2

f (x(s)) f (x(σ(s)))
∆s

≤
tβx∆(t)

f (x(t))
+

∫ t

T

sβ
∫ 1

0
f ′(xh(s)) dh[x∆(s)]2

f (x(s)) f (x(σ(s)))
∆s

≤ −

∫ t

T

(σ(s))β p(s)∆s +
Tβx∆(T)

f (x(T))
+ (sβ)∆|s=TF(x(T))

< −1.

In particular, we have x∆(t) < 0, for t ≥ T1. Therefore, x(t) is strictly decreasing.

Assume that t = ti−1 < ti = σ(t), i.e., ti−1, ti ∈ Ť. Then x(σ(t)) < x(t), so

(2.10)

∫ 1

0

f ′(xh(s)) dh =

∫ 1

0

f ′((1 − h)x(s) + h(x(σ(s)))) dh

=
f ((1 − h)x(s) + h(x(σ(s))))|10

x(σ(s)) − x(s)
=

f (x(σ(s))) − f (x(s))

x(σ(s)) − x(s)
.

If the real interval [ti−1, ti] ⊂ T, then for s ∈ [ti−1, ti] we have

(2.11)

∫ 1

0

f ′(xh(s)) dh = f ′(x(s)).
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Let

(2.12) y(t) := 1 +

∫ t

T1

sβ
∫ 1

0
f ′(xh(s))dh[x∆(s)]2

f (x(s)) f (x(σ(s)))
∆s.

Hence from (2.9), we get that

(2.13) −
tβx∆(t)

f (x(t))
> y(t).

From (2.12) and (2.13), we get that

(2.14) y∆(t) =
tβ

∫ 1

0
f ′(xh(t))dh[x∆(t)]2

f (x(t)) f (x(σ(t)))
> y(t)

∫ 1

0
f ′(xh(t))dh[−x∆(t)]

f (x(σ(t)))
.

Assume that t = ti−1 < ti = σ(t). From (2.14) and (2.10), we get that

y(σ(t)) − y(t)

y(t)(σ(t) − t)
>

f (x(σ(t))) − f (x(t))

x(σ(t)) − x(t)
·

x(t) − x(σ(t))

f (x(σ(t)))[σ(t) − t]
.

So
y(σ(t))

y(t)
>

f (x(t))

f (x(σ(t)))
.

That is

(2.15)
y(ti)

y(ti−1)
>

f (x(ti−1))

f (x(ti))
.

If the real interval [ti−1, ti] ⊂ T, then for t ∈ (ti−1, ti] it follows from (2.14) and

(2.11) that
y ′(t)

y(t)
>

f ′(x(t))[−x ′(t)]

f (x(t))
,

that is (ln y(t)) ′ > −(ln f (x(t))) ′. Integrating from ti−1 to t , we get that

(2.16)
y(t)

y(ti−1)
>

f (x(ti−1))

f (x(t))
, t ∈ (ti−1, ti].

Let T1 = tn0
and let t ∈ (T1,∞)T. Then there is an n > n0 such that t ∈ (tn−1, tn]T.

From (2.16) and (2.15), we get that

y(t)

y(tn−1)
>

f (x(tn−1))

f (x(t))
,

y(tn−1)

y(tn−2)
>

f (x(tn−2))

f (x(tn−1))
, . . . ,

y(tn0+1)

y(tn0
)

>
f (x(tn0

))

f (x(tn0+1))
.

Multiplying, we get that
y(t)

y(tn0
)
>

f (x(tn0
))

f (x(t))
.
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Using (2.13) again, we get

−
tβx∆(t)

f (x(t))
> y(t) >

y(tn0
) f (x(tn0

))

f (x(t))
.

If we set L := y(tn0
) f (x(tn0

)), we get x∆(t) < − L
tβ

. Integrating from T1 to t and using

[6, Theorem 5.68], we get that

x(t) − x(T1) < −

∫ t

T1

L

sβ
∆s −→ −∞, as t −→ ∞.

