Kiguradze-type Oscillation Theorems for Second Order Superlinear Dynamic Equations on Time Scales

Jia Baoguo, Lynn Erbe, and Allan Peterson

Abstract. Consider the second order superlinear dynamic equation
(*)

$$
x^{\Delta \Delta}(t)+p(t) f(x(\sigma(t)))=0
$$

where $p \in C(\mathbb{T}, \mathbb{R}), \mathbb{T}$ is a time scale, $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable and satisfies $f^{\prime}(x)>0$, and $x f(x)>0$ for $x \neq 0$. Furthermore, $f(x)$ also satisfies a superlinear condition, which includes the nonlinear function $f(x)=x^{\alpha}$ with $\alpha>1$, commonly known as the Emden-Fowler case. Here the coefficient function $p(t)$ is allowed to be negative for arbitrarily large values of t. In addition to extending the result of Kiguradze for $(*)$ in the real case $\mathbb{T}=\mathbb{R}$, we obtain analogues in the difference equation and q-difference equation cases.

1 Introduction

Consider the second order superlinear dynamic equation

$$
\begin{equation*}
x^{\Delta \Delta}(t)+p(t) f\left(x^{\sigma}(t)\right)=0 \tag{1.1}
\end{equation*}
$$

where $p \in C(\mathbb{T}, \mathbb{R})$, \mathbb{T} is a time scale, $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable and satisfies $f^{\prime}(x)>0$, and $x f(x)>0$ for $x \neq 0$. The prototype of equation (1.1) is the so-called superlinear Emden-Fowler equation

$$
x^{\Delta \Delta}(t)+p(t) x^{\alpha}(\sigma(t))=0
$$

where $\alpha>1$ is the quotient of odd positive integers. Here we are interested in the oscillation of solutions of (1.1) when $f(x)$ satisfies, in addition, the superlinearity conditions

$$
\begin{equation*}
0<\int_{\epsilon}^{\infty} \frac{d x}{f(x)}, \quad \int_{-\infty}^{-\epsilon} \frac{d x}{f(x)}<\infty, \quad \text { for all } \epsilon>0 \tag{1.2}
\end{equation*}
$$

Examples of $f(x)$ satisfying (1.2), which are not of Emden-Fowler type, are

$$
f(x)=\sum_{i=1}^{n} a_{i} x^{\alpha_{i}}
$$

[^0]where the constants $a_{i}>0,1 \leq i \leq n$, and the α_{i} are all quotients of odd positive integers, with $0<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}$, and $\alpha_{n}>1$.

When $\mathbb{T}=\mathbb{R}$, the dynamic equation (1.1) is the second order superlinear differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)+p(t) f(x(t))=0 . \tag{1.3}
\end{equation*}
$$

When $p(t)$ is nonnegative, Atkinson [1] established a necessary and sufficient condition for the oscillation of (1.3), which is

$$
\begin{equation*}
\int^{\infty} t p(t) d t=\infty \tag{1.4}
\end{equation*}
$$

When $p(t)$ is allowed to take on negative values, Kiguradze [10] proved that (1.4) is sufficient for all solutions of the differential equation (1.3) to be oscillatory for the same case considered by Atkinson.

When $T=\mathbb{Z}_{0}$, the dynamic equation (1.1) is the second order superlinear difference equation

$$
\begin{equation*}
\Delta^{2} x(n)+p(n) x^{\alpha}(n+1)=0 . \tag{1.5}
\end{equation*}
$$

When $\alpha>1$ and $p(n)$ is nonnegative, J. W. Hooker and W. T. Patula [8, Theorem 4.1], and A. Mingarelli [11], respectively, proved that

$$
\begin{equation*}
\sum^{\infty} n p(n)=\infty \tag{1.6}
\end{equation*}
$$

is a necessary and sufficient condition for the oscillation of all solutions of the difference equation (1.5) (also see [9, Theorem 6.23] for a related result).

In this paper, we obtain Kiguradze-type oscillation theorems (Theorems 2.2, 2.5, and 2.3) for (1.1). In particular, for the case when $\mathbb{T}=\mathbb{R}$, and for f satisfying (1.2), condition (1.4) implies that all solutions of (1.3) are oscillatory, which is a substantial improvement of Kiguradze's result. We also note that the proof is essentially different from that of Kiguradze. As a special case, we get that with no sign assumption on $p(n)$, the condition (1.6) is sufficient for the oscillation of the difference equation (1.5). To be precise, we prove that the superlinear difference equation

$$
\Delta^{2} x(n)+p(n) x^{\alpha}(n+1)=0
$$

is oscillatory, if there exists a real number $\beta, 0<\beta \leq 1$ such that $\sum_{n=1}^{\infty} n^{\beta} p(n)=\infty$. Moreover, it follows from our results that all solutions of the superlinear q-difference equation $x^{\Delta \Delta}(t)+p(t) x^{\alpha}(q t)=0$, where $t \in q^{\mathbb{N}_{0}}, q>1$, are oscillatory, if there exists a real number $\beta, 0<\beta \leq 1$ such that

$$
\int_{1}^{\infty} t^{\beta} p(t) \Delta t=\infty
$$

In particular, under the assumption (1.2), we can show that the difference equation

$$
\Delta^{2} x(n)+\left[\frac{a}{n^{b}(n+1)}+\frac{c(-1)^{n}}{n^{b}}\right] f(x(n+1))=0
$$

for $a>0,0<b \leq 1$, is oscillatory. In [4], this result is shown to be true only for $0<b<1$ and $0<b c<a<c(1-b)$, since the condition (A), that is, the condition

