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Abstract

For the (d + 1)-dimensional Lie group G = Z×p n Z
⊕d
p , we determine through the use of p-power

congruences a necessary and sufficient set of conditions whereby a collection of abelian L-functions
arises from an element in K1(ZpJGK). If E is a semistable elliptic curve over Q, these abelian
L-functions already exist; therefore, one can obtain many new families of higher order p-adic
congruences. The first layer congruences are then verified computationally in a variety of cases.
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1. Introduction

Fix a prime p , 2 and a positive integer d. We also choose p-power free integers
∆1, . . . ,∆d > 1 which are pairwise coprime, and write ∆ for the product

∏d
i=1 ∆i. The

d-fold false Tate curve tower

Q(d)
∞,∆

:=
⋃
n≥1

Q(µpn ,∆
1/pn

1 , . . . ,∆
1/pn

d )

is normal over Q and has the structure of a (d + 1)-dimensional p-adic Lie extension.
Its Galois group is isomorphic to the semidirect product

G(d)
∞ := Gal(Q(d)

∞,∆
/Q) � Σ∞ n H(d)

∞ ,

where H(d)
∞ is a free Zp-module of rank d, and Σ∞ = Gal(Q(µp∞)/Q) acts on H(d)

∞

through the cyclotomic character. The Iwasawa algebra ZpJG(d)
∞ K is then given by the

projective limit lim
←−−P

Zp[G(d)
∞ /P], where the inverse system of the P range over normal

subgroups of finite index in G(d)
∞ .
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2 D. Delbourgo and L. Peters [2]

For a ring R, we denote by K1(R) its first algebraic K-group, in the sense of Milnor.
There are three main objectives in this article:

(I) to describe the structure of K1(ZpJG(d)
∞ K) via p-power congruences;

(II) to work out these congruences for a family of abelian p-adic L-functions;
(III) to numerically verify the predicted congruences in some explicit examples.

We should point out that (I) is already fully solved when d = 1 thanks to the results of
Kato [11], so our theorems here generalise his method to the d > 1 situation. There
already exists a large body of work due to Kakde, Hara, Ritter and Weiss [4, 9, 10, 16]
devoted to the study of nonabelian Iwasawa Main Conjectures. The extensions we are
considering differ from the ‘admissible extensions’ in [4] in two important ways:

(a) the full Lie extension Q(d)
∞,∆

is not a union of totally real fields;

(b) there is no subfield L ⊂ Q(d)
∞,∆

such that L/Q is pro-p of dimension d + 1.

Part (a) obstructs the formulation of an Iwasawa Main Conjecture, as nobody has yet
constructed abelian p-adic L-functions in this setting. Part (b) is not so serious.

Another point of departure from [4] is that the congruences derived by Kakde, Hara,
Ritter and Weiss are described in terms of ideals inside completed group algebras,
whereas the congruences derived here (and by Kato in [11]) are p-adic in flavour.
While both approaches ultimately yield necessary and sufficient conditions, in terms
of checking congruences via a computer program, the latter is the only one that can be
easily implemented (and, even then, numerous computational headaches arise).

Remarks.

(i) As no Main Conjecture can be formulated over Q(d)
∞,∆

for Tate motives, the next
obvious place to look for examples is from the theory of elliptic curves. If
U(m) = Gal(Q(µp∞)/Q(µpm )), then sequences of p-adic L-functions belonging to
the algebras ZpJU(m)K[p−1] have already been constructed in [1, 5–7].

(ii) Some weak congruences were established under technical hypotheses in [1, 5–7],
inspired by the numerical evidence of the Dokchitser brothers [8].

Following the seminal work of Kakde [4, 10], there is now a precise recipe that, in
principle, allows one to describe K1(−) of a noncommutative Iwasawa algebra. To
construct theta-maps, one needs a ‘dense enough’ family of subgroups for G(d)

∞ . In
Section 4 we build homomorphisms

θm : K1(ZpJG(d)
∞ K) −→ K1(ZpJU(m) × H(d)

∞ /pmK) at each m ≥ 0,

by applying the appropriate norm map and then quotienting out the commutator. Given
any multiplicative character χ : H(d)

∞ → C
×
p of finite order pv with v ≤ m, one next forms

the composition

χ ◦ θm : K1(ZpJG(d)
∞ K) −→ K1(OCpJU(m)K) � OCpJU(m)K×.
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As we shall see subsequently in Sections 2 and 4, the coefficient ring for the image of
χ ◦ θm is in fact Zp, and the homomorphism χ ◦ θm depends only on J = Ker( χ). We
therefore relabel χ ◦ θm simply with θJ .

Notation.

(a) Let us denote byZ(v)
∞ the finite set of subgroups J < H(d)

∞ such that the quotient
group H(d)

∞ /J is cyclic of order pv, and setZ∞ =
⋃

v≥0Z
(v)
∞ .

(b) If J = Ker( χ) for a character χ on H(d)
∞ , we write J̃ for the subgroup Ker( χp).

(c) The full theta-mapping then refers to the collection of homomorphisms∏
J∈Z∞

θJ .

For a fixed x ∈ K1(ZpJG(d)
∞ K) and a subgroup J ∈ Z(v)

∞ , each element av,J = θJ (x)
belongs inside ZpJU(v)K×. One can then turn the situation on its head, by asking the
following question.

Question. Given a collection of the av,J , under what conditions does there exist a
global element x ∈ K1(ZpJG(d)

∞ K) such that av,J = θJ (x) at each J?

If d = 1, Kato provided a complete answer in [11, Section 3] by using p-power
congruences. For the case d > 1, we shall adopt a hybrid approach, mixing together
his original p-adic method with the powerful logarithmic techniques in [9, 10, 16].

First, we need some notation. For each m > 0, let ϕ : ZpJU(m)K→ ZpJU(m+1)K denote
the extension of the p-power map on U(0). Secondly, if v ≤ m, we shall write

Nv,m : ZpJU(v)K −→ ZpJU(m)K

to indicate the norm map on algebras, induced from the natural inclusion U(m) ↪→ U(v).
Choose an integer m ≥ 1. We introduce congruences (1.1)m,h and (1.2)m as follows:

• for a nontrivial cyclic subgroup 〈h〉 ⊂ H(d)
∞ /pm of order pν(h),

m∏
v=1

∏
J∈Z

(v)
∞ ,

h∈J/pmH(d)
∞

Nv,m(cJ )pv
≡

m∏
v=1

∏
J∈Z

(v)
∞ ,

hp∈J/pmH(d)
∞

Nv,m(cJ )pv−1
mod pm(d+1)−ν(h);

(1.1)m,h

• similarly, at the trivial subgroup,
m∏

v=1

∏
J∈Z

(v)
∞

Nv,m(cJ )pv
≡ 1 mod pm(d+1), (1.2)m

where, for each J ∈ Z(v)
∞ , one defines

cJ := av,J/N0,v(a0,H(d)
∞

) × ϕ ◦ N0,v−1(a0,H(d)
∞

)/ϕ(av−1,J̃ ).
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The following statement constitutes the main algebraic result derived in this article.

Theorem 1.1. A collection of elements aJ = av,J ∈ ZpJU(v)K× lies in the image of
K1(ZpJG(d)

∞ K) under the theta-map if and only if, for all positive integers m:

(i) the congruence (1.1)m,h holds at each nontrivial cyclic subgroup 〈h〉 ⊂ H(d)
∞ /pm;

(ii) the congruence (1.2)m holds.

Furthermore, the kernel of the theta-map is trivial, that is,
∏
θJ is an injection.

There is a localised version of this theorem, which works in the following manner.
Let S denote a canonical Ore set in the sense of [13]. Then a necessary set of
conditions for a system of av,J ∈ ZpJU(v)K×

SJ
to lie in the image of K1(ZpJG(d)

∞ KS)
under the S-localisation of the theta-map

∏
θJ is that the associated cJ satisfy the

congruences (1.1)m,h and (1.2)m for m ≥ 1.

Conjecture 1.2. The family of congruences (1.1)m,h and (1.2)m is also sufficient to
determine whether the elements av,J ∈ ZpJU(v)K×

SJ
arise from K1(ZpJG(d)

∞ KS).

As has already occurred with the d = 1 situation studied in [11], we have been
unable to establish the sufficiency of these p-power congruences, and unfortunately
the conjecture remains unresolved at this point (though almost certainly it is true).

For a fixed value of d > 1, the number of cyclic subgroups of H(d)
∞ /pm is of type

O(pm(d−1)), so the system of congruences to be checked will grow rapidly with m.
However, if d = 1, the system of congruences grows only linearly as a function of m.
If d = 2, then we are dealing with the three-dimensional Lie group G(2)

∞ � Z×p n Z
2
p, and

the result below has some surprising implications for Hasse–Weil L-functions.

Corollary 1.3. If d = 2 and m = 1, then (1.1)m,h and (1.2)m are equivalent to:

(i) (a1,〈h〉)p ≡ N0,1(a0,H(d)
∞

)p mod p2; and
(ii)

∏
J ,[H(d)

∞ :J]=p(a1,J )p ≡ N0,1(a0,H(d)
∞

)p(p+1) mod p3, respectively.

Suppose that E denotes an elliptic curve defined over Q, and let p , 2 be a prime of
good ordinary reduction. The Hecke polynomial of E at p factorises into

X2 − ap(E)X + p = (X − u)(X − w), where u ∈ Z×p and w = p/u.

We shall write Ω+
E ∈ R and Ω−E ∈

√
−1 · R for the real and imaginary periods associated

to a minimal Weierstrass equation for E over the integers.

Definition 1.4. Given an Artin representation τ : G(d)
∞ → GL(V) of conductor fτ, one

defines the algebraic L-value associated to h1(E) ⊗ τ through

LE,∆(τ) :=
Lν-p∆(E, τ, 1)

(Ω+
E)dim(τ+)(Ω−E)dim (τ−) · εp(τ) ·

Lp(τ∗, u−1)
Lp(τ,w−1)

· u−ordp(fτ),

which is Q(τ)-rational by a result of Bouganis and Dokchitser [2, Theorem 4.2].
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Henceforth, assume that E is semistable, that its conductor NE is coprime to ∆ and
fix an embedding ιp : Q ↪→ Qp. The next statement modifies [6, Theorem 1.1].

Theorem 1.5. Each character χ : H(d)
∞ � µpv ↪→ C× extends uniquely to the group

GQ(µpv ), and there exists an element Lp(E,J) ∈ ZpJU(v)K[p−1], with J = J( χ, v) :=
Ker( χ), satisfying

ψ(Lp(E,J)) = ιp(LE,∆(ψ ⊗ IndQ
Q(µpv )( χ)))

at all finite order characters ψ : U(v) → C×.

Note that every Artin representation τ which factors through the Galois group G(d)
∞

can be decomposed into a direct sum of the ψ ⊗ Ind( χ), each of which is irreducible
(see [17, Section 8.2] for a nice discussion of this).

Remark. For simplicity, we now consider the case d = 2; over the first layer m = 1,

Gal(Q(µp,∆
1/p
1 ,∆

1/p
2 )/Q(µp)) � H(2)

∞ /p = Fp ⊕ Fp.

If we define χ∆ j : GQ � Gal(Q(µp,∆
1/p
j )/Q(µp))� µp by sending σ 7→ σ(∆1/p

j )/∆1/p
j ,

the characters {χs
∆1
χt

∆2
| s, t ∈ Z} form a basis of the dual Hom(H(2)

∞ /p,Q). Moreover,
each individual χs

∆1
χt

∆2
is anticyclotomic, so that ρχs

∆1
χt

∆2
:= IndQ

Q(µp)(χ
s
∆1
χt

∆2
) will be

realisable over the rationals and thus LE,∆(ρχs
∆1
χt

∆2
) ∈ Q.

Proposition 1.6. If the family of elements {Lp(E,J)}J belongs to
∏
θJ (K1(ZpJG

(2)
∞ KS)),

their constant terms satisfy first layer congruences:

LE,∆(ρχ∆1χ
t
∆2

)p ×

p−2∏
j=0

LE,∆(ω j)−p ≡ 1 mod p2 for t ∈ {0, . . . , p − 1}, (1.6.1)

LE,∆(ρχ∆2
)p ×

p−2∏
j=0

LE,∆(ω j)−p ≡ 1 mod p2 and (1.6.2)

(
LE,∆(ρχ∆2

) ×
p−1∏
t=0

LE,∆(ρχ∆1χ
t
∆2

)
)p
×

p−2∏
j=0

LE,∆(ω j)−p(p+1) ≡ 1 mod p3. (1.6.3)

The congruences (1.6.1)–(1.6.3) follow directly from Corollary 1.3 and
Theorem 1.5, upon evaluating the p-adic avatars a1,J = Lp(E,J) at the trivial
character ψ = 1.

By undertaking various computer calculations, we have numerically verified them
for the following elliptic curves and parameter choices:

• the elliptic curve E = 11A3, the prime p = 3 and (∆1,∆2) in the list

(2, 5), (2, 7), (2, 13), (2, 17), (2, 19), (2, 23), (2, 31), (2, 37),
(2, 41), (5, 7), (5, 13), (5, 17), (5, 19), (5, 23), (7, 13), (7, 17);
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6 D. Delbourgo and L. Peters [6]

• the elliptic curve E = 77C1, the prime p = 3 and (∆1,∆2) in the list

(2, 5), (2, 13), (5.13);

• the elliptic curve E = 19A3, the prime p = 5 and (∆1,∆2) = (2, 3);
• the elliptic curve E = 56A1, the prime p = 5 and (∆1,∆2) = (2, 3).

The L-values themselves are calculated in Section 6 using the MAGMA package. We
should point out that the LSeries routine can take a very long time to run, especially if
the conductor of the motive h1(E) ⊗ ρ is large; in total these four examples represent
six months worth of computation. Moreover, we did not find any situations where the
congruences failed to hold, within the limitations of our search range.

Here is a brief plan of the article. In Sections 2 and 3 we define the additive version
of the theta-map, and describe its image fully using trace relations. Then in Section 4
we follow the method of Kakde et al., relating the multiplicative and additive worlds
via the Taylor–Oliver logarithm. The proof of Theorem 1.1 is completed in Section 5.
Lastly, Section 6 focuses on applications to L-functions of modular elliptic curves, in
particular the verification of (1.6.1)–(1.6.3) for the examples mentioned above, as well
as the proofs of Theorem 1.5 and Proposition 1.6.