Therefore x(t) < 0, for large t , which is a contradiction. Thus equation (1.1) is

oscillatory.

When T = R, the following corollary is an extension of Kiguradze’s theorem (the

term xα, α > 1, is replaced by f satisfying (1.2)). The proof, as noted earlier, is

different from that of Kiguradze [10].

Corollary 2.3 Assume f (x) satisfies (1.2). If there exists a real number β, 0 < β ≤ 1

such that
∫

∞

1
tβ p(t)dt = ∞, then (1.3) is oscillatory.

As a consequence of Theorem 2.2, it follows that (1.5) is oscillatory if

∞
∑

(n + 1)β p(n) = ∞

for some 0 < β ≤ 1. We would like to show that in Theorem 2.2, the assump-

tion that
∫

∞

t1
(σ(t))β p(t)∆t = ∞ can be replaced by

∫

∞

t1
tβ p(t)∆t = ∞ (where

0 < β ≤ 1). This would then imply, in particular, that the condition (1.6) im-

plies oscillation of all solutions of (1.5), which is the desired improvement of the

Hooker–Patula–Mingarelli result mentioned earlier. In order to extend Theorem 2.2,

we will need to restrict our attention to isolated time scales. That is, we assume that

ρ(t) < t < σ(t) for all t > inf T. We shall also need the additional assumption that

(ρβ(t))∆ is nonincreasing for 0 < β ≤ 1. Clearly, if T = Z0 or T = qN0 , then it is easy

to see that (ρβ(t))∆ is nonincreasing for 0 < β ≤ 1. However, the following example

shows that this need not hold for arbitrary isolated time scales.

Example 2.4 Let T =
⋃

∞

k=1{4k + 1, 4k + 2, 4k + 3}. Then on T we can show that

(2.17) (ρβ(t))∆|t=4k−1 < (ρβ(t))∆|t=4k+1.

To see this, we claim that

ρβ(4k + 1) − ρβ(4k − 1)

(4k + 1) − (4k − 1)
<

ρβ(4k + 2) − ρβ(4k + 1)

(4k + 2) − (4k + 1)
.

This is equivalent to

(4k − 1)β − (4k − 2)β

2
< (4k + 1)β − (4k − 1)β ,
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which implies

(2.18)
(

1 −
1

4k

) β

−
(

1 −
2

4k

) β

< 2
[(

1 +
1

4k

) β

−
(

1 −
1

4k

) β]

.

By the Taylor expansion, it is easy to see that the left side of (2.18) is β
4k

+o( 1
k
), whereas

the right side is β
k

+ o( 1
k
). Therefore, (2.17) holds for large k.

We now state and prove the following theorem.

Theorem 2.5 Assume that T is an isolated time scale which satisfies condition (C), and

without loss of generality, assume that T = {ti}
∞

i=1 where 0 < t1 < t2 < · · · < tn < . . .

with tn → ∞. Suppose further that f satisfies (1.2). If there exists a real number β,

0 < β ≤ 1 such that the delta derivative (ρβ(t))∆ is nonincreasing and

∫

∞

t1

tβ p(t)∆t = ∞,

then (1.1) is oscillatory.

Proof Assume that (1.1) is nonoscillatory. Then without loss of generality, there is

a solution x(t) of (1.1) and a T ∈ T with x(t) > 0, for all t ∈ [T,∞)T. Multiplying

(1.1) by tβ

f (x(σ(t)))
=

(ρ(σ(t)))β

f (x(σ(t)))
, integrating from T to t , and using integration by parts

[5, Theorem 1.77 (v)] on the first term we get

ρβ(t)x∆(t)

f (x(t))
−

ρβ(T)x∆(T)

f (x(T))
−

∫ t

T

( ρβ(s)

f (x(s))

)∆s

x∆(s)∆s +

∫ t

T

sβ p(s)∆s = 0.