$$
\limsup _{t \rightarrow \infty} \int_{T}^{t} p(s) \Delta s \geq 0
$$

and not identically zero for all sufficiently large T, was necessary in the proof.
For completeness, (see [5,6] for elementary results for the time scale calculus), we recall some basic results for dynamic equations and the calculus on time scales. Let \mathbb{T} be a time scale, i.e., a closed nonempty subset of \mathbb{R}, with sup $\mathbb{T}=\infty$. The forward jump operator is defined by $\sigma(t)=\inf \{s \in \mathbb{T}: s>t\}$, and the backward jump operator is defined by $\rho(t)=\sup \{s \in \mathbb{T}: s<t\}$, where $\sup \varnothing=\inf \mathbb{T}$, where \varnothing denotes the empty set. If $\sigma(t)>t$, we say t is right-scattered, while if $\rho(t)<t$, we say t is left-scattered. If $\sigma(t)=t$, we say t is right-dense, while if $\rho(t)=t$ and $t \neq \inf \mathbb{T}$, we say t is left-dense. Given a time scale interval $[c, d]_{\mathbb{T}}:=\{t \in \mathbb{T}: c \leq t \leq d\}$ in \mathbb{T} the notation $[c, d]^{\kappa} \mathbb{T}$ denotes the interval $[c, d]_{\mathbb{T}}$ in case $\rho(d)=d$ and denotes the interval $[c, d)_{\mathbb{T}}$ in case $\rho(d)<d$. The graininess function μ for a time scale \mathbb{T} is defined by $\mu(t)=\sigma(t)-t$, and for any function $f: \mathbb{T} \rightarrow \mathbb{R}$ the notation $f^{\sigma}(t)$ denotes $f(\sigma(t))$. We say that $x: \mathbb{T} \rightarrow \mathbb{R}$ is differentiable at $t \in \mathbb{T}$ provided

$$
x^{\Delta}(t):=\lim _{s \rightarrow t} \frac{x(t)-x(s)}{t-s}
$$

exists when $\sigma(t)=t$ (here by $s \rightarrow t$ it is understood that s approaches t in the time scale) and when x is continuous at t and $\sigma(t)>t$

$$
x^{\Delta}(t):=\frac{x(\sigma(t))-x(t)}{\mu(t)}
$$

Note that if $\mathbb{T}=\mathbb{R}$, then the delta derivative is just the standard derivative, and when $\mathbb{T}=\mathbb{Z}$ the delta derivative is just the forward difference operator. Hence our results contain the discrete and continuous cases as special cases and generalize these results to arbitrary time scales.

2 Main Theorem

In the case when $\mathbb{\Gamma}$ is such that $\mu(t)$ is not eventually identically zero, we define the set of all right-scattered points by $\hat{\mathbb{T}}:=\{t \in \mathbb{T}: \mu(t)>0\}$ and note that $\hat{\mathbb{T}}$ is necessarily countable. We let χ denote the characteristic function of $\hat{\mathbb{T}}$. The following condition, which will be needed later, imposes a lower bound on the graininess function $\mu(t)$, for $t \in \hat{\mathbb{T}}$. More precisely, we introduce the following (see [7]).

Condition (C) We say that \mathbb{T} satisfies condition (C) if there is an $M>0$ such that

$$
\chi(t) \leq M \mu(t), \quad t \in \mathbb{T} .
$$

We note that if $\mathbb{\Gamma}$ satisfies condition (C), then the subset \bar{T} of \mathbb{T} defined by

$$
\check{\Pi}=\{t \in \mathbb{T} \mid t>0 \text { is right-scattered or left-scattered }\}
$$

is also necessarily countable and, of course, $\hat{\Pi} \subset \check{\Pi}$. So we can suppose that

$$
\check{\mathbb{T}}=\left\{t_{i} \in \mathbb{T} \mid 0<t_{1}<t_{2}<\cdots<t_{n}<\cdots\right\} .
$$

We will need the following second mean value theorem (see [6, Theorem 5.45]).
Lemma 2.1 Let h be a bounded function that is integrable on $[a, b]_{\mathbb{T}}$. Let m_{H} and M_{H} be the infimum and supremum, respectively, of the function $H(t):=\int_{a}^{t} h(s) \Delta s$ on $[a, b]_{\mathrm{T}}$. Suppose that g is nonincreasing with $g(t) \geq 0$ on $[a, b]_{\mathbb{T}}$. Then there is some number Λ with $m_{H} \leq \Lambda \leq M_{H}$ such that

$$
\int_{a}^{b} h(t) g(t) \Delta t=g(a) \Lambda
$$

To clarify the arguments below, we let $A:=\left\{n \in \mathbb{N}:\left(t_{n-1}, t_{n}\right) \subset \mathbb{T}\right\}$ so that we can write $\mathbb{T}=\check{\mathbb{T}} \cup\left[\bigcup_{n \in A}\left(t_{n-1}, t_{n}\right)\right]$.
Theorem 2.2 Assume that Γ satisfies condition (C) and that f satisfies (1.2). Let

$$
\check{T}=\left\{t_{i} \in \mathbb{T} \mid 0<t_{1}<t_{2}<\cdots<t_{n}<\cdots\right\} .
$$

