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COUNTEREXAMPLES IN THE THEORY OF co-FUNCTIONS 

C. H. APPLEBAUM 

1. Introduction. Let e stand for the set of nonnegative integers {numbers), 
V for the class of all subcollections of e (sets), A for the set of isols, and A^ 
for the set of regressive isols. A function, f, is a mapping from a subset of e into 
€ and of and pf denote the domain and range of/ respectively. The relation of 
inclusion is denoted by C and that of proper inclusion by £ . The sets a and /3 
are recursively equivalent (written a ~ / 3 ) , if ôf = a and pf = /3 for some 
function / with a one-to-one partial recursive extension. We denote the recur­
sive equivalence type of a, {a £ F | c r ~ a } , by Req(a). Also R stands for 
Req(e). The reader is assumed to be familiar with the contents of [1; 2; 8]. 

The concept of an co-function was introduced in [2] and that of an co-homo-
morphism in [1]. If we define an co-function from a set a into a set /3 as an 
co-function from a onto a subset of (3, and similarly define an co-homomorphism 
from an co-group G into an co-group H as an co-homomorphism from G onto a 
subgroup of H, then the question arises as to whether the into functions behave 
as well as the onto ones. Gonshor, in [7], showed that the composition of two 
into co-functions need not be an co-function. However, his example involved 
the use of an r.e. set as the domain of one of the functions. The purpose of this 
paper is to show that even when we restrict our attention to only immune sets 
(or immune groups) the into co-functions (or into co-homomorphisms) do not 
behave nicely. In this paper we give an example of an co-function which maps 
an immune (or regressive immune) set into itself, whose restriction to a 
separable subset is not an co-function (Theorem 3). This gives rise to an example 
involving two into co-functions defined on immune (or regressive immune) sets 
whose composition is not an co-function (Corollary 3.1). Similar results are 
obtained for into co-homomorphisms (Corollary 3.2 and Corollary 3.3). Finally, 
an example is given of an co-homomorphism <j> which maps a regressive immune 
group G into itself and such that the restriction of <j> to a gc-subgroup H of G, 
where <i>(H) = H, is not an co-homomorphism (Corollary 4.1). 

2. Basic concepts. We recall from [8] that for a set a, P(a) is the co-group 
of Gôdel numbers of all finite permutations of a. If / is a finite permutation 
of a, we denote its Gôdel number b y / * . We write our permutations in cycle 
notation. As in [8], we denote the order of an co-group G by o(G). 

Remark. We need the recursive functions j , k, and / defined by 

./ N , (x + y)(x + y + 1) . „ , . u N1 
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Notation. With every x Ç e, we associate the transposition (i.e., a permuta­
tion which moves exactly two elements) 

y(x) = (j(x,0),j(xt 1)), 

its Godel number y(x)* and the group [7 (#)*], i.e. the cyclic subgroup of 
order two of the group P(e) generated by y(x)*. 

Remark. It is clear that the set of numbers moved by y(x) and the set of 
numbers moved by y(y) are disjoint if and only if x 9e y. 

Notation. For any set a, we define 

&* = ® [7 00*], 

the direct product of the subgroups [Y(X)*] of P(a). 

Remark. We see that the elements of &a are just all group products 

n 

FI y(xi)*> îorxt Ç a, 0 < i < «. 

Hence ^a is an co-subgroup of P(a) such that given any z £ ^ a , we can 
effectively find such that 

2 = n 7 (*«)*. 
2=0 

The above discussion yields the following result. 

THEOREM 1. If a is a set and Req(a) = A, then o{^a) = 2A. 

COROLLARY 1.1. Let a be a set and Req(a) = A. Then 

0) A e A^o(^a) e A 
(ii) A G AR^o(@a) G AB. 
Proof. This follows immediately, since o(@a)

 = %A-

Remark. Given sets a and fi and a function / : a —> (3 we wish to define a 
corresponding homomorphism <f>f : ^a —» 2^ . 

Definition. Let a, /3 C e and f : a —> /3. !TAe» 0/ : S â —> â^ is defined as 
follows. Let z Ç. &a. 

Ifz= 1, then <f>f(z) = 1, and 

if* = ft y(*i)*,then <t>f(z) = ft 7(/(*i))*. 
i=0 i=0 

Remark. We see that iif(xt) = f(xj) for i ?̂  j , then naturally H^o 7 (/(*<))* 
will collapse to fewer than n factors. 