Using the quotient rule [5, Theorem 1.20] and the Pötzsche chain rule [5, Theo-

rem 1.90], we get

ρβ(t)x∆(t)

f (x(t))
−

ρβ(T)x∆(T)

f (x(T))
−

∫ t

T

(ρβ(s))∆s x∆(s)

f (x(σ(s)))
∆s,

+

∫ t

T

ρβ(s)
∫ 1

0
f ′(xh(s))dh[x∆(s)]2

f (x(s)) f (x(σ(s)))
∆s +

∫ t

T

sβ p(s)∆s = 0,

where xh(t) = x(t) + hµ(t)x∆(t) = (1 − h)x(t) + hx(σ(t)) > 0.

By assumption, we have that (ρβ(t))∆ is nonincreasing. Using the second mean

value theorem (Lemma 2.1) we get that

∫ t

T

(ρβ(s))∆x∆(s)

f (x(σ(s)))
= (ρβ(s))∆|s=TΛ(t),

where mx ≤ Λ(t) ≤ Mx, and where mx and Mx denote the infimum and supremum,

respectively, of the function
∫ s

T
x∆(τ )

f (x(σ(τ )))
∆τ on [T, t]T.
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As in Theorem 2.2 we have that

ρβ(t)x∆(t)

f (x(t))
−

ρβ(T)x∆(T)

f (x(T))
− (ρβ(s))∆|s=TF(x(T))

+

∫ t

T

ρβ(s)
∫ 1

0
f ′(xh(s))dh[x∆(s)]2

f (x(s)) f (x(σ(s)))
∆s +

∫ t

T

sβ p(s)∆s ≤ 0.

Since
∫

∞

T
sβ p(s)∆s = ∞, there exists T1 > T, sufficiently large, such that for t ≥ T1

we have

(2.19)
ρβ(t)x∆(t)

f (x(t))
+

∫ t

T1

ρβ(s)
∫ 1

0
f ′(xh(s)dh[x∆(s)]2

f (x(s)) f (x(σ(s)))
∆s

≤
ρβ(t)x∆(t)

f (x(t))
+

∫ t

T

ρβ(s)
∫ 1

0
f ′(xh(s))dh[x∆(s)]2

f (x(s)) f (x(σ(s)))
∆s

≤ −

∫ t

T

sβ p(s)∆s +
ρβ(T)x∆(T)

f (x(T))
+ (ρβ(s))∆|s=TF(x(T))

< −1.

In particular, we get that x∆(t) < 0, for t ≥ T1. Therefore, x(t) is strictly decreasing.

Similar to the proof of Theorem 2.2 we let

(2.20) y(t) := 1 +

∫ t

T1

ρβ(s)
∫ 1

0
f ′(xh(s))dh[x∆(s)]2

f (x(s)) f (x(σ(s)))
∆s.

Then from (2.19), we get that

(2.21) −
ρβ(t)x∆(t)

f (x(t))
> y(t).

From (2.20) and (2.21), we get that

y∆(t) =
ρβ(t)

∫ 1

0
f ′(xh(t))dh[x∆(t)]2

f (x(t)) f (x(σ(t)))
> y(t)

∫ 1

0
f ′(xh(t))dh[−x∆(t)]

f (x(σ(t)))
.

Again proceeding as in the proof of Theorem 2.2 we get, using (2.21),

−
ρβ(t)x∆(t)

f (x(t))
> y(t) >

y(tn0
) f (x(tn0

))

f (x(t))
,

where n0 is chosen so that tn0
= T1. If we set L := y(tn0

) f (x(tn0
)) and note that

ρ(t) < t , we get

x∆(t) < −
L

ρβ(t)
≤ −

L

tβ
.
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Integrating from T1 to t and using [6, Theorem 5.68], we get that

x(t) − x(T1) < −

∫ t

T1

L

sβ
∆s → −∞, as t → ∞.

Therefore x(t) < 0, for large t , which is a contradiction. Thus all solutions of equa-

tion (1.1) are oscillatory.