If there exists a real number $\beta, 0<\beta \leq 1$ such that

$$
\int_{t_{1}}^{\infty}(\sigma(t))^{\beta} p(t) \Delta t=\infty
$$

then (1.1) is oscillatory.
Proof Assume that (1.1) is nonoscillatory. Then without loss of generality there is a solution $x(t)$ of (1.1) and a $T \in \mathbb{T}$ with $x(t)>0$, for all $t \in[T, \infty)_{\mathbb{T}}$. Multiplying (1.1) by $\frac{(\sigma(t))^{\beta}}{f(x(\sigma(t)))}$, integrating from T to t, and using integration by parts [5, Theorem $1.77(\mathrm{v})$] on the first term we get

$$
\frac{t^{\beta} x^{\Delta}(t)}{f(x(t))}-\frac{T^{\beta} x^{\Delta}(T)}{f(x(T))}-\int_{T}^{t}\left(\frac{s^{\beta}}{f(x(s))}\right)^{\Delta_{s}} x^{\Delta}(s) \Delta s+\int_{T}^{t}(\sigma(s))^{\beta} p(s) \Delta s=0 .
$$

Then using the quotient rule [5, Theorem 1.20] and the Pötzsche chain rule [5, Theorem 1.90], we get

$$
\begin{align*}
& \frac{t^{\beta} x^{\Delta}(t)}{f(x(t))}-\frac{T^{\beta} x^{\Delta}(T)}{f(x(T))}-\int_{T}^{t} \frac{\left(s^{\beta}\right)^{\Delta_{s}} x^{\Delta}(s)}{f(x(\sigma(s)))} \Delta s \tag{2.1}\\
& \quad \quad+\int_{T}^{t} \frac{s^{\beta} \int_{0}^{1} f^{\prime}\left(x_{h}(s)\right) d h\left[x^{\Delta}(s)\right]^{2}}{f(x(s)) f(x(\sigma(s)))} \Delta s+\int_{T}^{t}(\sigma(s))^{\beta} p(s) \Delta s=0,
\end{align*}
$$

where $x_{h}(t)=x(t)+h \mu(t) x^{\Delta}(t)=(1-h) x(t)+h x(\sigma(t))>0$.
Since $0<\beta \leq 1$, one can use the Pötzsche chain rule to show that $\left(t^{\beta}\right)^{\Delta}$ is nonincreasing. Using the second mean value theorem (Lemma 2.1) we get that for each $t \in[T, \infty)_{\text {T }}$

$$
\begin{equation*}
\int_{T}^{t} \frac{\left(s^{\beta}\right)^{\Delta} x^{\Delta}(s)}{f(x(\sigma(s)))} \Delta s=\left.\left(s^{\beta}\right)^{\Delta}\right|_{s=T} \Lambda(t) \tag{2.2}
\end{equation*}
$$

where $m_{x} \leq \Lambda(t) \leq M_{x}$, and where m_{x} and M_{x} denote the infimum and supremum, respectively, of the function $\int_{T}^{s} \frac{x^{\Delta}(\tau)}{f(x(\sigma(\tau)))} \Delta \tau$ for $s \in[T, t]_{\mathbb{T}}$.

Let $F(x):=\int_{x}^{\infty} \frac{d v}{f(v)}$. In the following, we will obtain an estimate for M_{x}, i.e., an upper bound for the function $\int_{T}^{t} \frac{x^{\Delta}(s)}{f(x(\sigma(s)))} \Delta s$.

Assume that $t=t_{i-1}<t_{i}=\sigma(t)$. Then

$$
\begin{equation*}
\int_{t}^{\sigma(t)} \frac{x^{\Delta}(s)}{f(x(\sigma(s)))} \Delta s=\frac{x^{\Delta}(t) \mu(t)}{f(x(\sigma(t)))}=\frac{x(\sigma(t))-x(t)}{f(x(\sigma(t)))} \tag{2.3}
\end{equation*}
$$

We consider the two possible cases:
(i) $x(t) \leq x(\sigma(t))$,
(ii) $x(t)>x(\sigma(t))$.

First, if $x(t) \leq x(\sigma(t))$, we have that

$$
\begin{equation*}
\frac{x(\sigma(t))-x(t)}{f(x(\sigma(t)))} \leq \int_{x(t)}^{x(\sigma(t))} \frac{1}{f(v)} d v=F(x(t))-F(x(\sigma(t))) \tag{2.4}
\end{equation*}
$$

since f is increasing. On the other hand, if $x(t)>x(\sigma(t))$, then

$$
\frac{x(t)-x(\sigma(t))}{f(x(\sigma(t)))} \geq \int_{x(\sigma(t))}^{x(t)} \frac{1}{f(v)} d s=F(x(\sigma(t)))-F(x(t))
$$

which implies that

$$
\begin{equation*}
\frac{x(\sigma(t))-x(t)}{f(x(\sigma(t)))} \leq F(x(t))-F(x(\sigma(t))) \tag{2.5}
\end{equation*}
$$

Hence, whenever $t_{i-1}=t<\sigma(t)=t_{i}$, we have from (2.3) and (2.4) in the first case and (2.3) and (2.5) in the second case, that

$$
\begin{equation*}
\int_{t_{i-1}}^{t_{i}} \frac{x^{\Delta}(s)}{f(x(\sigma(s)))} \Delta s \leq F\left(x\left(t_{i-1}\right)\right)-F\left(x\left(t_{i}\right)\right) \tag{2.6}
\end{equation*}
$$

If the real interval $\left[t_{i-1}, t_{i}\right] \subset \mathbb{T}$, then

$$
\begin{equation*}
\int_{t_{i-1}}^{t_{i}} \frac{x^{\Delta}(s)}{f(x(s))} \Delta s=\int_{x\left(t_{i-1}\right)}^{x\left(t_{i}\right)} \frac{1}{f(v)} d v=F\left(x\left(t_{i-1}\right)\right)-F\left(x\left(t_{i}\right)\right) \tag{2.7}
\end{equation*}
$$

and so (2.6) also holds in this case.
Note that since \mathbb{T} satisfies condition (C), we have from (2.6), (2.7), and the additivity of the integral that for $t \in[T, \infty)_{\mathbb{T}}$

$$
\int_{T}^{t} \frac{x^{\Delta}(s)}{f(x(\sigma(s)))} \Delta s \leq F(x(T))-F(x(t)) \leq F(x(T))
$$

