PART IV,

Considerations on Localized Velocity Fields in Stellar Atmospheres:
Prototype — The Solar Atmosphere.

B. - Consideration of Convective Instability
from the Viewpoint of Physics.

Summary-Introduection:
Similarity arguments for fully developed turbulence.

W. V. R. MALKUS
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Introduection.

In the study of turbulent flows similarity arguments are used to explore
the consequences of non-mechanistic assertions concerning the general be-
havior of the flow. For example, it is currently assumed that viscosity plays
no role in the determination of the mean velocity profile of turbulent shearing
flow far from a boundary. The consequences of this assumption are that the
amplitude of the mean velocity will be determined by the momentum trans-
ported into such a region and that the velocity profile will be a solution to
Euler’s equations.

The first section of this work will attempt to critically re-assess the exper-
imental results used to support the assertion underlying conventional similarity
theories. The second section discusses alternative assertions from which the
qualitative experimental results can be deduced. A final section outlines the
quantitative theory which has been constructed within the framework described
in section two.

1. — Two quite different turbulent flows will be explored in order to test
the generality of the conventional and new

N2, T N assertions. The first of these is turbulent
: 1 % shearing flow between parallel surfaces. The
P T\ second is the turbulent convection of heat

—!—z —re / between horizontal surfaces.
! ' -/ Current similarity arguments for shear
e s U 77 flow. — In Fig. 1 the x axis is the direction
Fig. 1. — The geometry for tur- ©f the mean velocity U= U(Z). The solid
bulent shearing flow. velocity profile represents the parabolic solu-
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tion for laminar flow. The dashed line represents a mean velocity profile for
the turbulent regime. For incompressible steady state flow the momentum
transfer per unit mass is

(1) T =+ wu ,

where .
_Z (%, eP, _
T=gT w=—\T ) BT

v is the kinematic viscosity, ¢ is the density, Z, the channel half-width,
oP,/0x is the downstream pressure gradient at the boundary, w is the cross
stream velocity fluctuation, » is the downstream velocity fluctuation and the
horizontal superscript bar indicates an ensemble average. This flow is de-
termined by the Reynolds number R=Z,U,/v if U, is fixed, where the sub-
script m indicates an average over the entire flow. The flow is determined by
the alternate Reynolds number R = Z,U /v if the downstream pressure gra-
dient is fixed, where U,=+/7,. The mean velocity profile is written then

either as '

VA Z
2 = _ — —\.
(2) U=U (R, Zo> or U=TU (R,, Zn)

Among the first observations on this turbulent flow was the discovery of
the «velocity-defect law » shown in ,
Fig. 2. At high Reynolds numbers p
all the data can be fitted to this one !
non-dimensional curve. The curve is
logarithmic beyond a small linear
« boundary layer», becoming para-  Upn, U
bolic in the mid-regions of the flow. Ur

A recent presentation of the
similarity arguments is' given by
TOWNSEND (1958). This argument
is based on two general assertions.

The first assertion is that viscosity o= 5 i"
plays no role in the determination 2
of the mean profile far from the
boundaries. From ‘eq. (2) for R,
fixed, the mean velocity in the midregions of the flow is then

Fig. 2. - The velocity-defect «law ».

(3) U.=Uns+ U F (—Z—) ;
Zy
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where an arbitrary velocity of translation is chosen as the maximum velocity

and F is an arbitrary function of Z/Z,. The second assertion is that flow

near the wall is only a function of distance from the wall and independent of

the (large) channel half-width, Z,. Defining a «running » Reynolds’ number
Z'U,

(4) 7 = ” ’ Z'=12,—1Z,

eq. (2) is re-written without loss of generality as

ZI
(5) U= UtG (Rz'7 Z) ’

where G is an arbitrary function of its arguments. The consequences of the
second assertion is that the dependence on Z; in eq. (5) must vanish. Hence
near the boundary, :

(6) U, = UGR,).

It is argued, that in the region of overlap, the boundary law, eq. (6), and
the mid-region law, eq. (3), must be the same. Only one choice for ¥ and @
is then possible, and the overlap law becomes

(1) U= 4+ BIn(R,),

where A = A(R,) only and B is a universal (Von Karman’s) constant.

The experiments indicate that eq. (7) holds not just for some small
overlap region of the flow but for most of the profile. It has been believed
that this fact establishes the correctness of the similarity assertions. However,
one might also interpret the experimental results as indicating that the first
asgertion is incorrect and that a region of completely inviscid flow does not
exist. This possibility will be explored shortly.