2. The combinatorics of G(d)
∞

-representations

Throughout, we adopt the convention that (1 + p0Z)/(1 + pnZ) indicates the group
(Z/pnZ)×. Let us consider the finite semidirect products

G(d)
n := (Z/pnZ)× n (Z/pnZ)⊕d = Σn n H(d)

n say,

where d ≥ 1 is a fixed integer. Consequently, G(d)
∞ � lim←−n G(d)

n and H(d)
∞ � lim←−n

H(d)
n .
In particular, an element σ ∈ Σn acts on H(d)

n (through conjugation) by sending
(h1, . . . , hd) 7→ (σ × h1, . . . , σ × hd). Furthermore, every element g ∈ G(d)

n can be
uniquely expressed as

g = σ · h for some σ ∈ Σn and h ∈ H(d)
n .

Strictly speaking, the true binary operation on H(d)
n = (Z/pnZ)⊕d should be ‘+’;

however, we often switch notation between + and the standard group multiplication
on G(d)

n , provided the context is clear.
We start by discussing some basic representation theory of the finite group G(d)

n . For
an element α ∈ (Z/pnZ)⊕d, consider the associated character χα : H(d)

n −→ C
× given by

χα(h1, . . . , hd) := exp
(2π
√
−1

pn ×

d∑
j=1

α jh j

)
for all h = (h1, . . . , hd) ∈ H(d)

n .

Note that every character on H(d)
n into C× has this form for an appropriate choice of α.
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Theorem 2.1.

(i) If χ : H(d)
n � µpfχ , then StabΣn ( χ) = (1 + pfχZ)/(1 + pnZ).

(ii) Each character χ extends to StabΣn ( χ) n H(d)
n via the rule χ†(σ · h) = χ(h).

(iii) All irreducible representations on G(d)
n are of the form

ρ(d)
n ( χ, ψ) := IndG(d)

n

StabΣn ( χ)nH(d)
n

( χ† ⊗ ψ),

where ψ : Σn → C
× is a multiplicative character.

(iv) Two representations ρ(d)
n ( χ, ψ) and ρ(d)

n ( χ′, ψ′) are isomorphic if and only if the
character χ′ lies in the Σn-orbit of χ, and ψ′ agrees with ψ on StabΣn ( χ).

Proof. Part (i) follows easily from the description of the stabiliser subgroup as

StabΣn ( χα) = {σ ∈ Σn | χα(σhσ−1) = χα(h) for all h ∈ H(d)
n }

and the fact that χα(σhσ−1) = χσα(h). Parts (ii)–(iv) are a corollary of [17,
Proposition 25]. �

Since the irreducible representations are already completely determined, let us now
compute the cardinalities of the various objects occurring in the theorem above.

Proposition 2.2.

(a) In the previous notation, #StabΣn ( χ) = φ(pn)/φ(pfχ) and dimC(ρ(d)
n ( χ, ψ)) =

φ(pfχ).
(b) For a fixed fχ ≥ 1, there are exactly

#{ρ ∈ Rep(G(d)
n ) | dimC(ρ) = φ(pfχ)} =

(pdfχ − pd(fχ−1)) × φ(pn)
φ(pfχ)2

nonisomorphic irreducible representations ρ(d)
n (χ, ψ) induced from the subgroup

(1 + pfχ)/(1 + pnZ) n H(d)
n .

Proof. The statement (a) is an immediate consequence of the index formula

dimC(IndG(d)
n

StabΣn ( χ)nH(d)
n

( χ† ⊗ ψ)) = [G(d)
n : StabΣn ( χ) n H(d)

n ] =
#Σn

#StabΣn ( χ)
.

To show (b), let us first fix the exponent fχ. Then the dimension of each induced
representation ρ must equal φ(pfχ); furthermore,

#reps of the form ρ(d)
n ( χ, ψ)

by 2.1(iv)
=

#{chars χ : H(d)
n � µpfχ }

#(Z/pfχZ)×
× #StabΣn ( χ)

by 2.2(a)
=

(pfχ)d − (pfχ−1)d

φ(pfχ)
×
φ(pn)
φ(pfχ)

.

Note here that we have utilised the fact that the Σn-orbit of a character χα with
order H(d)

n
(α) = pfχ coincides exactly with the set {χaα | a ∈ (Z/pfχZ)×}. �
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In order to calculate ranks for the group rings occurring in the additive theta-map,
we first need to calculate the rank (as a Zp-module) of its domain Zp[Conj(G(d)

n )].

Lemma 2.3. The Zp-rank of Zp[Conj(G(d)
n )] equals

#Conj(G(d)
n ) =


pn−1 ×

( p(d−2)n − 1
pd−2 − 1

×
pd − 1
p − 1

+ p − 1
)

if d ≥ 3,

pn−1 × (n(p + 1) + p − 1) if d = 2,
pn − 1
p − 1

+ pn − pn−1 if d = 1.

Proof. Assuming initially that d ≥ 1, the size of Conj(G(d)
n ) equals

#{irr. reps of G(d)
n , up to IM}

by 2.2(b)
= #Σn +

n∑
fχ=1

(pdfχ − pd(fχ−1)) × φ(pn)
φ(pfχ)2

= φ(pn) ×
(
1 +

pd − 1
(p − 1)2

n∑
fχ=1

p(d−2)(fχ−1)
)
.

The result then follows by summing up the geometric progression on the right,
according to the three cases d ≥ 3, d = 2 and d = 1. �

For each integer m ≤ n, we now define a normal subgroup of G(d)
n = Σn n H(d)

n by
taking

Sm :=
1 + pmZ

1 + pnZ
n H(d)

n .

Lemma 2.4.

(i) The commutator subgroup [Sm,Sm] equals (H(d)
n )pm

.
(ii) Each quotient group Sab

m = Sm/[Sm, Sm] is isomorphic to the product
(1 + pmZ)/(1 + pnZ) × H(d)

m .

Proof. Note that 1 + pm ∈ Σn acts trivially on the quotient H(d)
m � H(d)

n /(H(d)
n )pm

;
therefore, Sm/(H

(d)
n )pm

� (1 + pmZ)/(1 + pnZ) n H(d)
m is actually a direct product and

so must be abelian; it follows that [Sm,Sm] ⊂ (H(d)
n )pm

.
However, if this were to be a strict inclusion, H(d)

n /[Sm,Sm] would contain an
element h′ of order pm+1. The action of 1 + pm on h′ would then be nontrivial, implying
that Sm/[Sm,Sm] is noncommutative, which is clearly nonsense. �

By construction, the trace map TrG(d)
n /Sm

: Zp[Conj(G(d)
n )]→ Zp[Conj(Sm)] averages

a conjugacy class over the coset representatives of G(d)
n /Sm; more precisely,

TrG(d)
n /Sm

: [g]G(d)
n
7→

∑
u∈G(d)

n /Sm,ugu−1∈Sm

[ugu−1]Sm .
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Secondly, by quotienting an element of Sm modulo [Sm,Sm], one induces a map

Zp[Conj(Sm)]
mod [Sm,Sm]
−→ Zp

[
Conj

(
Sm

[Sm,Sm]

)]
� Zp

[1 + pmZ

1 + pnZ
× H(d)

m

]
,

where the last isomorphism arises because the conjugacy classes of an abelian group
are in one-to-one correspondence with its elements.

Definition 2.5.

(a) We can now build the mth level of the additive theta-map

θ+
m : Zp[Conj(G(d)

n )] −→ Zp

[1 + pmZ

1 + pnZ

]
[H(d)

m ]

by taking the composition θ+
m([g]) := TrG(d)

n /Sm
([g]) mod [Sm,Sm].

(b) Extending each character χ : H(d)
m � µpm to the ring Zp[(1 + pmZ)/(1 + pnZ)]

[H(d)
m ],

θ+
χm

: Zp[Conj(G(d)
n )] −→ Zp[µpm ]

[1 + pmZ

1 + pnZ

]
is defined via θχm := χ ◦ θm.

As we will soon discover, both these θ+-maps play a fundamental role in describing
the image of Zp[Conj(G(d)

n )] inside the direct product of its abelian factor rings. Let us
first see the effect of these homomorphisms on individual conjugacy classes.

Notation. We write νm(h) to denote the p-exponent for the image of h inside H(d)
m �

H(d)
n /pm, so that

νm(h) = min{t ≥ 0 | hpt
∈ (H(d)

n )pm
}.

For example, if m = n, then pνn(h) is just the order of h within the full group H(d)
n .

Alternatively, if m < n, one finds that νm(h) = max{νm+ j(h) − j, 0} when j ≤ n − m.

Proposition 2.6. LetAH(d)
m
〈h〉 :=

∑
z∈〈h〉,〈z〉=〈h〉[z] ∈ Zp[H(d)

m ] for each h ∈ H(d)
m ; then:

(i)

θ+
m([σ · h]G(d)

n
) =


φ(pm)
φ(pνm(h))

[σ](1+pmZ)/(1+pnZ) ×AH(d)
m
〈h〉 if σ ≡ 1 mod pm,

0 otherwise;

(ii)

θ+
χm

([σ · h]G(d)
n

) =


φ(pm)[σ](1+pmZ)/(1+pnZ) if σ ≡ 1 mod pm and h ∈ Ker( χ),
−pm−1[σ](1+pmZ)/(1+pnZ) if σ ≡ 1 mod pm, h < Ker( χ)

but hp ∈ Ker( χ),
0 otherwise.
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10 D. Delbourgo and L. Peters [10]

Proof. Let g = σ · h be an arbitrary element of G(d)
n . Since G(d)

n /Sm � (Z/pmZ)×, a
simple calculation reveals that

TrG(d)
n /Sm

([g]G(d)
n

) =


∑

u∈(Z/pmZ)×
[σ · (uh)]Sm if σ ≡ 1 mod pm,

0 if σ . 1 mod pm.

Suppose now that σ ≡ 1 mod pm. Reducing the above equation modulo [Sm,Sm], one
quickly deduces that

θm([g]G(d)
n

) = [σ](1+pmZ)/(1+pnZ) ×
∑

u∈(Z/pmZ)×
[(uh1, . . . , uhd)]H(d)

m

= [σ](1+pmZ)/(1+pnZ) ×
φ(pm)
φ(pνm(h))

∑
u∈(Z/pνm(h)Z)×

[(uh1, . . . , uhd)]H(d)
m
.

The last sum ranges over precisely the generators of the cyclic subgroup 〈h〉 ⊂ H(d)
m , in

which case (i) is established.
To show (ii), we simply appeal to the character-sum identities

χ(AH(d)
m
〈h〉) =

∑
u∈(Z/pνm(h)Z)×

χ(h)u =


φ(pνm(h)) if h ∈ Ker( χ),
−pνm(h)−1 if h < Ker( χ) but hp ∈ Ker( χ),
0 otherwise,

whose proof is a straightforward exercise in cyclotomy. �

Corollary 2.7. The image of θ+
m is naturally a free Zp[(1 + pmZ)/(1 + pnZ)]-module,

and

rankZp[(1+pmZ)/(1+pnZ)](Im(θ+
m)) =

1 +
pm(d−1) − 1
pd−1 − 1

×
pd − 1
p − 1

if d ≥ 2,

1 + m if d = 1.

Proof. Because the elements AH(d)
m
〈h〉 are linearly independent over Zp[(1 + pmZ)/

(1 + pnZ)], the rank of Im(θ+
m) must equal

(the no. of theAH(d)
m
〈h〉) =

m∑
j=0

(no. of cyclic subgroups 〈h〉 ⊂ H(d)
m of size p j)

= 1 +

m∑
j=1

p jd − p( j−1)d

φ(p j)
= 1 +

pd − 1
p − 1

×

m∑
j=1

p( j−1)d

p j−1 .

The stated formula is a direct consequence of evaluating this geometric progression.
For instance, if 0 ≤ m ≤ n and Σ′ = (1 + pmZ)/(1 + pnZ), then

Im(θ+
m) � Zp[Σ′] ⊗Zp Zp〈S

(A)
m 〉,

where the set

S(A)
m := {φ(pm) · idH(d)

m
} ∪ {pm−νm(h) · AH(d)

m
〈h〉 | 0 , 〈h〉 < H(d)

m }. �
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Remarks.

(i) To illustrate what happens in the familiar false-Tate situation d = 1, by
Corollary 2.7 the rank of Im (θ+

m) grows linearly with m, while θ+
0 is a

surjection. Therefore, to recover Zp[Conj(G(1)
n )] inside the finite direct product∏n

m=0 Im(θ+
m), one would need only a single relation linking Im(θ+

m−1) with
Im (θ+

m) for each m.
(ii) In his works [11, 12], Kato provided exactly these relations for finite quotients

of
(
Z×p Zp

0 1

)
and

(1 Zp Zp
0 1 Zp
0 0 1

)
, respectively. Our task will be to find analogues of these

relations on finite quotients of the (d + 1)-dimensional Lie group lim←−n G(d)
n .

(iii) For general d ≥ 1, a necessary condition for a sequence {ym}m ∈
∏n

m=0 Zp[Sab
m ]

to originate from an element x ∈ Zp[Conj(G(d)
n )] under

∏n
m=0 θ

+
m is given by the

following lemma.

Lemma 2.8. If ym = θ+
m(x) for each m ∈ {0, . . . , n}, then one obtains relations

TrZp[(1+pm−1Z)/(1+pnZ)×H(d)
m−1]/Zp[(1+pmZ)/(1+pnZ)×H(d)

m−1](ym−1) ≡ ym mod (H(d)
m )pm−1

,

that is, the elements {ym}0≤m≤n are trace compatible.

Proof. Without loss of generality, one may assume that x = [σ · h]G(d)
n

since the maps
in question are all Zp-linear. If σ . 1 mod pm, both of the terms are zero. If
σ ≡ 1 mod pm, then, by Proposition 2.6(i),

Tr(ym−1)

=
φ(pm−1)
φ(pνm−1(h))

TrZp[(1+pm−1Z)/(1+pnZ)]/Zp[(1+pmZ)/(1+pnZ)]([σ](1+pm−1Z)/(1+pnZ))AH(d)
m−1
〈h〉

= φ(pm)[σ](1+pmZ)/(1+pnZ) ×
1

φ(pνm−1(h))
AH(d)

m−1
〈h〉,

whilst
ym = φ(pm)[σ](1+pmZ)/(1+pnZ) ×

1
φ(pνm(h))

AH(d)
m
〈h〉.

If νm(h) = 0, then (1/φ(pνm(h)))AH(d)
m
〈h〉 = [id]H(d)

m
≡ [id]H(d)

m−1
= (1/φ(pνm−1(h)))AH(d)

m−1
〈h〉.

Alternatively, if νm(h) = 1 so that νm−1(h) = 0, then

1
φ(pνm(h))

AH(d)
m
〈h〉 =

1
p − 1

∑
z∈〈h〉−{0}

[z]H(d)
m
≡ [id]H(d)

m−1
=

1
φ(pνm−1(h))

AH(d)
m−1
〈h〉.