So

$$
\begin{equation*}
\Lambda(t) \leq M_{x} \leq F(x(T)) \tag{2.8}
\end{equation*}
$$

for $t \in[T, \infty)_{\mathbb{T}}$. From (2.1), (2.2), and (2.8), we have that

$$
\begin{aligned}
& \frac{t^{\beta} x^{\Delta}(t)}{f(x(t))}-\frac{T^{\beta} x^{\Delta}(T)}{f(x(T))}-\left.\left(s^{\beta}\right)^{\Delta}\right|_{s=T} F(x(T)) \\
& \quad+\int_{T}^{t} \frac{s^{\beta} \int_{0}^{1} f^{\prime}\left(x_{h}(s)\right) d h\left[x^{\Delta}(s)\right]^{2}}{f(x(s)) f(x(\sigma(s)))} \Delta s+\int_{T}^{t}(\sigma(s))^{\beta} p(s) \Delta s \leq 0
\end{aligned}
$$

Since $\int_{T}^{\infty}(\sigma(s))^{\beta} p(s) \Delta s=\infty$, there exists a sufficiently large $T_{1}>T$ such that for $t \geq T_{1}$

$$
\begin{align*}
\frac{t^{\beta} x^{\Delta}(t)}{f(x(t))}+\int_{T_{1}}^{t} & \frac{s^{\beta} \int_{0}^{1} f^{\prime}\left(x_{h}(s)\right) d h\left[x^{\Delta}(s)\right]^{2}}{f(x(s)) f(x(\sigma(s)))} \Delta s \tag{2.9}\\
& \leq \frac{t^{\beta} x^{\Delta}(t)}{f(x(t))}+\int_{T}^{t} \frac{s^{\beta} \int_{0}^{1} f^{\prime}\left(x_{h}(s)\right) d h\left[x^{\Delta}(s)\right]^{2}}{f(x(s)) f(x(\sigma(s)))} \Delta s \\
& \leq-\int_{T}^{t}(\sigma(s))^{\beta} p(s) \Delta s+\frac{T^{\beta} x^{\Delta}(T)}{f(x(T))}+\left.\left(s^{\beta}\right)^{\Delta}\right|_{s=T} F(x(T)) \\
& <-1
\end{align*}
$$

In particular, we have $x^{\Delta}(t)<0$, for $t \geq T_{1}$. Therefore, $x(t)$ is strictly decreasing.
Assume that $t=t_{i-1}<t_{i}=\sigma(t)$, i.e., $t_{i-1}, t_{i} \in \check{\Pi}$. Then $x(\sigma(t))<x(t)$, so

$$
\begin{align*}
\int_{0}^{1} f^{\prime}\left(x_{h}(s)\right) d h & =\int_{0}^{1} f^{\prime}((1-h) x(s)+h(x(\sigma(s)))) d h \tag{2.10}\\
& =\frac{\left.f((1-h) x(s)+h(x(\sigma(s))))\right|_{0} ^{1}}{x(\sigma(s))-x(s)}=\frac{f(x(\sigma(s)))-f(x(s))}{x(\sigma(s))-x(s)}
\end{align*}
$$

If the real interval $\left[t_{i-1}, t_{i}\right] \subset \mathbb{T}$, then for $s \in\left[t_{i-1}, t_{i}\right]$ we have

$$
\begin{equation*}
\int_{0}^{1} f^{\prime}\left(x_{h}(s)\right) d h=f^{\prime}(x(s)) \tag{2.11}
\end{equation*}
$$

Let

$$
\begin{equation*}
y(t):=1+\int_{T_{1}}^{t} \frac{s^{\beta} \int_{0}^{1} f^{\prime}\left(x_{h}(s)\right) d h\left[x^{\Delta}(s)\right]^{2}}{f(x(s)) f(x(\sigma(s)))} \Delta s \tag{2.12}
\end{equation*}
$$

Hence from (2.9), we get that

$$
\begin{equation*}
-\frac{t^{\beta} x^{\Delta}(t)}{f(x(t))}>y(t) \tag{2.13}
\end{equation*}
$$

From (2.12) and (2.13), we get that

$$
\begin{equation*}
y^{\Delta}(t)=\frac{t^{\beta} \int_{0}^{1} f^{\prime}\left(x_{h}(t)\right) d h\left[x^{\Delta}(t)\right]^{2}}{f(x(t)) f(x(\sigma(t)))}>y(t) \frac{\int_{0}^{1} f^{\prime}\left(x_{h}(t)\right) d h\left[-x^{\Delta}(t)\right]}{f(x(\sigma(t)))} . \tag{2.14}
\end{equation*}
$$

Assume that $t=t_{i-1}<t_{i}=\sigma(t)$. From (2.14) and (2.10), we get that

$$
\frac{y(\sigma(t))-y(t)}{y(t)(\sigma(t)-t)}>\frac{f(x(\sigma(t)))-f(x(t))}{x(\sigma(t))-x(t)} \cdot \frac{x(t)-x(\sigma(t))}{f(x(\sigma(t)))[\sigma(t)-t]} .
$$