Current similarity arguments for turbulent convection. — In Fig. 3 the solid
line represents the temperature profile which would exist in the absence of
motion between horizontal conducting
plates separated by a distance d. The
dashed line represents a mean temperature
profile for the turbulent regime. For
flows with a small total temperature
drop, AT, the kinematical heat flux is

2x _d

Fig. 3. - The geometry for turbu- _ — _
lent convection. ®) H 0aCy B+ WT, p=

§| S
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where 5 is the actual heat flux, g is the density, » is the coefficient of kine-
matic thermal conductivity, O, is the specific heat of the fluid at constant vol-
ume, W is the vertical velocity and T is the temperature. For a fixed AT,
this flow is determined by the Prandtl number o =w/x» and the Rayleigh
number R =g AT d3/xv, where « is the coefficient of expansion of the fluid
and g is the acceleration of gravity. Alternatively, for fixed heat flux, the
Prandtl number and B, = RH d/x AT determine the flow. Hence the mean
temperature profile may be written either as

9 . T=T<R,a,%) or T=T(R,,a,%).

A similarity argument for turbulent convection was given by PRIESTLY
(1954). Paralleling the shear flow study, the assertion was made that viscosity
and conductivity play no role in the determination of the mean temperature
profile far from the boundaries. The consequences of this assertion were sought
by establishing the possible dimensional relations in an equation such as eq. (9).
Beyond the boundary region

(10) - (T(2Z)— T,) = const (2)*(#)(xg)°(C,)*

where relations between the powers a, b, ¢ and d are to be found so that the
right side of eq. (10) has the dimensions of a temperature. In contrast to the
shear flow study, PRIESTLY discovered that a unique result is obtained for
each of these powers. This is

(11) (T(Z) — T,) = const (#2/agC?)}(Z)t.

In turbulent convection, then, an explicit form for the «inviscid » region
is found without studying the overlap with a « boundary » region.

The experimental evidence in the laboratory (TOWNSEND, 1959) does not
support the Z7* law of eq. (11) but fits a Z—! law rather closely. Hence the
correctness of the assertion that molecular transport coefficients are unim-
portant in the body of the flow is in doubt.

2. ~ The similarity argument to be advanced in this paper rests on two
general agsertions concerning steady state turbulent flows. The first of these
assertions 18" that the mean profiles (of temperature and velocity) approach but
never exceed, the local condition for marginal inviscid instability.

The problem of turbulent convection will be treated first. The condition
for inviscid instability in convection is that

(12) >0,
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that is that there be lighter fluid below and heavier fluid above. Thus the
first assertion may be written :

(13) "—£=12>0,

where I is to be represented by its Fourier expansion -

+o
(14) I= 3 I,exp[ing], 0<g<2m,

fm=—c0

where the co-ordinate ¢ is shown in Fig. 3 and where I,=1I"_ in order that I
be real. v

The second assertion concerning steady state turbulence is that the smallest
scale of motion effective in the transport
of heat (or momentum) is a monotonic-
ally increasing function of the Rayleigh
(or Reynolds) number of the flow. In
Fig. 4 a possible spectral description is
given of the mean squared velocity and
convective heat transport at some fixed
Rayleigh number. The wave number
1o = Mo(R, o) is defined as the largest wave
number which contributes to the transport
T of heat. That is, the wave number (n,+1)
N+ makes no effective contribution to heat
Fig. 4. — Characteristic spectra for transport. It is possible, indeed neces-
«organized» (WT) and «disorgan- Sary to the Kolmogoroff-like studies of
ized» (V2), moments in turbulent isotropic turbulence, that the « disorgan-
convecltion. ized » spectrum of the mean squared
. velocity extend to higher wave numbers

than the « organized » correlations responsible for convection.

Amplitude

n

From eq. (8)
(18) I =14+ %):ﬁ__ﬂ ,

hence a consequence of the second assertion is that the spectrum of I, eq. (14},
terminate at some n,=n,(R, 0). We now wish to establish the conditions
under which the restricted sum

+no
(16) I(ne, ) = > I,exp[ing]

n=—ng
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leads to qualitative laws for the mean temperature profile as E (and n,) ap-

proach infinity.
One such condition on the structure of I, can be found by summing eq. (16)

by parts:

+no ' +n,
a7) S 1. exp [ing] = (I,,o S exp [imp]),—

n=—ngy n=—n,

1 +n .
— ——exp i) =1 ”2% AL, exp [ing] .

If then I, is smooth in the sense that

I,
(18) AL =",
0
the first term on the right of eq. (17) is an asymptotic «law » of order n, larger

than the second term, for ¢>>m/n,.
Before investigating this consequence, an alternate statement of the con-

ditions will be explored. If one writes

n
(19) I,=6G (EJ-F—] ) m) ) !

and expands G in a power series

— S ___21__ " — (— 1) G*
20) 0-%a.( ) eu=caran,

it is possible to perform the partial sums and explicitly order terms in I/n,.
The sum

B i _ &Xp [ip(n, +1)]  exp [— ip(n, + 1)] .
- n-zn.eXp tine] = ‘exp [ip] —1 exp [—ip] —1 ?,

permits one to determine the sums

+n m
@2) 3 nmexpling] = (— 1) Sw —
¢
exp [igp(n, + 1)]
exp lig —1
exp [ip(no + 2)]
(exp [ig] — 1)?

ne=—ng

exp [— ’;q’('”'o + 1)]} _
exp [— ip] — 1
. €XD [— ip(n,+ 2)]
(exp [— ig] — 1)2} Tt

= 1 | + (=1

+(=1)

— m(n, + 1! {
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Hence
2 exp [ip(n, + 1)] » €XD [— igp(no + 1)]]
e T =3 [0 {PRUTE I + o SRR
— m@G,, [exp [ip(n, + 2)] o &P [ ip(n, + 2)]
nwlmww—w+‘”@whmaﬁ+
m*G,,
+...+m {} +~-.} .