Lastly, if νm(h) ≥ 2, the result follows due to the congruence

AH(d)
m
〈h mod (H(d)

n )pm
〉 mod (H(d)

n )pm−1
≡ p ×AH(d)

m−1
〈h mod (H(d)

n )pm−1
〉

together with the fact that

νm(h) = 1 + νm−1(h) > 1 =⇒ φ(pνm(h)) = p × φ(pνm−1(h)). �
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3. The additive setting (I): describing the image of Θ+

This trace compatibility is not only necessary for a sequence to belong to the image
of the map

∏
θ+

m but it also turns out be a sufficient condition, as evidenced below. In
fact, the remainder of this section is devoted to establishing the following result.

Theorem 3.1. Defining

Ψ(d)
n := {{ym}0≤m≤n such that Tr(ym−1) ≡ ym}

to be the Zp-submodule of
n∏

m=0

Zp

[1 + pmZ

1 + pnZ

]
〈S(A)

m 〉

consisting of trace-compatible elements, there is an isomorphism∏
θ+

m : Zp[Conj(G(d)
n )]

∼
−→ Ψ(d)

n ⊂

n∏
m=0

Zp[Sab
m ].

Thus, on an infinite level, a sequence {ym} arises from ZpJConj(G(d)
∞ )K in this way if

and only if the relations Tr(ym−1) ≡ ym mod (H(d)
∞ )pm−1

hold at every m ∈ N.

Notation. Recall that 〈h〉 denoted the cyclic subgroup of H(d)
n generated by h.

Henceforth, we shall write

〈h〉gen := {h′ ∈ 〈h〉 < H(d)
n such that 〈h′〉 = 〈h〉}

for its set of generators; in particular, #〈h〉gen = φ(pνn(h)).

Before giving the proof of the main theorem, we require some preparatory results.

Lemma 3.2. The conjugacy classes in G(d)
n are represented by the sets

[σ · h]G(d)
n

= {σ · h′ | h′ ∈ 〈h〉gen + (H(d)
n )pordp(σ−1)

} with σ ∈ Σn, h ∈ H(d)
n

and the individual class associated to g = σ · h depends uniquely on:

(i) the choice of element σ;
(ii) the cyclic subgroup generated by h modulo pordp(σ−1).

Proof. It is beneficial to realise each element g = σ · h ∈ Σn n H(d)
n as a matrix

σ ... 0 h1

...
...
...

0 ... σ hd
0 ... 0 1

 ∈ GL(d + 1,Z/pnZ). Indeed, if k = κ · t,

https://doi.org/10.1017/S1446788714000445 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000445


[13] Higher order congruences amongst Hasse–Weil L-values 13

kgk−1 =



κ 0 . . . 0 t1
0 κ . . . 0 t2
...

...
...

...
0 0 . . . κ td
0 0 . . . 0 1





σ 0 . . . 0 h1
0 σ . . . 0 h2
...

...
...

...
0 0 . . . σ hd

0 0 . . . 0 1





κ 0 . . . 0 t1
0 κ . . . 0 t2
...

...
...

...
0 0 . . . κ td
0 0 . . . 0 1



−1

=



σ 0 . . . 0 −σ × t1 + κ × h1 + t1
0 σ . . . 0 −σ × t2 + κ × h2 + t2
...

...
...

...
0 0 . . . σ −σ × td + κ × hd + td
0 0 . . . 0 1


= σ · (κ × h + (1 − σ) × t).

The span of the elements κ × h coincides with the subset of generators inside 〈h〉,
while one has {(1 − σ) × t | t ∈ H(d)

n } = (pνZ/pnZ)⊕d = (H(d)
n )pν with ν = ordp(σ − 1).

Therefore, the orbit of g under G(d)
n -conjugation is

[g]G(d)
n

= {kgk−1 | k = κ · t with κ ∈ Σn and t ∈ H(d)
n }

= {σ · (h′′ + h′′′) | h′′ ∈ 〈h〉gen and h′′′ ∈ (H(d)
n )pν}, as asserted.

We should of course check that we have the requisite number of conjugacy classes.
Counting the number of classes using our description above,

n∑
ν=0

#{σ ∈ Σn with σ ≡ 1(pν), σ . 1(pν+1)} × #{the 〈h〉 of order dividing pν}

=

n−1∑
ν=0

(
φ(pn)
φ(pν)

−
φ(pn)
φ(pν+1)

)(
1 +

ν∑
r=1

prd − p(r−1)d

φ(pr)

)
+ 1 +

n∑
r=1

prd − p(r−1)d

φ(pr)
,

which (after some manipulation) can be shown to equal the formula in Lemma 2.3. �

Corollary 3.3.

(a) A typical element x ∈ Zp[Conj(G(d)
n )] is of the form

x =

n∑
ν=0

∑
σ≡1 mod pν,
σ.1 mod pν+1

Aσ,ν × [σ · idH(d)
n

]G(d)
n

+

n∑
ν=1

ν∑
r=1

∑
〈h〉<H(d)

ν ,

order(h)=pr

∑
σ≡1 mod pν,
σ.1 mod pν+1

Bσ,〈h〉,r,ν × [σ · h]G(d)
n
.
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(b) Assuming that 0 ≤ m ≤ n, a typical element ym ∈ Im(θ+
m) is of the form

ym = φ(pm)
∑

σ∈(1+pmZ)/(1+pnZ)

ασ,m × [σ](1+pmZ)/(1+pnZ) [id]H(d)
m

+

m∑
r=1

∑
〈h〉<H(d)

m ,

#〈h〉=pr

pm−r
∑

σ∈(1+pmZ)/(1+pnZ)

βσ,〈h〉,r,m[σ](1+pmZ)/(1+pnZ)AH(d)
m
〈h〉.

Here the scalars Aσ,ν, Bσ,〈h〉,r,ν, ασ,m, βσ,〈h〉,r,m can be arbitrary elements of Zp.

Proof. The first statement follows because, by Lemma 3.2, the conjugacy classes of
G(d)

n are indexed by pairs (σ, 〈h〉), where each σ ∈ Σn =
⋃n
ν=0 (1 + pνZ)/(1 + pnZ) −

(1 + pν+1Z)/(1 + pnZ) and, additionally, 〈h〉 < H(d)
ν generates a cyclic subgroup of

size pr with 0 ≤ r ≤ ν. The second statement is easy, as Im(θ+
m) is generated over

Zp[(1 + pmZ)/(1 + pnZ)] by S(A)
m . �

The proof of Theorem 3.1. There are precisely two assertions we need to establish,
namely the injectivity of

∏
θ+

m : Zp[Conj(G(d)
n )] −→

∏n
m=0 Zp[Sab

m ] and secondly its
surjectivity onto Ψ

(d)
n . The former is relatively straightforward.

Let x =
∑

[g]∈Conj(G(d)
n ) m[g] × [g] be in the kernel of

∏n
m=0 θ

+
m. To prove that x is zero, it

is enough to show that τ̃(x) = 0 for an arbitrary class function τ̃ = Tr(τ) on G(d)
n . From

Theorem 2.1(iii), all irreducible characters are of the form ρ̃ = Tr(ρ(d)
n ( χ, ψ)), where

χ : H(d)
n � µpm say, and the multiplicative character ψ : G(d)

n � Σn→ C
×. Consequently,

ρ̃(x) =
∑

[g]∈Conj(G(d)
n )

m[g]

∑
u∈G(d)

n /Sm,
ugu−1∈Sm

χ ⊗ ψ(ugu−1) = χ ⊗ ψ ◦ TrG(d)
n /Sm

(x) = ψ ◦ θ+
χm

(x)

and the right-hand term vanishes because x ∈ Ker(θ+
m) ⊂ Ker(θ+

χm
) for each m.

Furthermore, any class function τ̃ can be decomposed into a Q-linear combination
of irreducible characters ρ̃ as above; hence, the vanishing of τ̃(x) is a direct corollary
of the fact that ρ̃(x) = 0.

To demonstrate surjectivity, one must first study how the trace maps link together
the α and β coefficients associated to a compatible family of elements ym ∈ Zp[Sab

m ].

Lemma 3.4. Let {ym}0≤m≤n ∈ Ψ
(d)
n be a trace-compatible system in

∏
Im(θ+

m), with the
constants ασ,m and βσ,〈h〉,r,m associated to each ym as in Corollary 3.3(b). Then, for
every m ≥ 0 and k ∈ {1, . . . , n − m},

ασ,m = ασ,m+k +

k∑
r=1

∑
〈h†〉<H(d)

m+k

#〈h†〉=pr

βσ,〈h†〉,r,m+k, (3.4.1)m,k

βσ,〈h〉,r,m =
∑

〈h†〉<H(d)
m+k ,

〈h†〉+pm≡〈h〉

βσ,〈h†〉,r+k,m+k for all 〈h〉 < H(d)
m with #〈h〉 = pr. (3.4.2)m,k

https://doi.org/10.1017/S1446788714000445 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000445


[15] Higher order congruences amongst Hasse–Weil L-values 15

Proof. Let us suppose that m ≥ 1. A short computation involving the trace map shows
that

TrZp[(1+pm−1Z)/(1+pnZ)×H(d)
m−1]/Zp[(1+pmZ)/(1+pnZ)×H(d)

m−1](ym−1)

= φ(pm)
∑

σ∈(1+pmZ)/(1+pnZ)

ασ,m−1 × [σ](1+pmZ)/(1+pnZ)

+

m−1∑
r=1

∑
〈h〉<H(d)

m−1,

#〈h〉=pr

pm−r
∑

σ∈(1+pmZ)/(1+pnZ)

βσ,〈h〉,r,m−1[σ](1+pmZ)/(1+pnZ)AH(d)
m−1
〈h〉.

On the other hand, the element ym is equal to

φ(pm)
∑

σ∈(1+pmZ)/(1+pnZ)

ασ,m × [σ](1+pmZ)/(1+pnZ)

+
∑

〈h′〉<H(d)
m ,

#〈h′〉=p

pm−1
∑

σ∈(1+pmZ)/(1+pnZ)

βσ,〈h′〉,1,m × [σ](1+pmZ)/(1+pnZ)AH(d)
m
〈h′〉

+

m∑
s=2

∑
〈h′〉<H(d)

m ,

#〈h′〉=ps

pm−s
∑

σ∈(1+pmZ)/(1+pnZ)

βσ,〈h′〉,s,m × [σ](1+pmZ)/(1+pnZ)AH(d)
m
〈h′〉

≡ φ(pm)
∑

σ∈(1+pmZ)/(1+pnZ)

ασ,m × [σ](1+pmZ)/(1+pnZ)

+
∑

〈h′〉<H(d)
m ,

#〈h′〉=p

(p − 1)pm−1
∑

σ∈(1+pmZ)/(1+pnZ)

βσ,〈h′〉,1,m × [σ](1+pmZ)/(1+pnZ)

+

m−1∑
r=1

∑
〈h〉<H(d)

m−1,

#〈h〉=pr

∑
〈h′〉<H(d)

m ,

〈h′〉+pm−1≡〈h〉

pm−r−1
∑

σ∈(1+pmZ)/(1+pnZ)

βσ,〈h′〉,r+1,m

× [σ](1+pmZ)/(1+pnZ) pAH(d)
m−1
〈h〉

as a congruence modulo (H(d)
m )pm−1

.

Remarks.

(a) By assumption, each Tr(ym−1) ≡ ym mod (H(d)
m )pm−1

; furthermore, the linear
independence of [id]H(d)

m−1
and theAH(d)

m−1
〈h〉 over Zp[(1 + pmZ)/(1 + pnZ)] implies
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that

ασ,m−1 = ασ,m +
∑

〈h†〉<H(d)
m

#〈h†〉=p

βσ,〈h†〉,1,m and

βσ,〈h〉,r,m−1 =
∑

〈h†〉<H(d)
m ,

〈h†〉+pm−1≡〈h〉

βσ,〈h†〉,r+1,m,

which are none other than Equations (3.4.1)m,k and (3.4.2)m,k, respectively.
(b) A straightforward inductive argument shows that the general equation (3.4.1)m,k

follows by combining (3.4.?)m,m+1, (3.4.?)m+1,m+2, . . . , (3.4.?)m+k−1,m+k together.
(c) An identical induction works for the second set of equations, so we are done.

We are ready to establish the surjectivity of
∏
θ+

m. Let {ym} ∈ Ψ
(d)
n denote a trace-

compatible family, whose associated structure constants are ασ,m and βσ,〈h〉,r,m. One
next defines an element x ∈ Conj(G(d)

n ) by

x =
∑

σ∈Σn−(1+pZ)/(1+pnZ)

ασ,0[σ · idH(d)
n

]G(d)
n

+

n∑
ν=1

∑
σ≡1 mod pν,
σ.1 mod pν+1

(
ασ,ν[σ · idH(d)

n
]G(d)

n
+

ν∑
r=1

∑
〈h〉<H(d)

ν ,

order(h)=pr

βσ,〈h〉,r,ν[σ · h]G(d)
n

)
.

Then, repeatedly applying Proposition 2.6(i), at each m ∈ {0, . . . , n},

θ+
m(x) =

∑
σ≡1 mod pm,
σ.1 mod pm+1

C(m)
σ × [σ](1+pmZ)/(1+pnZ) +

n∑
ν=m+1

∑
σ≡1 mod pν,
σ.1 mod pν+1

D(m)
σ,ν

× [σ](1+pmZ)/(1+pnZ),

where the group ring elements C(m)
σ ,D(m)

σ,ν ∈ Zp[H(d)
m ] satisfy

C(m)
σ = φ(pm)ασ,m[id]H(d)

m
+

m∑
s=1

∑
〈h〉<H(d)

m ,

order(h)=ps

pm−sβσ,〈h〉,s,mAH(d)
m
〈h〉

and

D(m)
σ,ν = φ(pm)

ασ,ν +

ν−m∑
r=1

∑
〈h〉<H(d)

ν ,

order(h)=pr

βσ,〈h〉,r,ν

 [id]H(d)
m

+

m∑
s=1

∑
〈h〉<H(d)

m ,

order(h)=ps

pm−s
∑

〈h〉<H(d)
ν ,

〈h〉+pm≡〈h〉

βσ,〈h〉,s+ν−m,νAH(d)
m
〈h〉.
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Substituting in Equations (3.4.1)m,k and (3.4.2)m,k with k = ν − m yields

D(m)
σ,ν = φ(pm)ασ,m[id]H(d)

m
+

m∑
s=1

∑
〈h〉<H(d)

m ,

order(h)=ps

pm−sβσ,〈h〉,s,mAH(d)
m
〈h〉.