So

$$
\frac{y(\sigma(t))}{y(t)}>\frac{f(x(t))}{f(x(\sigma(t)))} .
$$

That is

$$
\begin{equation*}
\frac{y\left(t_{i}\right)}{y\left(t_{i-1}\right)}>\frac{f\left(x\left(t_{i-1}\right)\right)}{f\left(x\left(t_{i}\right)\right)} . \tag{2.15}
\end{equation*}
$$

If the real interval $\left[t_{i-1}, t_{i}\right] \subset \mathbb{T}$, then for $t \in\left(t_{i-1}, t_{i}\right]$ it follows from (2.14) and (2.11) that

$$
\frac{y^{\prime}(t)}{y(t)}>\frac{f^{\prime}(x(t))\left[-x^{\prime}(t)\right]}{f(x(t))}
$$

that is $(\ln y(t))^{\prime}>-(\ln f(x(t)))^{\prime}$. Integrating from t_{i-1} to t, we get that

$$
\begin{equation*}
\frac{y(t)}{y\left(t_{i-1}\right)}>\frac{f\left(x\left(t_{i-1}\right)\right)}{f(x(t))}, \quad t \in\left(t_{i-1}, t_{i}\right] . \tag{2.16}
\end{equation*}
$$

Let $T_{1}=t_{n_{0}}$ and let $t \in\left(T_{1}, \infty\right)_{\mathbb{T}}$. Then there is an $n>n_{0}$ such that $t \in\left(t_{n-1}, t_{n}\right]_{\mathbb{T}}$. From (2.16) and (2.15), we get that

$$
\frac{y(t)}{y\left(t_{n-1}\right)}>\frac{f\left(x\left(t_{n-1}\right)\right)}{f(x(t))}, \frac{y\left(t_{n-1}\right)}{y\left(t_{n-2}\right)}>\frac{f\left(x\left(t_{n-2}\right)\right)}{f\left(x\left(t_{n-1}\right)\right)}, \ldots, \frac{y\left(t_{n_{0}+1}\right)}{y\left(t_{n_{0}}\right)}>\frac{f\left(x\left(t_{n_{0}}\right)\right)}{f\left(x\left(t_{n_{0}+1}\right)\right)} .
$$

Multiplying, we get that

$$
\frac{y(t)}{y\left(t_{n_{0}}\right)}>\frac{f\left(x\left(t_{n_{0}}\right)\right)}{f(x(t))}
$$

Using (2.13) again, we get

$$
-\frac{t^{\beta} x^{\Delta}(t)}{f(x(t))}>y(t)>\frac{y\left(t_{n_{0}}\right) f\left(x\left(t_{n_{0}}\right)\right)}{f(x(t))}
$$

If we set $L:=y\left(t_{n_{0}}\right) f\left(x\left(t_{n_{0}}\right)\right)$, we get $x^{\Delta}(t)<-\frac{L}{t^{\beta}}$. Integrating from T_{1} to t and using [6, Theorem 5.68], we get that

$$
x(t)-x\left(T_{1}\right)<-\int_{T_{1}}^{t} \frac{L}{s^{\beta}} \Delta s \longrightarrow-\infty, \quad \text { as } t \longrightarrow \infty .
$$

Therefore $x(t)<0$, for large t, which is a contradiction. Thus equation (1.1) is oscillatory.

When $\mathbb{T}=\mathbb{R}$, the following corollary is an extension of Kiguradze's theorem (the term $x^{\alpha}, \alpha>1$, is replaced by f satisfying (1.2). The proof, as noted earlier, is different from that of Kiguradze [10].

Corollary 2.3 Assume $f(x)$ satisfies (1.2). If there exists a real number $\beta, 0<\beta \leq 1$ such that $\int_{1}^{\infty} t^{\beta} p(t) d t=\infty$, then (1.3) is oscillatory.

As a consequence of Theorem [2.2] it follows that (1.5) is oscillatory if

$$
\sum^{\infty}(n+1)^{\beta} p(n)=\infty
$$

for some $0<\beta \leq 1$. We would like to show that in Theorem 2.2, the assumption that $\int_{t_{1}}^{\infty}(\sigma(t))^{\beta} p(t) \Delta t=\infty$ can be replaced by $\int_{t_{1}}^{\infty} t^{\beta} p(t) \Delta t=\infty$ (where $0<\beta \leq 1$). This would then imply, in particular, that the condition (1.6) implies oscillation of all solutions of (1.5), which is the desired improvement of the Hooker-Patula-Mingarelli result mentioned earlier. In order to extend Theorem 2.2, we will need to restrict our attention to isolated time scales. That is, we assume that $\rho(t)<t<\sigma(t)$ for all $t>\operatorname{infT}$. We shall also need the additional assumption that $\left(\rho^{\beta}(t)\right)^{\Delta}$ is nonincreasing for $0<\beta \leq 1$. Clearly, if $\mathbb{T}=\mathbb{Z}_{0}$ or $\mathbb{T}=q^{\mathbb{N}_{0}}$, then it is easy to see that $\left(\rho^{\beta}(t)\right)^{\Delta}$ is nonincreasing for $0<\beta \leq 1$. However, the following example shows that this need not hold for arbitrary isolated time scales.