THEOREM 2. Let a, 0, y C € awd letf : a-^ 13 and g : p —» 7. rAe# 
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(i) f is an oo-function if and only if <j>f is an co-homomorphism; 
(ii) 4>gO<t>f = <t>gof. 

Proof. The proof is straightforward and is left to the reader. 

3. Main results. In this section we will show that both the composition of 
into co-functions, and the restriction of an co-function which maps an immune 
set into itself need not be an co-function. Since, in the case of onto co-functions, 
both of the above cases yield co-functions, we see that the into co-functions do 
not behave as nicely as the onto co-functions. By using Theorem 2 and Corol­
lary 1.1, the construction of counterexamples for set maps will automatically 
give us counterexamples for co-groups and co-homomorphisms. 

Remark. For a, P C e, we recall that a\P means a is separable from /3, i.e. 
there exist r.e. sets a, p such that a C â, (3 C P and â C\ P is empty. We also 
note that for a function / and a set a, f \a means, as usual, / restricted to the 
set a. 

Remark. For the rest of this section, unless noted otherwise, let A = Req(a), 
B = Req(/3) and C = Reqfr). 

THEOREM 3. It is possible to choose sets a and P, with a. C P, such that 
(i) A £ AR,B = R, or 

(ii) A £ AR, B £ A - AR, or 
(iii) A,B £ AR 

and such that there exists an co-function / , where f : P —> p, such that f \a is not 
an oo-function. In cases (ii) and (iii) one can choose a|/3 — a. 

Proof, (i) In [7], Gonshor showed that if r is a regressive set with regressing 
function k, then there exist co-functions i and / , where i is the identity map 
from r into e a n d / : e —> e, such t h a t / o i is not an co-function. Hence, just set 
j8 = e and a = r, and we g e t / is an co-function from /3 into j8 and f \a = f o i 
is not an co-function. 

(ii) By [3, Theorem 2.1], there exist regressive isols A and C with A ^ * C 
and such that A + C 6 A — AR. Since 2A G ARy it is clear that A ^ C. Let 
B = A + C and a Ç i , j3 G 5 , Y £ C such that /3 = a W 7 and a|7. Hence 
a: C 0 and a\fi — a. Since 4̂ ^ * C, there exists a function h, with a partial 
recursive extension, such that h maps a one-to-one, onto 7. Define a function/ 
with ôf = ft and p/ = 7 by 

f(x) /*. if * € 7 
/ w \A(*), if * G a. 

Because a\y, it is easy to show t h a t / has a partial recursive extension. Also, 
we see that / ( i (#)) = f(x) = x for every x G 7, where i is the identity function 
on 7. Hence / is an co-function from p onto 7. Thus / is an co-function from p 
into p. However,/ \a = &. It follows that if/ |a is an co-function then, since h 
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is one-to-one, by [2, Proposition P4], a ~ | . But A ^ C, hence/ \a is not an 
co-function. 

(iii) Let A G AR and C = 24 . Hence C É Afi and i ^ C. Choose a U 
and 7 G C such that C*|Y. If we set B = 3A and f3 = a VJ 7, then 0 £ B. Also 
oc|j8 - a and 5 G AB. Since 4 g C, then by [5, Proposition P17], A ^ * C. 
Now proceed as in the proof of (ii). 

COROLLARY 3.1. It is possible to choose sets a, ft, 7 such that 
( i ) i U ^ = C = R, or 

(ii) A,C £ AR,B £ A- ARlor 
(iii) A,B,C£ AR, 

and s#cA that there exist co-functions f and g, where g : a —» ft and f : (3 —» 7, s#cA 
£to f o g is not an co-function. 

Proof. Choose a, ft, y and / as in the theorem. In each case let g be the 
identity function on a. The rest is immediate. 

COROLLARY 3.2. 7/ is possible to choose co-groups G and H such that 
(i) o(G) = R and o(H) £ AR} or 

(ii) o ( C ) a - AR}o(H) € A*, or 
(iii) o(G),o(H) e ARf 

and such that there exists an co-homomorphism \p, where $ : G —> G, such that 
\f/\H is not an co-homomorphism. Also, in cases (ii) and (iii) H ^ r e c G. 