Therefore, we can simplify our expression for θ+
m(x), which neatly collapses down to

n∑
ν=m

∑
σ≡1 mod pν,
σ.1 mod pν+1

(
φ(pm)ασ,m +

m∑
s=1

∑
〈h〉<H(d)

m ,

order(h)=ps

pm−sβσ,〈h〉,s,mAH(d)
m
〈h〉

)
[σ](1+pmZ)/(1+pnZ).

The latter formula coincides with that of ym, that is, θ+
m(x) = ym for all m ∈ {0, . . . , n},

and the proof of surjectivity is now finished. �

4. The multiplicative setting

To translate back from the additive to the multiplicative world, one employs the
method of Kakde et al. [4, 9, 10]. We begin with some short background on the
logarithm map over group algebras.

Let G be an arbitrary finite group (not necessarily a p-group) and O a complete
discrete valuation ring unramified at p. We use the notation Frobp for the Frobenius
automorphism on O, and write ϕG : Frac(O)[Conj(G)]→ Frac(O)[Conj(G)] to denote
the map sending

∑
g kg[g]G to the group ring element

∑
g Frobp(kg)[gp]G.

The Taylor–Oliver logarithm ΓG : K1(O[G]) → O[Conj(G)] is defined by the
formula

ΓG(x) := logO[G](x) −
1
p
ϕG(logO[G](x)),

where logO[G] indicates the unique extension of

logJac(O[G]) : K1(O[G], Jac(R[G])) −→
Jac(O[G]) ⊗ Q

[O[G] ⊗ Q,O[G] ⊗ Q]

to the full K-group K1(O[G]) (we refer the reader to Oliver [14] for further details).
Throughout this article, we will take O = Zp, and need only consider subquotients G
of the finite group G(d)

n � Σn n H(d)
n .

The following construction mimics the additive theta-maps in Definition 2.5.

Definition 4.1.

(a) If m ≤ n, we build the mth-level multiplicative theta-map

θm : K1(Zp[G(d)
n ]) −→ K1(Zp[Sab

m ]) � Zp[Sab
m ]×
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18 D. Delbourgo and L. Peters [18]

by forming the composition θm(z) := NrG(d)
n /Sm

(z) mod [Sm,Sm], where we have
written NrG(d)

n /Sm
: K1(Zp[G(d)

n ])→ K1(Zp[Sm]) for the norm homomorphism.
(b) Likewise, for each character χ : Hm → µpm , one defines the map θχm := χ ◦ θm.

We claim that θ0 is surjective. To justify this assertion, note that the inclusion
ι : Σn � Σn n {1} ↪→ Σn n H(d)

n identifies Σn with a nonnormal subgroup of G(d)
n , and

thus induces a map ι∗ : K1(Zp[Σn])→ K1(Zp[G(d)
n ]). Moreover, the projection

G(d)
n

mod H(d)
n

� Σn gives rise to θ0 : K1(Zp[G(d)
n ])→ K1(Zp[Σn]);

because ι mod H(d)
n is the identity map, the homomorphism it induces, θ0 ◦ ι∗, must

also be the identity (and therefore surjective) and hence our claim is true.
One should point out that the above construction produces a splitting of K1 in the

following way. If x ∈ K1(Zp[G(d)
n ]), then define xcy := ι∗ ◦ θ0(x) and x† := x/xcy. We

thereby obtain a direct product decomposition

K1(Zp[G(d)
n ])

∼
−→ K1(Zp[Σn]) ×W† by sending x 7→ (θ0(x), x†),

where the complementary subgroup

W† := {x · ι∗(θ0(x))−1 | x ∈ K1(Zp[G(d)
n ])}.

Remarks.

(i) For m ≤ n, we write N0,m as an abbreviation for the homomorphism

NrΣn/(1+pmZ)/(1+pnZ) : K1(Zp[Σn]) −→ K1

(
Zp

[1 + pmZ

1 + pnZ

])
induced from the norm map on group algebras.

(ii) The natural inclusion τ(m) : (1 + pmZ)/(1 + pnZ) � (1 + pmZ)/(1 + pnZ) n {1} ↪→
Sab

m yields

τ(m)
∗ : K1

(
Zp

[1 + pmZ

1 + pnZ

])
−→ K1(Zp[Sab

m ]),

so the composition τ(m)
∗ ◦ N0,m allows us to compare elements in K1(Zp[Σn]) with

those in K1(Zp[Sab
m ])—if the context is clear, we drop the superscript (m).

(iii) The twist map twn :
∏n

m=0 K1(Zp[Sab
m ]) −→ {1} ×

∏n
m=1 K1(Zp[Sab

m ]) is given by
the formula

twn((z0, . . . , zn)) :=
(
1, . . . ,

zm

τ∗N0,m(z0)
, . . .

)
.

(iv) Lastly, for all x ∈ K1(Zp[G(d)
n ]), one easily checks the identities

twn

(∏
θm(x)

)
= twn

(∏
θm(x†)

)
and twn

(∏
θm(xcy)

)
= (1, . . . , 1)

(in fact, the second identity implies the first).
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[19] Higher order congruences amongst Hasse–Weil L-values 19

Now, if m ≥ 2, the mapping ϕSab
m−1

can be interpreted as taking values in Zp[Sab
m ];

indeed, one can form a sequence

1 + pm−1Z

1 + pnZ
× H(d)

m−1
(−)p

−→
1 + pmZ

1 + pnZ
× (H(d)

m−1)p ∼
−→

1 + pmZ

1 + pnZ
×

( d⊕
j=1

p2Z

pmZ

)
↪→ Sab

m

and we abuse notation by writing ϕ̃Sab
m−1

: Zp[Sab
m−1]→ Zp[Sab

m ] for the composition.
The vector logarithm log†

n
: {1} ×

∏n
m=1 K1(Zp[Sab

m ]) −→ {0} ×
∏n

m=1 Qp[Sab
m ] is then

defined to be

log†
n
((1, z1, . . . , zn)) :=

(
0, logZp[Sab

1 ](z1), . . . , logZp[Sab
m ]

( zm

ϕ̃Sab
m−1

(zm−1)

)
, . . .

)
.

In particular, the vector logarithm can be composed with the twist map to yield a
homomorphism log†

n
◦ twn, sending vectors in K1 to n-tuples of additive elements.

Definition 4.2. Let us define two subgroups of
∏n

m=0 Zp[Sab
m ]× by taking

Ω
(d)
n,cy := {(. . . , τ∗N0,m(z), . . .)0≤m≤n, where z ∈ Zp[Σn]×},

Ω
(d)
n,† :=

{
z ∈ {1} ×

n∏
m=1

1 + pZp[Sab
m ] such that log†

n
◦ twn(z) ∈ Ψ(d)

n

}
and write Ω

(d)
n ⊂

∏n
m=0 K1(Zp[Sab

m ]) for the group generated by Ω
(d)
n,cy and Ω

(d)
n,†.

The connection between the multiplicative and additive settings is neatly captured
by the following result, which gives us a natural analogue of [4, Proposition 4.1].

Theorem 4.3. For each integer n ≥ 1, there is a commutative diagram

K1(Zp[G(d)
n ])

Γ
G(d)

n
◦(−)†

//

∏
θm��

Zp[Conj(G(d)
n )]

∏
θ+

m��
n∏

m=0

K1(Zp[Sab
m ])

log†
n
◦twn //

n∏
m=0

Qp[Sab
m ]

and the kernel of Θ :=
∏
θm is equal to S K1(Zp[G(d)

n ]), while the image of Θ coincides
with Ω

(d)
n .

Thus, the question as to whether a vector z arises from an element of K1(Zp[G(d)
n ])

under
∏
θm reduces to establishing whether twn(z) belongs to Ω

(d)
n = Im(

∏
θm), which

in turn is equivalent to checking if log†
n
◦ twn(z) lies in Ψ

(d)
n = Im (

∏
θ+

m).
The proof of the above theorem is lengthy and will occupy the rest of this section.

https://doi.org/10.1017/S1446788714000445 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000445


20 D. Delbourgo and L. Peters [20]

4.1. Three technical lemmas. We begin by studying the interactions between the
various maps θm, ϕ and log. The results below describe how these homomorphisms
commute with each other, although the proofs themselves could probably be skipped
on a first reading.

Lemma 4.4.

(i) If m ≥ 2 and y ∈ Qp[Conj(G(d)
n )], then

θ+
m ◦ ϕG(d)

n
(y) = p × ϕ(1+pm−1Z)/(1+pnZ)nH(d)

m
(TrG(d)

n /Sm−1
(y) mod (H(d)

n )pm
).

(ii) If m = 1 and y ∈ Qp[Conj(G(d)
n )], then

θ+
1 ◦ ϕG(d)

n
(y) = TrΣn/(1+pZ)/(1+pnZ)(ϕΣn (θ+

0 (y))).

Proof. By the Qp-linearity of the maps involved, it is enough to check the formulae at
individual classes y = [σ · h]G(d)

n
∈ Conj(G(d)

n ). Assuming that m ≥ 2,

θ+
m ◦ ϕG(d)

n
(y)

by 2.6(i)
=


[σp](1+pmZ)/(1+pnZ) ×

∑
u∈(Z/pmZ)×

[uh
p
]H(d)

m
if σp ≡ 1 mod pm,

0 otherwise.

On the other hand,

ϕ(1+pm−1Z)/(1+pnZ)nH(d)
m
◦ TrG(d)

n /Sm−1
(y) mod (H(d)

n )pm

=


ϕ
( ∑

u∈(Z/pm−1Z)×
[σ · uh](1+pm−1Z)/(1+pnZ)nH(d)

m

)
if σ ≡ 1 mod pm−1,

0 if σ . 1 mod pm−1

=


1
p
×

∑
u∈(Z/pmZ)×

[σp · uh
p
](1+pmZ)/(1+pnZ)×H(d)

m
if σ ≡ 1 mod pm−1,

0 if σ . 1 mod pm−1,

which is exactly (1/p)th of the previous quantity, so the first statement follows. To
prove (ii),

θ+
1 ◦ ϕG(d)

n
(y)

by 2.6(i)
=

[σp](1+pZ)/(1+pnZ) × (p − 1)[id]H(d)
1

if σp ≡ 1 mod p,

0 otherwise.

However, ϕΣn (θ+
0 (y)) = [σp]Σn as θ+

0 (y) = [σ]Σn ; hence,

TrΣn/(1+pZ)/(1+pnZ)(ϕΣn (θ+
0 (y))) =


∑

u∈(Z/pZ)×
[σp](1+pZ)/(1+pnZ) if σp ≡ 1 mod p,

0 if σp . 1 mod p,

which means that both quantities above coincide. �
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Lemma 4.5.

(a) The mutually inverse maps log: 1 + pZp[Sab
m ]

∼
−→ pZp[Sab

m ] and exp: pZp[Sab
m ]

∼
−→ 1 + pZp[Sab

m ] restrict to yield isomorphisms

1 + p Im(θ+
m)

log
−→ p Im(θ+

m)
exp
−→ 1 + p Im(θ+

m).

(b) For each pair of integers m, n ≥ 2, there is an isomorphism

1 + Im(θ+
m)n

1 + Im(θ+
m)n+1

∼
−→

Im(θ+
m)n

Im(θ+
m)n+1 , 1 + y 7→ y

induced by the p-adic logarithm.

Proof. Recall first that Im(θ+
m) � Zp[Σ′]

⊗
Zp
Zp〈S

(A)
m 〉, where Σ′ = (1 + pmZ)/

(1 + pnZ) and

S(A)
m = {φ(pm) · idH(d)

m
} ∪ {pm−νm(h) · AH(d)

m
〈h〉 | 0 , 〈h〉 < H(d)

m }.

If we define

ah :=
{

pm−νm(h) · AH(d)
m
〈h〉 if 〈h〉 , 0,

φ(pm) · idH(d)
m

if 〈h〉 = 0,

then it is simple to show that

ah
1
× ah

2
=

∑
t∈(Z/pmZ)×

ah
1
ht

2

upon expressing each ah
j
as the sum

∑
s∈(Z/pmZ)×[hs

j
]H(d)

m
.

In particular, the image of θ+
m is generated over Zp[Σ′] by the finite set of the ah

(which are closed under multiplication) and hence Im(θ+
m) forms an ideal of Zp[Sab

m ].
The demonstration of (a) is then identical to that given in [4, bottom of page 106].

To prove statement (b), we first collect together four key facts describing Im(θ+
m)

and assume throughout that m ≥ 2.

Fact 1. If one of h1, h2 ∈ H(d)
m has order < pm, then ah1

ah2
∈ p Im(θ+

m).

Fact 2. (ah)3 ∈ p Im (θ+
m) for every h ∈ H(d)

m .

Fact 3. yi/i ∈ pbi/pc−log(i)/ log(p) Im(θ+
m) at each y ∈ Im(θ+

m).

Fact 4. Im (θ+
m)1+(pmd−p(m−1)d)/(pm−pm−1) ⊂ p Im(θ+

m).

For instance, Fact 3 means that both the power series log(1 + y) =
∑∞

i=1 ((−1)i+1yi/i)
and (1 + y)−1 =

∑∞
i=0(−1)iyi converge inside Im(θ+

m), whilst Fact 4 implies that the
topology induced by the neighbourhoods {Im(θ+

m) j} j∈N coincides with the p-adic
topology.
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Proof of Fact 1. Since ah
1
× ah

2
=

∑
t1∈(Z/pmZ)× ah

1
h

t1
2

, by iterating,

ah
1
× ah

2
× · · · × ah

N+1
=

∑
t1,t2,...,tN∈(Z/pmZ)×

a
h

1
h

t1
2 ···h

tN
N+1

=

N+1∏
j=1

φ(pm)

φ(pνm(h j))
×

∑
h∈TN

ah,

where TN = 〈h
1
〉gen〈h2

〉gen · · · 〈hN+1
〉gen. Note that the coefficient is divisible by

N+1∏
j=1,νm(h

j
)=0

pm−1 ×

N+1∏
j=1,νm(h

j
)>0

pm−νm(h
j
)
.