Example 2.4 Let $\mathbb{T}=\bigcup_{k=1}^{\infty}\{4 k+1,4 k+2,4 k+3\}$. Then on \mathbb{T} we can show that

$$
\begin{equation*}
\left.\left(\rho^{\beta}(t)\right)^{\Delta}\right|_{t=4 k-1}<\left.\left(\rho^{\beta}(t)\right)^{\Delta}\right|_{t=4 k+1} . \tag{2.17}
\end{equation*}
$$

To see this, we claim that

$$
\frac{\rho^{\beta}(4 k+1)-\rho^{\beta}(4 k-1)}{(4 k+1)-(4 k-1)}<\frac{\rho^{\beta}(4 k+2)-\rho^{\beta}(4 k+1)}{(4 k+2)-(4 k+1)} .
$$

This is equivalent to

$$
\frac{(4 k-1)^{\beta}-(4 k-2)^{\beta}}{2}<(4 k+1)^{\beta}-(4 k-1)^{\beta},
$$

which implies

$$
\begin{equation*}
\left(1-\frac{1}{4 k}\right)^{\beta}-\left(1-\frac{2}{4 k}\right)^{\beta}<2\left[\left(1+\frac{1}{4 k}\right)^{\beta}-\left(1-\frac{1}{4 k}\right)^{\beta}\right] \tag{2.18}
\end{equation*}
$$

By the Taylor expansion, it is easy to see that the left side of (2.18) is $\frac{\beta}{4 k}+o\left(\frac{1}{k}\right)$, whereas the right side is $\frac{\beta}{k}+o\left(\frac{1}{k}\right)$. Therefore, (2.17) holds for large k.

We now state and prove the following theorem.
Theorem 2.5 Assume that \mathbb{T} is an isolated time scale which satisfies condition (C), and without loss of generality, assume that $\mathbb{T}=\left\{t_{i}\right\}_{i=1}^{\infty}$ where $0<t_{1}<t_{2}<\cdots<t_{n}<\ldots$. with $t_{n} \rightarrow \infty$. Suppose further that f satisfies (1.2). If there exists a real number β, $0<\beta \leq 1$ such that the delta derivative $\left(\rho^{\beta}(t)\right)^{\Delta}$ is nonincreasing and

$$
\int_{t_{1}}^{\infty} t^{\beta} p(t) \Delta t=\infty
$$

then (1.1) is oscillatory.
Proof Assume that (1.1) is nonoscillatory. Then without loss of generality, there is a solution $x(t)$ of (1.1) and a $T \in \mathbb{T}$ with $x(t)>0$, for all $t \in[T, \infty)_{\mathbb{T}}$. Multiplying (1.1) by $\frac{t^{\beta}}{f(x(\sigma(t)))}=\frac{(\rho(\sigma(t)))^{\beta}}{f(x(\sigma(t)))}$, integrating from T to t, and using integration by parts [5. Theorem $1.77(\mathrm{v})$] on the first term we get

$$
\frac{\rho^{\beta}(t) x^{\Delta}(t)}{f(x(t))}-\frac{\rho^{\beta}(T) x^{\Delta}(T)}{f(x(T))}-\int_{T}^{t}\left(\frac{\rho^{\beta}(s)}{f(x(s))}\right)^{\Delta_{s}} x^{\Delta}(s) \Delta s+\int_{T}^{t} s^{\beta} p(s) \Delta s=0
$$

Using the quotient rule [5, Theorem 1.20] and the Pötzsche chain rule [5, Theorem 1.90], we get

$$
\begin{aligned}
& \frac{\rho^{\beta}(t) x^{\Delta}(t)}{f(x(t))}-\frac{\rho^{\beta}(T) x^{\Delta}(T)}{f(x(T))}-\int_{T}^{t} \frac{\left(\rho^{\beta}(s)\right)^{\Delta_{s}} x^{\Delta}(s)}{f(x(\sigma(s)))} \Delta s \\
& \quad+\int_{T}^{t} \frac{\rho^{\beta}(s) \int_{0}^{1} f^{\prime}\left(x_{h}(s)\right) d h\left[x^{\Delta}(s)\right]^{2}}{f(x(s)) f(x(\sigma(s)))} \Delta s+\int_{T}^{t} s^{\beta} p(s) \Delta s=0
\end{aligned}
$$

where $x_{h}(t)=x(t)+h \mu(t) x^{\Delta}(t)=(1-h) x(t)+h x(\sigma(t))>0$.
By assumption, we have that $\left(\rho^{\beta}(t)\right)^{\Delta}$ is nonincreasing. Using the second mean value theorem (Lemma 2.1) we get that

$$
\int_{T}^{t} \frac{\left(\rho^{\beta}(s)\right)^{\Delta} x^{\Delta}(s)}{f(x(\sigma(s)))}=\left.\left(\rho^{\beta}(s)\right)^{\Delta}\right|_{s=T} \Lambda(t)
$$

where $m_{x} \leq \Lambda(t) \leq M_{x}$, and where m_{x} and M_{x} denote the infimum and supremum, respectively, of the function $\int_{T}^{s} \frac{x^{\Delta}(\tau)}{f(x(\sigma(\tau)))} \Delta \tau$ on $[T, t]_{\mathbb{T}}$.

As in Theorem 2.2 we have that

$$
\begin{aligned}
& \frac{\rho^{\beta}(t) x^{\Delta}(t)}{f(x(t))}-\frac{\rho^{\beta}(T) x^{\Delta}(T)}{f(x(T))}-\left.\left(\rho^{\beta}(s)\right)^{\Delta}\right|_{s=T} F(x(T)) \\
& \quad+\int_{T}^{t} \frac{\rho^{\beta}(s) \int_{0}^{1} f^{\prime}\left(x_{h}(s)\right) d h\left[x^{\Delta}(s)\right]^{2}}{f(x(s)) f(x(\sigma(s)))} \Delta s+\int_{T}^{t} s^{\beta} p(s) \Delta s \leq 0
\end{aligned}
$$