Proof. Choose a, j3 and / as in Theorem 3.1. Let G = S^, H = ^a and 
^ = 0/. The rest of the proof follows directly from Theorem 2 and Corollary 
1.1. 

COROLLARY 3.3. It is possible to choose co-groups Gi, G2, G3 s«cA /Aa£ 
(i) 0(d) G A, o(G,) = o(Gz) = 2Î, or 

(ii) o(Gi), o(Gz) G AB, o(G2) € A — AB, or 
(iii) o(Gi), o(G2), o(G3) G AR, 

and such that there exist co-homomorphism s \p and 6 such that \p : G\ —> G2, 
6 : G2 —* G% and 6 o \// is not an co-homomorphism. 

Proof. Choose a, /3, 7, / and g as in Corollary 3.1. Let Gi = ^ a , G2 = ^ , 
G3 = &y, x// = (f>g and 0 = 0/. The rest of the proof follows directly from 
Theorem 2 and Corollary 1.1. 

We can strengthen Theorem 3 (iii) as follows. 

THEOREM 4. It is possible to choose regressive immune sets a and j3 with 
a C £ awd a|j8 — a such that there exists an co-function f, where /:/?—» ($ and 
( / |a) (a) = a, &#// |a w #0/ an u-function. 

Proof. Let 4 G AB. Hence 2A,3A G A#. Choose a3 G ̂ 4 and let 
a = {2X|# Ç a3}, «! = {3z|x € a3} and a2 = {5x\x Ç a3}. Thus a|«i, a|a2, 
ai|a:2 and a|«i U a2. Put ^ = a U ( a i U a 2 ) . Hence |3 6 3 i and f$ is a regres-

https://doi.org/10.4153/CJM-1974-075-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-075-2


804 C. H. APPLEBAUM 

sive immune set. Since A ^ 2A, then by [5, Proposition P17], A ^g* 2A. Thus 
there exists a function t, with a partial recursive extension, such that£ maps a 
one-to-one, onto a\ \J ai. Therefore, define a function g from ft onto ai U a2 
by 

'<*> ' fe if x Ç ai W a2 

(x), if x £ a 

and define a function A from a i U a 2 onto a by 

w x ) = i ^ i W . if * € ai 
V2 W i if * € «2, 

where for i = 1, 2, 5* is a recursive equivalence from a* onto a. Now we see 
that g and A have partial recursive extensions. Thus, if we s e t / = h o g, then 
/ has a partial recursive extension. Furthermore, / maps 0 onto a and hence/ 
maps j8 into itself. Suppose }/Ça. Then we have Si~x(y) G 0 and 

/ o s i - 1 ^ ) = hog(srl(y)) = ftfci^GO) = y. 

It follows t h a t / is an co-function from f$ into itself. Now consider/ \a. We see 
t h a t / |a maps a onto a. We claim t h a t / \a is not one-to-one. For each y G a, 
there exist Zi € «i and z2 € <*2 such that h(zi) = ^(z2) = y. Hence there exist 
Xu %2 6 «i with Xi 7̂  X2, such that /(xi) = Z\ and /(x2) = z2. We now have 
f(xi) = h o g(xi) = A(2i) = ;y and /(x2) = h o g(x2) = A (22) = y. Thus / |a 
is not one-to-one. It follows by [2, Proposition P7] t h a t / \a is not an co-function, 
since/ \a maps a onto a, b u t / |a is not one-to-one. 

COROLLARY 4.1. It is possible to choose regressive immune groups G and H, 
with H ègcG, such that there exists an œ-homomorphism <j> from G into G, with 
{<t>\H) (H) = H, but <j)\H is not an co-homomorphism. 

Remark. Let 4> be an co-homomorphism from an co-group G into G. The 
following are two open questions: 

(1) Find a necessary and/or sufficient condition on a subgroup H of G such 
that <j>\H is an co-homomorphism. We see by Corollary 4.1 that even if 
o(H) £ Afl, H ^=gcG and 4>(H) = H, <f>\H may not be an co-homomorphism. 

(2) Suppose that for all co-homomorphisms \[/ : G —> G, \p(H) C H. Is it then 
true that \p\H is an co-homomorphism, for all co-homomorphisms \f/ : G —» G? 

If the answer to question (2) is yes, then it will make it possible to study 
the analogue of fully invariant subgroups. 
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