In the special case N = 1, if either νm(h
1
) < m or νm(h

2
) < m, then this quantity must

itself be divisible by p; hence, ah1
× ah2

∈ p Im(θ+
m), as asserted. �

Proof of Fact 2. Some elementary calculations reveal that

(ah)2 = ah × ah =
∑

t∈(Z/pmZ)×
ah1+t =

∑
t∈(Z/pmZ)×

p-t+1

ah1+t +
∑

t∈(Z/pmZ)×
p|t+1

ah1+t

=
∑

t∈(Z/pmZ)×
p-t+1

ah +

pm−1∑
s=1

ahps = (pm − 2pm−1) × ah +

pm−1∑
s=1

a(hp)s ,

which is congruent to
∑pm−1

s=1 a(h
p)s modulo pm−1Im (θ+

m). It follows that

(ah)3 = ah × (ah)2 ≡

pm−1∑
s=1

ah × a(hp)s ≡

pm−1∑
s=1

0 mod p Im(θ+
m)

because Fact 1 implies that ah × a(hp)s ≡ 0 mod p Im(θ+
m) has order ((hp)s) < m. �

Proof of Fact 3. Let us write y =
∑
〈h〉<H(d)

m
κ〈h〉 × ah, where each κ〈h〉 ∈ Zp[Σ′]. Using

Fermat’s little theorem,

yp ≡
∑
〈h〉<H(d)

m

κ
p
〈h〉 × (ah)p by Fact 2

≡
∑
〈h〉<H(d)

m

κ
p
〈h〉 × (ah)p−3 × 0 mod p Im(θ+

m),

which implies that yp ∈ p Im(θ+
m). Applying simple induction, one deduces that

yi ∈ pbi/pcIm (θ+
m), while 1/i ∈ p−ordp(i)Zp ⊂ p− log(i)/ log(p)Zp, and the estimate follows

immediately. �

Proof of Fact 4. We essentially need to bound the length of the longest product
ah

1
× ah

2
× · · · × ah

N+1
< p Im(θ+

m). Exploiting Fact 1 above, we know that if any of
the h

j
has order <pm, then the product must automatically lie in p Im(θ+

m). Without
loss of generality, assume that order(h

j
) = pm for all j, in which case

ah
1
× ah

2
× · · · × ah

N+1
=

∑
h∈TN

ah, where TN = 〈h
1
〉gen〈h2

〉gen · · · 〈hN+1
〉gen.
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There are precisely (pmd − p(m−1)d)/(pm − pm−1) cyclic subgroups of H(d)
m of size pm;

consequently, if N + 1 > (pmd − p(m−1)d)/(pm − pm−1), then at least one of the above
〈h

j
〉gen occurs twice or more, in which case ah

1
× ah

2
× · · · × ah

N+1
∈ p Im (θ+

m).
We conclude that the longest product of the ah

j
inside Im (θ+

m) not divisible by p

must have length ≤(pmd − p(m−1)d)/(pm − pm−1). Because the image of θ+
m is generated

over Zp[Σ′] by the set S(A)
m , our final Fact 4 has been established. �

We now return to the proof of Lemma 4.5(b). Since (1 + y)−1 exists, the elements in
1 + Im(θ+

m) form a multiplicative group. In fact, the convergence of the formal power
series

∑∞
i=1 ((−1)i+1yi/i) yields a homomorphism log: 1 + Im(θ+

m)n → Im (θ+
m)n, and we

shall write

log: 1 + Im(θ+
m)n −→

Im(θ+
m)n

Im(θ+
m)n+1

for its composition with the quotient modulo Im (θ+
m)n+1.

Clearly, 1 + Im(θ+
m)n+1 ⊂ Ker(log), but the reverse inclusion is trickier to obtain. We

claim that if m, n ≥ 2 and p ≥ 3, then

log(1 + y) ≡ y mod Im(θ+
m)n+1 for all y ∈ Im(θ+

m)n.

Deferring the claim’s proof momentarily, we deduce that the map log is surjective;
moreover, if y ∈ Im (θ+

m)n and log(1 + y) ∈ Im(θ+
m)n+1, then one has y ∈ Im(θ+

m)n+1. The
latter is equivalent to the statement ‘log(1 + y) ≡ 0 implies that y ∈ Im(θ+

m)n+1’; hence,
one obtains the inclusion Ker(log) ⊂ 1 + Im (θ+

m)n+1.
It remains to justify the above claim. Recall that log(1 + y) = y +

∑∞
i=2 ((−1)i+1yi/i);

we express y ∈ Im(θ+
m)n as the product y = a1 × a2 × · · · × an with a j ∈ Im(θ+

m). If i ≥ 2
and p - i, then

(−1)i+1yi

i
=

(−1)i+1

i
× ai

1ai
2 . . . a

i
n ∈ Im(θ+

m)ni ⊂ Im(θ+
m)n+1.

Alternatively, if i = p, then ap
1/p ∈ Im (θ+

m) by Fact 3, whence

(−1)p+1yp

p
= (−1)p+1 ×

(ap
1

p

)
× ap

2 . . . a
p
n ∈ Im(θ+

m)1+p(n−1);

however, 1 + p(n − 1) > n + 1 if n ≥ 2 and p ≥ 3, which means that (−1)p+1yp/p ∈
Im(θ+

m)n+1. Thirdly, if k ≥ 2 and i = pk, then

(−1)pk+1ypk

pk = ypk−pk ×

(yp

p

)k
∈ Im(θ+

m)n(pk−pk)+(n+1)k ⊂ Im(θ+
m)n+1.

Finally, for a general index of the form i = pk × c with p - c,

(−1)i+1yi

i
=

(−1)i+1

c
×

(yc)pk

pk ∈ Im(θ+
m)n+1

by the previous argument (with y replaced by yc). We may therefore conclude that∑∞
i=2 ((−1)i+1yi/i) ∈ Im(θ+

m)n+1 whenever y ∈ Im (θ+
m)n, and our claim follows. �
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Lemma 4.6. If m ≥ 2 and x ∈ K1(Zp[G(d)
n ]), then

ϕ̃Sab
m−1
◦ logSab

m−1
(θm−1(x)) = ϕ(1+pm−1Z)/(1+pnZ)nH(d)

m
◦ log(NrG(d)

n /Sm−1
(x) mod (H(d)

n )pm
).

Proof. Let us define Gn,m := (1 + pm−1Z)/(1 + pnZ) n H(d)
m , so that Gp

n,m = (1 + pmZ)/
(1 + pnZ) × (H(d)

m )p is isomorphic to a subgroup J of index pd in Sab
m ; we write

$ : Gp
n,m

∼
−→ J ↪→ Sab

m for the corresponding injection. In particular, there is a
commutative diagram

Zp[Gn,m]×

��

// // K1(Zp[Gn,m])
ϕGn,m //

mod (H(d)
m )pm−1

��

K1(Zp[Gp
n,m]) � Zp[Gp

n,m]×

$∗

��
Zp[Sab

m−1]× ∼ // K1(Zp[Sab
m−1])

ϕ̃
Sab

m−1 // K1(Zp[Sab
m ]) � Zp[Sab

m ]×.

If z := NrG(d)
n /Sm−1

(x) mod (H(d)
n )pm

∈ K1(Zp[Gn,m]), then the element θm−1(x) coincides
with z modulo (H(d)

m )pm−1
, in which case

ϕ̃Sab
m−1

(θm−1(x)) = ϕ̃Sab
m−1

(z mod (H(d)
m )pm−1

) = $∗ ◦ ϕGn,m (z).

Taking the logarithm of both sides, and observing that the power series defining ‘log’
commutes with the action of both Frobenii ϕ̃Sab

m−1
and ϕGn,m , the result follows. �

4.2. A proof of Theorem 4.3. Let us start by establishing commutativity of the maps
in the fundamental square. This amounts to checking for all x ∈ K1(Zp[G(d)

n ]) that the
required formula

θ+
m(ΓG(d)

n
(x†)) = logZp[Sab

m ]

( θm(x)
τ∗N0,m(θ0(x))

ϕ̃Sab
m−1

(
θm−1(x)

τ∗N0,m−1(θ0(x))

) )
holds true. We subdivide its verification into the three cases listed below.

Case (I): m = 0. Noting that θ+
0 ◦ ϕG(d)

n
= ϕΣn ◦ θ

+
0 and θ0(x†) = 1,

θ+
0 ◦ ΓG(d)

n
(x†) = θ+

0 ◦ log(x†) −
1
p
× θ+

0 (ϕG(d)
n
◦ log(x†))

= log ◦θ0(x†) −
1
p
× ϕΣn (θ+

0 ◦ log(x†))

= log ◦θ0(x†) −
1
p
× ϕΣn (log ◦θ0(x†)) = 0 − 0 = log(1).

Case (II): m = 1. Following a similar argument,

θ+
1 ◦ ΓG(d)

n
(x†) = θ+

1 ◦ log(x†) −
1
p
× θ+

1 (ϕG(d)
n
◦ log(x†))

= log ◦ θ1(x†) −
1
p
× TrΣn/(1+pZ)/(1+pnZ) ◦ ϕΣn (θ+

0 ◦ log(x†))

= log
(
θ1(x)
θ1(xcy)

)
−

1
p
× TrΣn/(1+pZ)/(1+pnZ) ◦ ϕΣn (log(θ0(x†))),
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where the second line follows from Lemma 4.4(ii). Again θ0(x†) = 1, so the last
summand is zero, whilst θ1(xcy) = τ(1)

∗ ◦ N0,1(θ0(x)); hence,

θ+
1 ◦ ΓG(d)

n
(x†) = log(θ1(x)) − log(τ∗N0,1(θ0(x))) −

1
p
× 0 = log

(
θ1(x)

τ∗N0,1(θ0(x))

)
.

Case (III): m ≥ 2. This computation relies heavily on our technical lemmas. Firstly,
one has the equalities

θ+
m ◦ ΓG(d)

n
(x†) = θ+

m ◦ log(x†) −
1
p
× θ+

m(ϕG(d)
n
◦ log(x†))

= log ◦ θm(x†) −
1
p
× p × ϕ(1+pm−1Z)/(1+pnZ)nH(d)

m

× (TrG(d)
n /Sm−1

◦ log(x†) mod (H(d)
n )pm

)

upon applying Lemma 4.4(i).
Now θm(xcy) = τ(m)

∗ N0,m(θ0(x)); thus, one deduces that θm(x†) = θm(x)/τ∗N0,m(θ0(x));
furthermore, TrG(d)

n /Sm−1
◦ log = log ◦ NrG(d)

n /Sm−1
, whence

θ+
m ◦ ΓG(d)

n
(x†) = log(θm(x)) − log(τ∗N0,m(θ0(x)))

−ϕ(1+pm−1Z)/(1+pnZ)nH(d)
m

(log ◦NrG(d)
n /Sm−1

(x†) mod (H(d)
n )pm

)
by 4.6

= log(θm(x)) − log(τ∗N0,m(θ0(x))) − ϕ̃Sab
m−1
◦ logSab

m−1
(θm−1(x†)).

Exploiting the relation θm−1(x†) = θm−1(x)/τ∗N0,m−1(θ0(x)) once more,

θ+
m ◦ ΓG(d)

n
(x†) = log

(
θm(x)

τ∗N0,m(θ0(x))

)
− log

( ϕ̃Sab
m−1
◦ θm−1(x)

ϕ̃Sab
m−1
◦ τ∗N0,m−1(θ0(x))

)
,

which is equivalent to the required formula.

Conclusion. Combining (I)–(III) establishes that Θ+ ◦ ΓG(d)
n

(x†) = log†
n
◦ twn ◦ Θ(x).

It remains to compute both the kernel and image of Θ. Recall from earlier that

K1(Zp[G(d)
n ]) = ι∗K1(Zp[Σn]) ×W†,

where ι∗ was the section reversing the projection θ0, andW† is the complement. Since
the morphism Θ maps ι∗K1(Zp[Σn]) isomorphically onto the group Ω

(d)
n,cy, the kernel of

Θ will coincide with

Ker(Θ|W†)
by 4.5

= Ker(log†
n
◦ twn ◦ Θ|W†) = Ker(Θ+ ◦ ΓG(d)

n
|W†),

which is precisely the kernel of ΓG(d)
n
|W† because Θ+ is injective. However, the latter is

well known to equal S K1(Zp[G(d)
n ]), so the same must be true for Ker(Θ).
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Finally, as Θ(ι∗K1(Zp[Σn]) = Ω
(d)
n,cy, we must therefore show that Θ(W†) = Ω

(d)
n,†.

Clearly, Θ(W†) ⊂ {1} ×
∏n

m=1 1 + pZp[Sab
m ] and moreover Θ+ ◦ ΓG(d)

n
(W†) ⊂ Ψ

(d)
n . By

Lemma 4.5(a) and the commutativity of our fundamental square,

log†
n
◦ twn ◦ Θ(W†) ⊂ Ψ(d)

n ∩

(
{0} ×

n∏
m=1

pZp[Sab
m ]

)
.

Conversely, every element z ∈ Ω
(d)
n,† can be written as z = Θ(w) for some w ∈W†, and

the proof of Theorem 4.3 is now complete.

5. The additive setting (II): evaluation at characters χ

As we have seen in the previous section, a vector z ∈
∏n

m=0 Zp[Sab
m ]× arises from an

element of K1(Zp[G(d)
n ]) via Θ if and only if log†

n
◦ twn(z) belongs to Im(Θ+). For each

m ∈ {0, . . . , n}, let us abbreviate the group (1 + pmZ)/(1 + pnZ) by using Σ′(m), so that
Sm � Σ′(m) n H(d)

n and Sab
m � Σ′(m) × H(d)

m .
Applying Theorem 3.1, the image of Θ+ consists of the trace-compatible terms

Ψ(d)
n = {{ym}0≤m≤n such that TrΣ′(m−1)/Σ

′
(m)

(ym−1) ≡ ym mod (H(d)
m )pm−1

}.

We will now seek an alternative description for Ψ
(d)
n entirely through the use of

p-power congruences, in the same manner as the d = 1 situation studied in [11,
Section 3].

Notation.

(a) For each character χ : H(d)
m � µpv , we writeJχ for the kernel of χ; thus, H(d)

m /Jχ
is a cyclic group of order pv (in fact, Jχt = Jχ for all t coprime to p).

(b) At every index v ∈ {0, . . . ,m}, we introduce a family of subgroups

Z(v)
m := {subgroups J ⊂ H(d)

m such that H(d)
m /J is cyclic of order pv}

and denote their disjoint union byZm =
⋃m

v=0Z
(v)
m .

(c) Lastly, let us write charJ for the characteristic function of J inside of H(d)
m ; in

particular, one easily checks that charJ (ht) = charJ (h) for each t coprime to p;
hence, the value of charJ (h) depends only on the cyclic subgroup 〈h〉 < H(d)

m .

Throughout, one fixes a finite integral extension O of Zp which contains the values
of all multiplicative characters χ : H(d)

m → µp∞ ↪→ C
×
p (for example, the ring Zp[µpn ]

suffices). For each character χ on H(d)
v with 0 ≤ v ≤ m ≤ n, if ym ∈ Zp[Σ′(m) × H(d)

m ],
then one naturally obtains χ(ym) ∈ O[Σ′(m)] by linearly extending χ to the group ring.