One obvious, but strong, condition that, away from the boundaries, the leading
term be of order 7, larger than all other terms in eq. (23) is that G be a finite
polynomial. The conditions that I, be smooth, eq. (18), or that it be properly
represented by a finite polynomial therefore lead to the same law at large E.
One may write

Z Gm = gr + ig i

m=0

then from Eq. (20) and (23)

sin (2n, + 1)(@/2) cos (2ny + 1)(¢/2)
sin(p/2)  7° sin(g[2)

(24) Ino—mo =49,

Our physical problem requires that 8 be symmetric around the mid-point of
the region. Therefore either g; or g, must be zero. If one chooses g, =0 and
defines 0 = ¢ — =z then

(25) ("TI;) g 00 Gt 1)

Integrating eq. (25) to obtain the temperature field one finds

#(T.—T(0) g 1

outside a region within z/n, of the boundaries. An identical law results for
¢9.=0 and g,0.
Near the boundary eq. (26) leads to

(27) T,—T(Z) ~ 2z

in keeping with the experimental results.
The preceding arguments for thermal turbulence are easily adapted to the
shear flow problem. The sufficient condition for inviscid stability in parallel

[
N
-
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flow is that the curvature of the flow do not change sign. Paralleling eq. (13)
one may write
" »(UIU,)

LS =I>0.
NZ|Zy)-

(28)

Since the conditions on I are just those of the thermal problem,

. 5 €082 (2m, + 1)6
(20) Do = g2 —— 222

’

where n, is now a monotonically increasing function of the Reynolds’ number.
Integrating eq. (29) twice one obtains a velocity-defect law

Upe— U 1, 1 1

This profiles adheres closely to the experimental results (LAUFER, 1950) not
only in its logarithmic behavior near the boundary but in its parabolic char-
acter in the mid-regions of the flow.

The possibility remains that the heat and momentum transport spectra
could have «tails » extending well beyond n,+1. It has been found that a
weak exponential « tail » beyond n,, responsible for only one percent of the
total transport, can significantly modify eq. (24) for I. Hence one must con-
clude that the available experimental evidence supports the second assertion
as well as the first.

3. — The qualitative conclusions, eq. (26) and (30), have been obtained in
two previous studies (MALKUS, 1954, 1956). However they were immersed in
the complexity of a quantitative analysis and it was not clear at that time
whether these «laws » were immediate consequences of the basic assertions or
whether they resulted from the several mathematical approximations. The
formulation of the problem in Section 2 was made to isolate these asymptotic
consequences of the two assertions from two more explicit assertions on which
the quantitative theory rests.

The first of these more explicit assertions is that the smallest scale of
motion contributing to the transport of heat (or momentum) is that smallest
motion which is unstable on the mean profile. This statement replaces the
second assertion of Section 1. It is based on the belief that there is a negli-
gible transfer of organization down the spectrum by non-linear processes.
Hence n,+1 is to be found by a conventional stability analysis of the mean
profile.

Still, within the constraints so imposed on the fields of motion, many pos-
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gibilities remain. The second of the more explicit assertions was that the con-
strained flow would approach that extreme state which maximized the total
dissipation rate. The determination of this extreme state proves to be a
tractable, if difficult, variational problem for the optimum I,. With I, quan-
titatively determined, a mean field of flow from boundary to boundary and
the dependence of the transport on the boundary conditions is given. Com-
parison with experiment can then establish the range of validity of the asser-
tions with little opportunity for self-deception.

First attempts at the determination of the extreme states for shear turbu-
lence and convective turbulence have been made (MALKUS, 1954, 1956). The
quantitative results for Von Karman’s constant (347 in eq. (30)), agree with
the data of LAUFER (1950). The quantitative results for the convective con-
stant (3¢ in eq. (26)) is twenty percent less than the value found by TowN-
SEND (1959). However, in thig latter case, more mathematical care must be
taken to satisfy boundary conditions and more data must be gathered. A
report on steps in both these directions and a new simplification of the mathe-
matical problem will be presented in a forthcoming study.

* ok *k

This paper was performed under the auspices of the Office of Naval Re-
search and is Contribution No. 1148 from the Woods Hole Oceanographic
Institution.
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