Remark 2.6 Under the assumptions of Theorem 2.5, note that the function f (t) =

tβ is concave. So when T = Z0, by Jensen’s inequality [5, Theorem 6.17], we have

f (n + 1) + f (n − 1)

2
≤ f (n).

This means (n + 1)β − nβ ≤ nβ − (n − 1)β , that is, (ρβ(t))∆ is nonincreasing.

When T = qZ0 , q > 1, it is easy to see that (ρβ(t))∆ is also nonincreasing.

So we can obtain the following corollaries. Corollary 2.7 shows that with no sign

assumption on p(n), the condition
∑

∞
np(n) = ∞ is sufficient for the oscillation

of the difference equation (1.5).

Corollary 2.7 Assume T = Z and there exists a real number β, 0 < β ≤ 1 such that
∑

nβ p(n) = ∞, then (1.5) is oscillatory.

Corollary 2.8 Assume T = qZ0 , q > 1 and there exists β, 0 < β ≤ 1 such that

∫

∞

1

tβ p(t)∆t = ∞.

Then the q-difference equation x∆∆(t) + p(t)xα(qt) = 0, is oscillatory.

3 Examples

Example 3.1 Consider the case when T is the real interval [1,∞) and suppose

f : R → R is continuously differentiable and satisfies the nonlinearity condition (1.2)

(as well as the conditions f ′(x) > 0 and x f (x) > 0, x 6= 0). In [4, Example 4.4] it

was shown that all solutions of (1.1) are oscillatory for the case when

p(t) =
λ

t1+α
+
β sin t

tα

and where λ, α, β are all positive numbers satisfying βα < λ, 0 < α < 1.

If we apply Corollary 2.3, we conclude that
∫

∞
tαp(t) dt = ∞. That is we have

oscillation for all λ > 0 and for all 0 < α ≤ 1, which improves the results of [4].

Example 3.2 Consider the difference equation

(3.1) ∆
2x(n) +

[ a

nb(n + 1)
+

c(−1)n

nb

]

f (x(n + 1)) = 0
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for a > 0, 0 < b ≤ 1. Under the assumption of (1.2), the equation (3.1) is oscillatory,

since
∞
∑

n=1

nb

[

a

nb(n + 1)
+

c(−1)n

nb

]

= ∞.

As observed earlier, the result in [4] gives oscillation for only the cases 0 < b < 1 and

0 < bc < a < c(1 − b), since condition (A) was necessary in the proof.

Example 3.3 Consider the difference equation

(3.2) ∆
2x(n) + p(n)xα(n + 1) = 0.

Letting p(n) =
a

n2 + b(−1)n

n
, a > 0, b 6= 0, we see that p(n) changes sign and

∑

∞

n=1 np(n) = ∞. By Corollary 2.7, equation (3.2) is oscillatory.

Next, if we let p(n) = (1 − γ)n−1−γ + 2t−γ(−1)n, 0 < γ < 1, then

N
∑

n=1

nγ p(n) =

N
∑

n=1

[(1 − γ)n−1 − 2(−1)n] → ∞.

Therefore, if we take β = γ, then by Corollary 2.7, equation (3.2) is oscillatory.

Notice if we take β = 1, the assumption of Corollary 2.7 will not be satisfied , since

N
∑

n=1

np(n) =

N
∑

n=1

[(1 − γ)n−γ − 2n1−γ(−1)n],

and so

lim sup
N→∞

N
∑

n=1

np(n) = ∞, lim inf
N→∞

N
∑

n=1

np(n) = −∞.

Example 3.4 Consider the q-difference equation

(3.3) x∆∆(t) + p(t)xα(qt) = 0.

Let p(t) = 1+2(−1)n

t2 , β = 1. Then

∫

∞

1

t p(t)∆t =

∞
∑

1

(1 + 2(−1)n)(q − 1) = ∞.

By Corollary 2.8, equation (3.3) is oscillatory.
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