Question. Given a collection of am,χ ∈ O[Σ′(m)] with m ≤ n and characters χ : H(d)
m →

O×, can one find necessary and sufficient conditions to determine whether am,χ = χ(ym)
at every pair (m, χ) above, for a suitable sequence {ym}m ∈ Ψ

(d)
n ?

https://doi.org/10.1017/S1446788714000445 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000445


[27] Higher order congruences amongst Hasse–Weil L-values 27

Let us work backwards—for the sake of argument, suppose that {ym}0≤m≤n ∈ Ψ
(d)
n gives

rise to these terms am,χ through evaluation at χ.
By Theorem 3.1, there exists z ∈ Zp[Conj(G(d)

n )] such that ym = θ+
m(z), in which

case am,χ = χ(ym) = θ+
χm

(z). Moreover, upon examining Proposition 2.6(ii), we further
deduce that:

• each element θ+
χm

(z) belongs to pm−1Zp[Σ′(m)], so clearly has Zp-coefficients;
• the term θ+

χm
(z) depends only on Jχ = Ker( χ), not the individual character;

• if χ factors through H(d)
m−1, then am,χ = TrΣ′(m−1)/Σ

′
(m)

(am−1, χ).

In fact, the last statement is a consequence of the trace compatibility for the ym.
Consequently, we can refine our problem by restricting solely to elements

a(v)
Jχ

= av,χ ∈ Zp[Σ′(v)], where Jχ ∈ Z(v)
m and 0 ≤ v ≤ m ≤ n.

The following result provides a purely p-adic answer to the question posed above.

Theorem 5.1. A sequence (. . . , a(v)
Jχ
, . . .) ∈

∏
χ:H(d)

m �µpv Zp[Σ′(v)] arises from a trace-

compatible system lying in Ψ
(d)
n if and only if, for all positive integers m ≤ n and all

nontrivial subgroups 〈h〉 ⊂ H(d)
m ,

TrΣ′(0)/Σ
′
(m)

(a(0)
H(d)

m
) +

m∑
v=1

∑
Jχ∈Z

(v)
m

pv−1TrΣ′(v)/Σ
′
(m)

(a(v)
Jχ

) × (p charJχ(h) − charJχ(h
p))

(5.1.1)m,h

is congruent to zero modulo pm(d+1)−νm(h)Zp[Σ′(m)], whilst at the trivial subgroup

pTrΣ′(0)/Σ
′
(m)

(a(0)
H(d)

m
) +

m∑
v=1

∑
Jχ∈Z

(v)
m

pv(p − 1) TrΣ′(v)/Σ
′
(m)

(a(v)
Jχ

) ≡ 0 mod pm(d+1). (5.1.2)m,id

In Section 5.2 we explain why the above result implies Theorem 1.1 in the
Introduction. However, we first use properties of characteristic functions to give its
demonstration.

5.1. The proof of Theorem 5.1. The initial step is to construct an inverse to the
mapping ym 7→ (. . . , χ(ym), . . .). Assume that we are given a collection of elements
am,χ ∈ Zp[Σ′(m)]; then one defines

Ym :=
∑
h∈H(d)

m

c(m)
h

[h]H(d)
m
, where c(m)

h
= p−md

∑
χ:H(d)

m →C
×
p

χ−1(h)am,χ ∈ Qp[Σ′(m)].

As charh(x) = p−md ∑
χ χ
−1(h) · x, it follows that χ(Ym) = am,χ for all such χ.

Furthermore, if at each character χ we know am,χ = χ(ym) for a fixed ym ∈ Qp[Sab
m ],

then clearly Ym and ym must coincide.
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Lemma 5.2. Providing that each am,χ depends only on Ker( χ) ⊂ H(d)
m ,

c(m)
h

= p−mdam,1 +
∑

Jχ∈Zm−{H
(d)
m }

1
#Jχ

×

(
charJχ(h) −

1
p

charJχ(h
p)
)
am,χ

and one may express Ym as the summation
∑
〈h〉<H(d)

m
c(m)
h
×AH(d)

m
〈h〉.

Proof. Let us denote by Xm the group of characters χ : H(d)
m −→ C

×
p , so that

c(m)
h

= p−md
∑
χ∈Xm

χ−1(h)am,χ = p−md
∑
J∈Zm

aJ
∑
χ∈Xm,

Ker( χ)=J

χ−1(h)

= p−md
(
am,1 +

∑
J∈Zm−{H

(d)
m }

aJ
( ∑

Ker( χ)⊃J

χ−1(h) −
∑

Ker( χ)⊃J ,
Ker( χ),J

χ−1(h)
))
,

where aJ = am,χ. However,
∑

Ker( χ)⊃J χ
−1(h) will be equal to #H(d)

m /#J × charJ (h)
and moreover∑

Ker( χ)⊃J ,
Ker( χ),J

χ−1(h) =
∑

χ:H(d)
m /J→C×p ,

order( χ),[H(d)
m :J]

χ−1(h) =
1
p
×

∑
χ:H(d)

m /J→C×p

χ−1(h)p,

which is #H(d)
m /#J × (1/p) charJ (hp); the required expression for c(m)

h
now follows

easily.
Focusing on the second statement, if h′ ∈ 〈h〉gen, then 〈h′〉 = 〈h〉 and 〈h′p〉 = 〈hp〉,

in which case charJχ(h
′) = charJχ(h) and charJχ(h

′ p) = charJχ(h
p) (since an element h

lies in a subgroup Jχ if and only ht does for all powers t coprime to p). Consequently,
c(m)
h′

= c(m)
h

for all h′ ∈ 〈h〉gen, and one deduces that Ym equals∑
h′∈H(d)

m

c(m)
h′

[h′]H(d)
m

=
∑
〈h〉<H(d)

m

∑
h′∈〈h〉gen

c(m)
h′

[h′]H(d)
m

=
∑
〈h〉<H(d)

m

c(m)
h

∑
h′∈〈h〉gen

[h′]H(d)
m
.

Lastly, the term
∑
h′∈〈h〉gen

[h′]H(d)
m

is by definitionAH(d)
m
〈h〉, so we are done. �

As the image of θ+
m is generated over Zp[Σ′m] by φ(pm) · idH(d)

m
and the

pm−νm(h)AH(d)
m
〈h〉, it follows that Ym will belong to Im(θ+

m) if and only if:

• if h , idH(d)
m

, then pm−νm(h) divides each c(m)
h

;

• if h = idH(d)
m

, then pm−1 divides each c(m)
id

H(d)
m

.

Furthermore, by Theorem 3.1, the full ensemble {Ym}0≤m≤n belongs to Im(
∏
θ+

m) if and
only if:

• the elements Ym are trace compatible, that is, TrΣ′(m−1)/Σ
′
(m)

(Ym−1) ≡ Ym.
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To make the above conditions more explicit, we shall rewrite the coefficients c(m)
h

. Let

us henceforth assume that each am,χ depends only on Jχ, and set a(m)
Jχ

= am,χ.

DecomposingZm into its constituentZ(v)
m ,

c(m)
h

= p−mda(m)
H(d)

m
+

m∑
v=1

∑
Jχ∈Z

(v)
m

1
pmd−v ×

(
charJχ(h) −

1
p

charJχ(h
p)
)
a(m)
Jχ

= p−md
(
a(m)

H(d)
m

+

m∑
v=1

∑
Jχ∈Z

(v)
m

pv−1 × (p charJχ(h) − charJχ(h
p))a(m)

Jχ

)
.

In fact, the trace compatibility am,χ = TrΣ′(m−1)/Σ
′
(m)

(am−1,χ) we mentioned earlier implies

(via simple induction) that a(m)
Jχ

= TrΣ′(v)/Σ
′
(m)

(a(v)
Jχ

) at every Jχ ∈ Z
(v)
m .

Corollary 5.3. Under the assumptions of 5.2, each element pmd × c(m)
h

equals

TrΣ′(0)/Σ
′
(m)

(a(0)
H(d)

m
) +

m∑
v=1

∑
Jχ∈Z

(v)
m

pv−1TrΣ′(v)/Σ
′
(m)

(a(v)
Jχ

) × (p charJχ(h) − charJχ(h
p)).

Exploiting this new description for the coefficients of Ym, we see that if h , idH(d)
m

,
then the divisibility of pm−νm(h) into c(m)

h
is equivalent to the congruence (5.1.1)m,h.

Secondly, if h = idH(d)
m

, then the divisibility of pm−1 into c(m)
id

H(d)
m

is equivalent to the

congruence (5.1.2)m,id.
Finally, one needs to verify that TrΣ′(m−1)/Σ

′
(m)

(Ym−1) ≡ Ym modulo (H(d)
m )pm−1

. The latter
task amounts to establishing the identity∑

〈h〉<H(d)
m−1

TrΣ′(m−1)/Σ
′
(m)

(c(m−1)
h

)AH(d)
m−1
〈h〉 =

∑
〈h′〉<H(d)

m

c(m)
h′

φ(pνm(h′))

φ(pνm−1(h′))
AH(d)

m−1
〈h′〉,

whose proof is left as an exercise for the reader (or see [15, Section 6.1] for the full
details).

5.2. The proof of Theorem 1.1. Recall from our earlier discussion that the key
conditions underpinning the main result collapse down to checking whether or not
log†

n
◦ twn(z) ∈ Ψ

(d)
n , which can now be tested using the p-power congruences (5.1.1)m,h

and (5.1.2)m,id of Theorem 5.1.
Fix a vector z ∈

∏n
m=0 Zp[Sab

m ]×. At each character χ : H(d)
n � µpv , we set av,χ :=

χ(log†
n
◦ twn(z)v); in particular, if v ≥ 1, then

av,χ = χ
(
logO[Sab

v ]

( zv

τ∗N0,v(z0)
×
ϕ̃Sab

v−1
(τ∗N0,v−1(z0))

ϕ̃Sab
v−1

(zv−1)

))
= logO[Σ′(v)]

(
χ(zv)

N0,v(z0)
×
ϕΣ′v−1

(N0,v−1(z0))

ϕΣ′v−1
( χp(zv−1))

)
= logO[Σ′(v)]

(cv,χ) say.

Similarly, if v = 0, then a0,1 = logO[Σn](1) = 0.
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Remarks.

(a) Substituting these av,χ into the left-hand side of (5.1.1)m,h,

TrΣ′(0)/Σ
′
(m)

(a0,1) +

m∑
v=1

∑
Jχ∈Z

(v)
m

pv−1TrΣ′(v)/Σ
′
(m)

(av,χ) × (p charJχ(h) − charJχ(h
p))

= 0 +

m∑
v=1

∑
Jχ∈Z

(v)
m

pv−1 logO[Σ′(m)]
◦NrΣ′(v)/Σ

′
(m)

(cv,χ) × (p charJχ(h) − charJχ(h
p))

= logO[Σ′(m)]

( m∏
v=1

∏
Jχ∈Z

(v)
m

Nv,m(cv,χ)pv−1(p charJχ (h)−charJχ (hp))
)

is congruent to zero modulo pm(d+1)−νm(h) if and only if
m∏

v=1

∏
Jχ∈Z

(v)
m

Nv,m(cv,χ)pv−1(p charJχ (h)−charJχ (hp)) ≡ 1 mod pm(d+1)−νm(h).

(b) Analogously, substituting the elements av,χ into (5.1.2)m,id instead,

pTrΣ′(0)/Σ
′
(m)

(a0,1) +

m∑
v=1

∑
Jχ∈Z

(v)
m

pv(p − 1) TrΣ′(v)/Σ
′
(m)

(a(v)
Jχ

) ≡ 0 mod pm(d+1)

if and only if
∏m

v=1
∏
Jχ∈Z

(v)
m

Nv,m(cv,χ)pv
≡ 1 mod pm(d+1).

(c) Lastly, it is straightforward to check that the p-adic congruences outlined above
are equivalent to the congruences (1.1)m,h and (1.2)m in the Introduction to this
article.

It only remains therefore to pass from K1(Zp[G(d)
n ]) to the projective limit over n. The

procedure is identical to that described in Sujatha’s article in [4, pages 23–50]. Firstly,
the identification ZpJG(d)

∞ K � lim←−n Zp[G(d)
n ] extends to yield isomorphisms

K1(ZpJG(d)
∞ K) � lim

←−−
n

K1(Zp[G(d)
n ]) and K′1(ZpJG(d)

∞ K) � lim
←−−

n

K′1(Zp[G(d)
n ]),

where K′1 denotes the quotient of K1 by S K1. Applying Theorem 4.3, the diagram

K1(Zp[G(d)
n ])

Γ
G(d)

n
◦(−)†

��

∏
θm
� Ω

(d)
n

log†
n
◦twn

��

∏
χ

↪→

n∏
v=0

∏
Jχ∈Z

(v)
n

Zp[Σv]×

av,χ 7→cv,χ

��

Zp[Conj(G(d)
n )]

∏
θ+

m
� Ψ

(d)
n

∏
χ

↪→

n∏
v=0

∏
Jχ∈Z

(v)
n

Zp[Σv]
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commutes and, taking lim←−n, yields a Θ-mapping between K1(ZpJG(d)
∞ K) and Ω

(d)
∞ .

Finally, the kernel of this Θ-homomorphism is SK1(ZpJG(d)
∞ K), which can be easily

seen to vanish upon using [14, Proposition 12.7].

The proof of our main theorem is now complete.

6. An application to elliptic curves

Our initial task is to prove the two results mentioned at the end of the Introduction.
We first recall the situation of Section 1. Let E denote a semistable elliptic curve over
Q with good ordinary reduction at a prime p > 2. For a fixed number field F and
an Artin representation ρ : Gal(Q/F)→ GL(V,C), its global ε-factor over F can be
decomposed as an infinite product

εF(ρ, s) =
∏

all places ν

εFν
(ρν, $ν, dxν; s).

Each local factor depends on a normalisation of additive characters $ν, and of Haar
measures dxν.

(If F = Q, one sets ε(ρ) = εQ(ρ, 0) and εp(ρ) = εQp (ρp, $p, dxp; 0).)
The Artin L-function attached to ρ is then given by an Euler product

L(ρ, s) =
∏

places ν

det(1 − NF/Q(ν)−s · Frob−1
ν | Vl(ρ)Iν) for Re(s)� 0,

where Frobν is an arithmetic Frobenius element for ν and Iν is the inertia group.
Likewise, if Re(s)� 0, the ρ-twisted Hasse–Weil L-function is given by the product

L(E, ρ, s) :=
∏

places ν

det(1 − NF/Q(ν)−s · Frob−1
ν | (H

1
ét(EQ,Zl(1)) ⊗ Vl(ρ))Iν).