Since $\int_{T}^{\infty} s^{\beta} p(s) \Delta s=\infty$, there exists $T_{1}>T$, sufficiently large, such that for $t \geq T_{1}$ we have

$$
\begin{align*}
\frac{\rho^{\beta}(t) x^{\Delta}(t)}{f(x(t))}+\int_{T_{1}}^{t} & \frac{\rho^{\beta}(s) \int_{0}^{1} f^{\prime}\left(x_{h}(s) d h\left[x^{\Delta}(s)\right]^{2}\right.}{f(x(s)) f(x(\sigma(s)))} \Delta s \tag{2.19}\\
& \leq \frac{\rho^{\beta}(t) x^{\Delta}(t)}{f(x(t))}+\int_{T}^{t} \frac{\rho^{\beta}(s) \int_{0}^{1} f^{\prime}\left(x_{h}(s)\right) d h\left[x^{\Delta}(s)\right]^{2}}{f(x(s)) f(x(\sigma(s)))} \Delta s \\
& \leq-\int_{T}^{t} s^{\beta} p(s) \Delta s+\frac{\rho^{\beta}(T) x^{\Delta}(T)}{f(x(T))}+\left.\left(\rho^{\beta}(s)\right)^{\Delta}\right|_{s=T} F(x(T)) \\
& <-1
\end{align*}
$$

In particular, we get that $x^{\Delta}(t)<0$, for $t \geq T_{1}$. Therefore, $x(t)$ is strictly decreasing. Similar to the proof of Theorem 2.2 we let

$$
\begin{equation*}
y(t):=1+\int_{T_{1}}^{t} \frac{\rho^{\beta}(s) \int_{0}^{1} f^{\prime}\left(x_{h}(s)\right) d h\left[x^{\Delta}(s)\right]^{2}}{f(x(s)) f(x(\sigma(s)))} \Delta s \tag{2.20}
\end{equation*}
$$

Then from (2.19), we get that

$$
\begin{equation*}
-\frac{\rho^{\beta}(t) x^{\Delta}(t)}{f(x(t))}>y(t) \tag{2.21}
\end{equation*}
$$

From (2.20) and (2.21), we get that

$$
y^{\Delta}(t)=\frac{\rho^{\beta}(t) \int_{0}^{1} f^{\prime}\left(x_{h}(t)\right) d h\left[x^{\Delta}(t)\right]^{2}}{f(x(t)) f(x(\sigma(t)))}>y(t) \frac{\int_{0}^{1} f^{\prime}\left(x_{h}(t)\right) d h\left[-x^{\Delta}(t)\right]}{f(x(\sigma(t)))} .
$$

Again proceeding as in the proof of Theorem 2.2 we get, using (2.21),

$$
-\frac{\rho^{\beta}(t) x^{\Delta}(t)}{f(x(t))}>y(t)>\frac{y\left(t_{n_{0}}\right) f\left(x\left(t_{n_{0}}\right)\right)}{f(x(t))}
$$

where n_{0} is chosen so that $t_{n_{0}}=T_{1}$. If we set $L:=y\left(t_{n_{0}}\right) f\left(x\left(t_{n_{0}}\right)\right)$ and note that $\rho(t)<t$, we get

$$
x^{\Delta}(t)<-\frac{L}{\rho^{\beta}(t)} \leq-\frac{L}{t^{\beta}} .
$$

Integrating from T_{1} to t and using [6, Theorem 5.68], we get that

$$
x(t)-x\left(T_{1}\right)<-\int_{T_{1}}^{t} \frac{L}{s^{\beta}} \Delta s \rightarrow-\infty, \quad \text { as } t \rightarrow \infty
$$

Therefore $x(t)<0$, for large t, which is a contradiction. Thus all solutions of equation (1.1) are oscillatory.

Remark 2.6 Under the assumptions of Theorem 2.5 note that the function $f(t)=$ t^{β} is concave. So when $\mathbb{T}=\mathbb{Z}_{0}$, by Jensen's inequality [5, Theorem 6.17], we have

$$
\frac{f(n+1)+f(n-1)}{2} \leq f(n)
$$

This means $(n+1)^{\beta}-n^{\beta} \leq n^{\beta}-(n-1)^{\beta}$, that is, $\left(\rho^{\beta}(t)\right)^{\Delta}$ is nonincreasing.
When $\mathbb{T}=q^{Z_{0}}, q>1$, it is easy to see that $\left(\rho^{\beta}(t)\right)^{\Delta}$ is also nonincreasing.
So we can obtain the following corollaries. Corollary 2.7 shows that with no sign assumption on $p(n)$, the condition $\sum^{\infty} n p(n)=\infty$ is sufficient for the oscillation of the difference equation (1.5).

Corollary 2.7 Assume $\mathbb{T}=\mathbb{Z}$ and there exists a real number $\beta, 0<\beta \leq 1$ such that $\sum n^{\beta} p(n)=\infty$, then (1.5) is oscillatory.

Corollary 2.8 Assume $\mathbb{T}=q^{Z_{0}}, q>1$ and there exists $\beta, 0<\beta \leq 1$ such that

$$
\int_{1}^{\infty} t^{\beta} p(t) \Delta t=\infty
$$

Then the q-difference equation $x^{\Delta \Delta}(t)+p(t) x^{\alpha}(q t)=0$, is oscillatory.

3 Examples

Example 3.1 Consider the case when \mathbb{T} is the real interval $[1, \infty)$ and suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable and satisfies the nonlinearity condition (1.2) (as well as the conditions $f^{\prime}(x)>0$ and $x f(x)>0, x \neq 0$). In [4, Example 4.4] it was shown that all solutions of (1.1) are oscillatory for the case when

$$
p(t)=\frac{\lambda}{t^{1+\alpha}}+\frac{\beta \sin t}{t^{\alpha}}
$$

and where λ, α, β are all positive numbers satisfying $\beta \alpha<\lambda, 0<\alpha<1$.
If we apply Corollary 2.3, we conclude that $\int^{\infty} t^{\alpha} p(t) d t=\infty$. That is we have oscillation for all $\lambda>0$ and for all $0<\alpha \leq 1$, which improves the results of 4.