The proof of Theorem 1.5. We begin by making the following three assertions:

(a) each character χ : H(d)
∞ � µpv will extend to yield a character on

Gal(Q(d)
∞,∆

/Q(µpv )), and the representation τχ := IndQ
Q(µpv )( χ) is irreducible of

dimension φ(pv);
(b) there exists a unique element Lp,χ(E) ∈ ZpJU(v)K[p−1], which interpolates at each

ψ-twist the p-adic number

ιp

(Lν-fτχ (E, ψ ⊗ τχ, 1)

(Ω+
EΩ−E)[Q(µpv )+:Q] · εp(ψ ⊗ τχ) ·

Lp(ψ−1 ⊗ τ∗χ, u
−1)

Lp(ψ ⊗ τχ,w−1)
· u−ordp(fψ⊗τχ )

)
for every character ψ : U(v) → Q

×
of finite order;

(c) for each rational prime l dividing ∆, there exists an element Φl(E, τχ) ∈ Zp[U(v)]
satisfying

ψ(Φl(E, τχ)) = ιp

(∏
ν|l

Lν(E, ψ ⊗ τχ, 1)
)

at all such ψ above.
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Providing that all three claims are correct, if J = Ker( χ), then, defining

Lp(E,J) := Lp,χ(E) ×
∏
l|∆

Φl(E, τχ) ×
∏

l|fτχ ,l,p

Φl(E, τχ)−1,

this element belongs to ZpJU(v)K[p−1] and interpolates the required L-value data.
It therefore remains to prove these statements. Beginning with the claim (a), the

character χ extends to a character on StabΣn ( χ) n H(d)
n by Theorem 2.1(ii), where n is

any chosen integer ≥v. The latter group is precisely (1 + pvZ)/(1 + pnZ) n H(d)
∞ /pn;

hence, taking the projective limit over n, we naturally obtain a character on the group
(1 + pvZp) n H(d)

∞ � Gal(Q(d)
∞,∆

/Q(µpv )). Moreover, the induced representation down to
Q has degree [Q(µpv ) : Q] = φ(pv), and is irreducible by Theorem 2.1(iii).

In order to establish (b), observe that χ yields a Hecke character over Q(µpv ); by
the work of Serre, there is a corresponding parallel weight-one Hilbert modular form g
over Q(µpv )+, whose L-series coincides with that attached to IndQ(µpv )+

Q(µpv ) (χ). Associated
to E is a classical cusp form fE ∈ S2(Γ0(NE)), and its base change f to the totally
real subfield Q(µpv )+ has parallel weight-two and square-free conductor. The proof
of [6, Theorem 1.1] then yields a Cp-valued bounded measure on U(v), interpolating
the prescribed data in statement (b). However, as the Hecke character χ is purely
anticyclotomic, each Artin representation τχ is self dual and Q-rational, in which case
the bounded measure takes values in Qp(ψ).

Finally, proving (c) is straightforward: at each place ν | ∆, we form the polynomial

Polν(x) := det(1 − x · Frob−1
ν | (H

1
ét(EQ,Zp(1)) ⊗ Vp(τχ))Iν),

which has rational integer coefficients; if γν ∈ U(v) corresponds to ν ∈ Spec Z[µpv ]
under the reciprocity map of class field theory, then the group ring element

Φl(E, τχ) :=
∏
ν|l

Polν(x)|x=γν·NQ(µpv )/Q(ν)−1

by construction interpolates the same values as in statement (c), so we are done. �

The proof of Proposition 1.6. Let us assume that the elements av,J = Lp(E, J)
satisfy the nonabelian congruences. From Corollary 1.3:

(i) Lp(E,Ker( χ))p ≡ N0,1(Lp(E,H(2)
∞ ))p mod p2 for every χ : H(2)

∞ � µp;
(ii)

∏
J ,[H(2)

∞ :J]=p Lp(E,J)p ≡ N0,1(Lp(E,H(2)
∞ ))p(p+1) mod p3.

Any character on H(2)
∞ is of the form χs

∆1
χt

∆2
for appropriately chosen integers s and t.

If we take as representatives

T := { χ∆1χ
t
∆2

with 0 ≤ t ≤ p − 1} ∪ { χ∆2},

every subgroup J ∈ Z(1)
∞ of index p in H(2)

∞ arises as the kernel of χ for some χ ∈ T .
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Therefore, it is sufficient to check (i) at characters in T , that is, to check:

(i)′ Lp(E,Ker( χ∆1χ
t
∆2

))p ≡ N0,1(Lp(E,H(2)
∞ ))p mod p2 with 0 ≤ t ≤ p − 1;

(i)′′ Lp(E,Ker( χ∆2 ))p ≡ N0,1(Lp(E,H(2)
∞ ))p mod p2.

Evaluating the above pair at the trivial character ψ = 1 and applying Theorem 1.5,
one obtains the congruences (1.6.1) and (1.6.2), respectively.

Focusing now on condition (ii), the product over subgroups J ∈ Z(1)
∞ with [H(2)

∞ :
J] = p is identical to the product over J = Ker( χ), where χ ranges over elements
from T . In particular, we obtain the equivalent condition:

(ii)′
∏

χ∈T Lp(E,Ker( χ))p ≡ N0,1(Lp(E,H(2)
∞ ))p(p+1) mod p3.

Lastly, evaluating at ψ = 1 and applying Theorem 1.5 again, the final congruence (1.6.3)
falls out immediately.

The proof of the proposition is complete. �

6.1. Numerical results for d = 2 and n = 1. Recall that each representation
ρχs

∆1
χt

∆2
= IndQ

Q(µp)( χ
s
∆1
χt

∆2
) was of degree p − 1. The goal is to numerically verify the

congruences (1.6.1)–(1.6.3) in Proposition 1.6, but, due to computational limitations,
these are only checked for p = 3 and p = 5. We have tabulated the following L-value
information in Tables 1, 2, 3 and 4:

• L∗ = L∗(E, ρχs
∆1
χt

∆2
) :=

∣∣∣∣∣L(E, ρχ∆s
1
χ∆t

2
, 1) ×

√
discQ((∆s

1∆t
2)1/p)

(2Ω+
EΩ−E)(p−1)/2

∣∣∣∣∣
• LE,∆(ρχ∆s

1
χ∆t

2
) • LE,∆

( p−2⊕
j=0

ω j
)
•

LE,∆(ρχ∆s
1
χ∆t

2
)

LE,∆(
⊕p−2

j=0 ω
j)

and

•

(∏
s,t

LE,∆(ρχ∆s
1
χ∆t

2
)

LE,∆(
⊕p−2

j=0 ω
j)

)p
:=

(LE,∆(ρχ∆2
) ×

∏p−1
t=0 LE,∆(ρχ∆1χ∆t

2
))p

LE,∆(
⊕p−2

j=0 ω
j)p(p+1)

.

The first quantity is a rational number (in fact, it turns out to be an integer in every case
considered here), while the latter four quantities are p-adic numbers whose coefficients
have been expressed below to an accuracy of order O(p9).

Remark. In particular, congruences (1.6.1)–(1.6.2) hold at each pair (s, t) provided
that

LE,∆(ρχ∆s
1
χ∆t

2
)

LE,∆(
⊕p−2

j=0 ω
j)

= [1, . . .] ∈ 1 + pZp,

whilst congruence (1.6.3) is true if and only if(∏
s,t

LE,∆(ρχ∆s
1
χ∆t

2
)

LE,∆(
⊕p−2

j=0 ω
j)

)p
= [1, 0, 0, . . .] ∈ 1 + p3Zp.

The data below confirm that these hold for all examples calculated in this article.
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Table 1. p = 3, E = 11A3 with equation y2 + y = x3 − x2.

∆s
1∆t

2 L∗ LE,∆(ρχ∆s
1
χ∆t

2
) LE,∆

( p−2⊕
j=0

ω j
) LE,∆( ρχ∆s

1
χ∆t

2
)

LE,∆

(⊕p−2
j=0 ω

j
)

2 1 [2, 1, 1, 2, 0, 1, 0, 0, 0] [2, 1, 0, 0, 2, 1, 0, 0, 0] [1, 0, 2, 1, 1, 0, 2, 0, 0]
10 1 [2, 0, 1, 2, 0, 0, 2, 1, 2] [2, 1, 0, 0, 2, 1, 0, 0, 0] [1, 1, 1, 0, 2, 1, 2, 2, 2]
20 1 [2, 0, 0, 2, 2, 1, 2, 0, 0] [2, 1, 0, 0, 2, 1, 0, 0, 0] [1, 1, 2, 2, 1, 2, 2, 0, 0]
5 4 [2, 0, 2, 2, 2, 0, 2, 2, 2] [2, 1, 0, 0, 2, 1, 0, 0, 0] [1, 1, 0, 1, 1, 2, 1, 0, 0](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 0, 2, 1, 1, 2, 2]

2 1 [1, 0, 2, 2, 1, 2, 2, 2, 2] [1, 2, 2, 0, 1, 1, 0, 0, 0] [1, 1, 0, 2, 1, 1, 0, 2, 2]
14 1 [1, 1, 1, 1, 1, 0, 0, 1, 0] [1, 2, 2, 0, 1, 1, 0, 0, 0] [1, 2, 0, 1, 2, 1, 0, 0, 0]
28 1 [1, 1, 0, 2, 2, 1, 0, 1, 0] [1, 2, 2, 0, 1, 1, 0, 0, 0] [1, 2, 2, 0, 0, 2, 2, 2, 2]
7 1 [1, 0, 2, 0, 2, 2, 1, 2, 2] [1, 2, 2, 0, 1, 1, 0, 0, 0] [1, 1, 0, 0, 0, 0, 0, 2, 2](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 2, 1, 2, 2, 1, 1]

2 1 [1, 2, 0, 0, 1, 2, 1, 1, 2] [1, 1, 1, 0, 1, 2, 0, 2, 2] [1, 1, 1, 0, 1, 0, 2, 2, 2]
26 4 [1, 0, 2, 0, 1, 0, 1, 2, 2] [1, 1, 1, 0, 1, 2, 0, 2, 2] [1, 2, 1, 2, 1, 0, 1, 1, 0]
52 16 [1, 1, 0, 2, 2, 2, 0, 0, 0] [1, 1, 1, 0, 1, 2, 0, 2, 2] [1, 0, 2, 2, 2, 0, 0, 2, 2]
13 1 [1, 1, 0, 0, 0, 1, 0, 2, 2] [1, 1, 1, 0, 1, 2, 0, 2, 2] [1, 0, 2, 0, 2, 1, 2, 2, 2](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 0, 1, 0, 1, 1, 2]

2 1 [2, 1, 0, 1, 1, 0, 0, 0, 0] [2, 1, 2, 1, 1, 1, 0, 2, 2] [1, 0, 2, 1, 1, 0, 2, 0, 0]
34 25 [2, 0, 0, 0, 0, 0, 1, 1, 0] [2, 1, 2, 1, 1, 1, 0, 2, 2] [1, 1, 1, 0, 0, 2, 0, 2, 2]
68 16 [2, 0, 1, 0, 0, 2, 2, 2, 2] [2, 1, 2, 1, 1, 1, 0, 2, 2] [1, 1, 0, 1, 2, 1, 2, 2, 2]
17 1 [2, 0, 2, 2, 1, 0, 0, 1, 0] [2, 1, 2, 1, 1, 1, 0, 2, 2] [1, 1, 2, 2, 1, 1, 1, 2, 2](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 0, 2, 0, 1, 2, 2]

2 1 [1, 0, 2, 0, 1, 0, 1, 0, 0] [1, 1, 0, 2, 1, 0, 1, 2, 2] [1, 2, 2, 1, 2, 1, 0, 0, 0]
38 49 [1, 1, 1, 1, 2, 2, 0, 2, 2] [1, 1, 0, 2, 1, 0, 1, 2, 2] [1, 0, 1, 1, 2, 0, 1, 1, 0]
76 4 [1, 1, 2, 2, 0, 2, 2, 0, 0] [1, 1, 0, 2, 1, 0, 1, 2, 2] [1, 0, 2, 1, 0, 0, 2, 2, 2]
19 1 [1, 2, 2, 2, 2, 1, 0, 2, 2] [1, 1, 0, 2, 1, 0, 1, 2, 2] [1, 1, 1, 2, 2, 0, 1, 1, 0](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 0, 0, 1, 0, 1, 2]

2 1 [2, 1, 0, 0, 1, 2, 1, 0, 0] [2, 1, 2, 0, 1, 2, 0, 2, 2] [1, 0, 2, 1, 1, 0, 2, 0, 0]
46 4 [2, 2, 2, 1, 2, 0, 1, 0, 0] [2, 1, 2, 0, 1, 2, 0, 2, 2] [1, 2, 0, 1, 2, 1, 0, 0, 0]
92 4 [2, 2, 1, 0, 2, 0, 1, 1, 0] [2, 1, 2, 0, 1, 2, 0, 2, 2] [1, 2, 1, 1, 2, 2, 0, 1, 0]
23 16 [2, 2, 0, 0, 1, 1, 0, 2, 2] [2, 1, 2, 0, 1, 2, 0, 2, 2] [1, 2, 2, 0, 1, 1, 0, 1, 0](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 1, 2, 0, 2, 0, 1]

2 1 [1, 2, 1, 2, 2, 1, 1, 2, 2] [1, 2, 2, 2, 2, 2, 2, 0, 0] [1, 0, 2, 1, 1, 0, 2, 0, 0]
62 1 [1, 2, 0, 1, 0, 0, 0, 2, 2] [1, 2, 2, 2, 2, 2, 2, 0, 0] [1, 0, 1, 2, 2, 2, 2, 0, 0]

124 4 [1, 0, 1, 0, 2, 1, 2, 0, 0] [1, 2, 2, 2, 2, 2, 2, 0, 0] [1, 1, 2, 2, 1, 0, 0, 0, 0]
31 1 [1, 1, 1, 2, 2, 2, 1, 1, 2] [1, 2, 2, 2, 2, 2, 2, 0, 0] [1, 2, 0, 0, 0, 0, 2, 2, 2](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 2, 2, 2, 2, 2, 2]
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Table 1. Continued.