Example 3.2 Consider the difference equation

$$
\begin{equation*}
\Delta^{2} x(n)+\left[\frac{a}{n^{b}(n+1)}+\frac{c(-1)^{n}}{n^{b}}\right] f(x(n+1))=0 \tag{3.1}
\end{equation*}
$$

for $a>0,0<b \leq 1$. Under the assumption of (1.2), the equation (3.1) is oscillatory, since

$$
\sum_{n=1}^{\infty} n^{b}\left[\frac{a}{n^{b}(n+1)}+\frac{c(-1)^{n}}{n^{b}}\right]=\infty
$$

As observed earlier, the result in [4] gives oscillation for only the cases $0<b<1$ and $0<b c<a<c(1-b)$, since condition (A) was necessary in the proof.

Example 3.3 Consider the difference equation

$$
\begin{equation*}
\Delta^{2} x(n)+p(n) x^{\alpha}(n+1)=0 \tag{3.2}
\end{equation*}
$$

Letting $p(n)=\frac{a}{n^{2}}+\frac{b(-1)^{n}}{n}, a>0, b \neq 0$, we see that $p(n)$ changes sign and $\sum_{n=1}^{\infty} n p(n)=\infty$. By Corollary 2.7, equation (3.2) is oscillatory.

Next, if we let $p(n)=(1-\gamma) n^{-1-\gamma}+2 t^{-\gamma}(-1)^{n}, 0<\gamma<1$, then

$$
\sum_{n=1}^{N} n^{\gamma} p(n)=\sum_{n=1}^{N}\left[(1-\gamma) n^{-1}-2(-1)^{n}\right] \rightarrow \infty
$$

Therefore, if we take $\beta=\gamma$, then by Corollary 2.7 equation (3.2) is oscillatory. Notice if we take $\beta=1$, the assumption of Corollary 2.7 will not be satisfied, since

$$
\sum_{n=1}^{N} n p(n)=\sum_{n=1}^{N}\left[(1-\gamma) n^{-\gamma}-2 n^{1-\gamma}(-1)^{n}\right]
$$

and so

$$
\limsup _{N \rightarrow \infty} \sum_{n=1}^{N} n p(n)=\infty, \liminf _{N \rightarrow \infty} \sum_{n=1}^{N} n p(n)=-\infty
$$

Example 3.4 Consider the q-difference equation

$$
\begin{equation*}
x^{\Delta \Delta}(t)+p(t) x^{\alpha}(q t)=0 \tag{3.3}
\end{equation*}
$$

Let $p(t)=\frac{1+2(-1)^{n}}{t^{2}}, \beta=1$. Then

$$
\int_{1}^{\infty} t p(t) \Delta t=\sum_{1}^{\infty}\left(1+2(-1)^{n}\right)(q-1)=\infty
$$

By Corollary 2.8, equation (3.3) is oscillatory.

References

[1] F. V. Atkinson, On second order nonlinear oscillations. Pacific J. Math. 5(1955), 643-647.
[2] J. Baoguo, L. Erbe, and A. Peterson, Some new comparison results for second order linear dynamic equations. Canad. Appl. Math. Quart. 15(2007), 349-366.
[3] New comparison and oscillation theorems for second order half-linear dynamic equations on time scales. Comput. Math. Appl. 56(2008), 2744-2756. doi:10.1016/j.camwa.2008.05.014
[4] M. Bohner, Lynn Erbe, and A. Peterson, Oscillation for nonlinear second order dynamic equations on a time scale. J. Math. Anal. Appl. 301(2005), 491-507. doi:10.1016/j.jmaa.2004.07.038
[5] M. Bohner and A. Peterson, Dynamic Equation on Time Scales: An Introduction with Applications. Birkhäuser, Boston, 2001.
[6] M. Bohner and A. Peterson, Editors, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[7] L. Erbe, Oscillation criteria for second order linear equations on a time scale. Canad. Appl. Math. Quart. 9(2001), 346-375.
[8] J. W. Hooker and W. T. Patula, A second order nonlinear difference equation: Oscillation and asymptotic behavior. J. Math. Anal. Appl. 91(1983), 9-29. doi:10.1016/0022-247X(83)90088-4
[9] W. Kelley and A. Peterson, Difference Equations: An Introduction with Applications. Harcourt/Academic Press, Second Edition, San Diego, 2001.
[10] I. T. Kiguradze, A note on the oscillation of solutions of the equation $u^{\prime \prime}+a(t) u^{n} \operatorname{sgn} u=0$. Casopis Pest. Mat. 92(1967), 343-350.
[11] A. B. Mingarelli, Volterra-Stieltjes Integral Equations and Generalized Differential Equations. Lecture Notes in Mathematics 989, Springer-Verlag, 9891983.

School of Mathematics and Computer Science, Zhongshan University, Guangzhou, China, 510275
e-mail: mcsjbg@mail.sysu.edu.cn
Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130, U.S.A. e-mail: erbe2@math.unl.edu apeterson1@math.unl.edu

[^0]: Received by the editors October 8, 2008.
 Published electronically March 8, 2011.
 The first author was supported by the Guangdong Provincial Natural Science Foundation of China AMS subject classification: 34K11, 39A10, 39A99.
 Keywords: Oscillation, Emden-Fowler equation, superlinear.