2 1 [1, 2, 1, 2, 2, 0, 2, 2, 2] [1, 0, 1, 0, 0, 1, 2, 2, 2] [1, 2, 0, 0, 2, 2, 1, 1, 2]
74 1 [1, 0, 0, 0, 1, 0, 0, 0, 0] [1, 0, 1, 0, 0, 1, 2, 2, 2] [1, 0, 2, 2, 1, 2, 1, 1, 2]

148 4 [1, 1, 0, 0, 1, 1, 0, 0, 0] [1, 0, 1, 0, 0, 1, 2, 2, 2] [1, 1, 2, 1, 1, 1, 1, 0, 0]
37 4 [1, 0, 0, 2, 0, 2, 2, 0, 0] [1, 0, 1, 0, 0, 1, 2, 2, 2] [1, 0, 2, 1, 1, 2, 1, 2, 2](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 0, 2, 1, 0, 0, 0]

2 1 [2, 1, 1, 0, 2, 1, 1, 0, 0] [2, 1, 0, 1, 0, 0, 1, 1, 0] [1, 0, 2, 1, 1, 0, 2, 0, 0]
82 1 [2, 0, 0, 0, 0, 2, 2, 1, 2] [2, 1, 0, 1, 0, 0, 1, 1, 0] [1, 1, 2, 2, 0, 2, 2, 0, 0]

164 1 [2, 0, 2, 2, 0, 0, 0, 0, 0] [2, 1, 0, 1, 0, 0, 1, 1, 0] [1, 1, 0, 2, 1, 0, 1, 0, 0]
41 4 [2, 0, 1, 0, 0, 0, 1, 0, 0] [2, 1, 0, 1, 0, 0, 1, 1, 0] [1, 1, 1, 0, 2, 2, 2, 0, 0](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 0, 0, 0, 2, 0, 0]

5 4 [1, 2, 2, 1, 0, 1, 0, 1, 0] [1, 0, 0, 1, 1, 2, 2, 2, 2] [1, 2, 2, 0, 0, 0, 2, 2, 2]
35 1 [1, 2, 0, 0, 1, 1, 1, 0, 0] [1, 0, 0, 1, 1, 2, 2, 2, 2] [1, 2, 0, 2, 0, 2, 0, 1, 0]

175 16 [1, 1, 1, 0, 1, 1, 0, 0, 0] [1, 0, 0, 1, 1, 2, 2, 2, 2] [1, 1, 1, 2, 1, 2, 0, 0, 0]
7 1 [1, 1, 0, 1, 2, 0, 2, 1, 2] [1, 0, 0, 1, 1, 2, 2, 2, 2] [1, 1, 0, 0, 0, 0, 0, 2, 2](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 0, 2, 0, 2, 0, 2]

5 4 [1, 0, 0, 0, 0, 2, 1, 2, 2] [1, 2, 0, 1, 1, 1, 1, 0, 0] [1, 1, 0, 1, 1, 2, 1, 0, 0]
65 49 [1, 1, 1, 2, 1, 1, 2, 0, 0] [1, 2, 0, 1, 1, 1, 1, 0, 0] [1, 2, 2, 1, 0, 0, 0, 2, 2]

325 25 [1, 2, 0, 0, 0, 1, 1, 1, 0] [1, 2, 0, 1, 1, 1, 1, 0, 0] [1, 0, 0, 2, 0, 1, 1, 1, 0]
13 1 [1, 2, 2, 2, 1, 0, 1, 1, 0] [1, 2, 0, 1, 1, 1, 1, 0, 0] [1, 0, 2, 0, 2, 1, 2, 2, 2](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 1, 2, 1, 2, 0, 0]

5 4 [2, 2, 0, 1, 0, 0, 2, 0, 0] [2, 0, 0, 2, 1, 2, 2, 1, 2] [1, 1, 0, 1, 1, 2, 1, 0, 0]
85 4 [2, 0, 2, 2, 0, 2, 1, 0, 0] [2, 0, 0, 2, 1, 2, 2, 1, 2] [1, 0, 1, 0, 1, 0, 0, 0, 0]

425 16 [2, 2, 2, 1, 0, 0, 1, 2, 2] [2, 0, 0, 2, 1, 2, 2, 1, 2] [1, 1, 1, 1, 1, 1, 0, 0, 0]
17 1 [2, 2, 1, 1, 1, 2, 0, 2, 2] [2, 0, 0, 2, 1, 2, 2, 1, 2] [1, 1, 2, 2, 1, 1, 1, 2, 2](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 2, 1, 2, 2, 2, 2]

5 4 [1, 2, 2, 2, 1, 0, 1, 2, 2] [1, 2, 2, 1, 2, 0, 2, 0, 0] [1, 0, 0, 1, 0, 0, 0, 2, 2]
95 16 [1, 0, 2, 2, 0, 1, 1, 1, 0] [1, 2, 2, 1, 2, 0, 2, 0, 0] [1, 1, 0, 1, 0, 1, 0, 2, 2]

475 25 [1, 0, 0, 1, 2, 2, 0, 2, 2] [1, 2, 2, 1, 2, 0, 2, 0, 0] [1, 1, 1, 0, 1, 1, 2, 1, 2]
19 1 [1, 0, 0, 0, 2, 0, 1, 1, 0] [1, 2, 2, 1, 2, 0, 2, 0, 0] [1, 1, 1, 2, 2, 0, 1, 1, 0](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 0, 2, 0, 0, 1, 0]

5 4 [2, 2, 0, 0, 1, 1, 0, 2, 2] [2, 0, 0, 1, 0, 2, 2, 2, 2] [1, 1, 0, 1, 1, 2, 1, 0, 0]
115 49 [2, 1, 0, 2, 2, 0, 1, 2, 2] [2, 0, 0, 1, 0, 2, 2, 2, 2] [1, 2, 1, 0, 0, 0, 0, 2, 2]
575 1 [2, 2, 0, 2, 1, 1, 2, 1, 2] [2, 0, 0, 1, 0, 2, 2, 2, 2] [1, 1, 0, 2, 1, 2, 0, 0, 0]
23 16 [2, 1, 2, 2, 1, 1, 2, 0, 0] [2, 0, 0, 1, 0, 2, 2, 2, 2] [1, 2, 2, 0, 1, 1, 0, 1, 0](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 0, 0, 2, 0, 2, 2]

7 1 [2, 0, 0, 0, 2, 0, 2, 1, 2] [2, 2, 0, 0, 1, 2, 1, 2, 2] [1, 2, 0, 2, 2, 2, 0, 0, 0]
91 1 [2, 0, 1, 2, 1, 2, 2, 2, 2] [2, 2, 0, 0, 1, 2, 1, 2, 2] [1, 2, 2, 2, 1, 1, 1, 2, 2]

637 64 [2, 0, 2, 0, 2, 0, 0, 2, 2] [2, 2, 0, 0, 1, 2, 1, 2, 2] [1, 2, 1, 1, 0, 2, 1, 0, 0]
13 1 [2, 2, 1, 2, 0, 1, 0, 0, 0] [2, 2, 0, 0, 1, 2, 1, 2, 2] [1, 0, 2, 0, 2, 1, 2, 2, 2](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 1, 1, 0, 1, 0, 0]
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Table 1. Continued.

7 1 [1, 1, 1, 2, 0, 2, 1, 2, 2] [1, 0, 1, 1, 2, 2, 1, 1, 2] [1, 1, 0, 0, 0, 0, 0, 2, 2]
119 16 [1, 2, 0, 2, 1, 0, 1, 0, 0] [1, 0, 1, 1, 2, 2, 1, 1, 2] [1, 2, 2, 1, 0, 1, 2, 0, 0]
833 4 [1, 1, 2, 2, 1, 1, 2, 0, 0] [1, 0, 1, 1, 2, 2, 1, 1, 2] [1, 1, 1, 0, 0, 1, 1, 2, 2]
17 1 [1, 2, 2, 1, 1, 1, 1, 0, 0] [1, 0, 1, 1, 2, 2, 1, 1, 2] [1, 2, 1, 1, 1, 0, 1, 0, 0](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 1, 1, 0, 2, 2, 2]

Table 2. p = 3, E = 77C1 with equation y2 + xy = x3 + x2 + 4x + 11.

∆s
1∆t

2 L∗ LE,∆( ρχ∆s
1
χ∆t

2
) LE,∆

( p−2⊕
j=0

ω j
) LE,∆( ρχ∆s

1
χ∆t

2
)

LE,∆

(⊕p−2
j=0 ω

j
)

2 8 [1, 2, 2, 1, 0, 1, 1, 0, 0] [1, 0, 0, 2, 2, 0, 2, 0, 0] [1, 2, 2, 2, 2, 2, 2, 1, 2]
10 2 [1, 0, 0, 0, 2, 2, 2, 1, 2] [1, 0, 0, 2, 2, 0, 2, 0, 0] [1, 0, 0, 1, 2, 1, 1, 0, 0]
20 2 [1, 1, 1, 1, 0, 0, 0, 0, 0] [1, 0, 0, 2, 2, 0, 2, 0, 0] [1, 1, 1, 2, 1, 0, 2, 0, 0]
5 8 [1, 0, 2, 2, 1, 2, 0, 0, 0] [1, 0, 0, 2, 2, 0, 2, 0, 0] [1, 0, 2, 0, 2, 0, 2, 2, 2](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 2, 2, 1, 1, 1, 2]

2 8 [2, 0, 2, 0, 0, 2, 2, 1, 2] [2, 0, 0, 0, 0, 2, 0, 0, 0] [1, 0, 1, 0, 0, 0, 1, 1, 0]
26 2 [2, 2, 1, 1, 0, 2, 2, 1, 2] [2, 0, 0, 0, 0, 2, 0, 0, 0] [1, 1, 2, 0, 0, 0, 0, 0, 0]
52 2 [2, 1, 0, 2, 2, 1, 1, 2, 2] [2, 0, 0, 0, 0, 2, 0, 0, 0] [1, 2, 1, 2, 2, 2, 2, 0, 0]
13 2 [2, 0, 2, 2, 1, 1, 0, 1, 0] [2, 0, 0, 0, 0, 2, 0, 0, 0] [1, 0, 1, 1, 2, 2, 2, 0, 0](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 2, 1, 1, 1, 2, 2]

5 8 [2, 0, 2, 1, 0, 0, 0, 2, 2] [2, 0, 1, 0, 0, 1, 2, 2, 2] [1, 0, 2, 0, 2, 0, 2, 2, 2]
65 98 [2, 2, 1, 2, 1, 2, 0, 1, 0] [2, 0, 1, 0, 0, 1, 2, 2, 2] [1, 1, 0, 2, 0, 1, 1, 0, 0]

325 2 [2, 1, 2, 1, 2, 0, 2, 0, 0] [2, 0, 1, 0, 0, 1, 2, 2, 2] [1, 2, 0, 1, 2, 0, 2, 0, 0]
13 2 [2, 0, 0, 0, 0, 2, 1, 2, 2] [2, 0, 1, 0, 0, 1, 2, 2, 2] [1, 0, 1, 1, 2, 2, 2, 0, 0](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 0, 0, 0, 0, 2, 2]

Table 3. p = 5, E = 19A3 with equation y2 + y = x3 + x2 + x.

∆s
1∆t

2 L∗ LE,∆( ρχ∆s
1
χ∆t

2
) LE,∆

( p−2⊕
j=0

ω j
) LE,∆( ρχ∆s

1
χ∆t

2
)

LE,∆

(⊕p−2
j=0 ω

j
)

2 1 [2, 2, 0, 3, 3, 2, 2, 2, 4] [2, 3, 0, 3, 3, 0, 3, 2, 4] [1, 2, 4, 0, 3, 1, 4, 1, 0]
18 1 [2, 4, 0, 1, 3, 4, 4, 1, 0] [2, 3, 0, 3, 3, 0, 3, 2, 4] [1, 3, 0, 3, 0, 3, 0, 1, 0]
6 4 [2, 3, 2, 0, 0, 1, 2, 3, 4] [2, 3, 0, 3, 3, 0, 3, 2, 4] [1, 0, 1, 2, 2, 2, 3, 0, 0]

12 49 [2, 0, 4, 2, 2, 2, 4, 0, 0] [2, 3, 0, 3, 3, 0, 3, 2, 4] [1, 1, 0, 2, 2, 0, 4, 4, 4]
48 4 [2, 3, 2, 0, 0, 1, 2, 3, 4] [2, 3, 0, 3, 3, 0, 3, 2, 4] [1, 0, 1, 2, 2, 2, 3, 0, 0]
3 4 [2, 1, 2, 2, 1, 2, 2, 1, 0] [2, 3, 0, 3, 3, 0, 3, 2, 4] [1, 4, 4, 4, 2, 0, 4, 2, 4](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 2, 3, 3, 1, 2, 0]
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Table 4. p = 5, E = 56A1 with equation y2 = x3 + x + 2.

∆s
1∆t

2 L∗ LE,∆( ρχ∆s
1
χ∆t

2
) LE,∆

( p−2⊕
j=0

ω j
) LE,∆( ρχ∆s

1
χ∆t

2
)

LE,∆

(⊕p−2
j=0 ω

j
)

2 16 [2, 4, 3, 2, 2, 1, 4, 4, 4] [2, 1, 0, 3, 0, 2, 1, 0, 0] [1, 4, 4, 4, 4, 4, 4, 2, 4]
18 36 [2, 2, 0, 1, 1, 3, 0, 3, 4] [2, 1, 0, 3, 0, 2, 1, 0, 0] [1, 3, 3, 4, 0, 2, 3, 0, 0]
6 36 [2, 4, 4, 0, 2, 0, 1, 3, 4] [2, 1, 0, 3, 0, 2, 1, 0, 0] [1, 4, 2, 2, 3, 0, 4, 1, 0]

12 16 [2, 1, 3, 2, 1, 1, 3, 3, 4] [2, 1, 0, 3, 0, 2, 1, 0, 0] [1, 0, 4, 2, 1, 0, 4, 0, 0]
48 36 [2, 4, 4, 0, 2, 0, 1, 3, 4] [2, 1, 0, 3, 0, 2, 1, 0, 0] [1, 4, 2, 2, 3, 0, 4, 1, 0]
3 4 [2, 1, 3, 2, 1, 1, 3, 3, 4] [2, 1, 0, 3, 0, 2, 1, 0, 0] [1, 0, 4, 2, 1, 0, 4, 0, 0](∏

s,t

LE,∆( ρs,t)
LE,∆(⊕ω j)

)p
= [1, 0, 0, 1, 4, 3, 2, 1, 0]

We conclude by discussing what one might expect if the µ-invariants are nonzero.
Recall that S ⊂ ZpJG(d)

∞ K denoted a canonical Ore set; let us define S∗ :=
⋃

n≥0 pnS.
Burns and Venjakob [3, Proposition 3.4] established the existence of an isomorphism

K1(ZpJG(d)
∞ KS∗) � K1(ZpJG(d)

∞ KS) ⊕ K0(FpJG(d)
∞ K)

and the right-most module is free of finite rank (encoding all the µ-invariant data).
Therefore, one expects that, in addition to the congruences (1.1)m,h and (1.2)m

holding, there should be a system of exact relations amongst the µ-invariants of
Lp(E,J). As an illustration, if (d,m) = (2, 1) and the µ-invariant of Lp(E,⊕ω j) is
positive, we suspect that the numerical congruences above should hold higher than just
the third power of p. This is a computational question worthy of future investigation.
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