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1. Reversibility

We propose to study a topological property which is not new, but
seems not to have been systematically investigated.

DEFINITION. A topological space (X, T) is called reversible if it has no
strictly stronger topology T' such that (X, T) and (X, T') are homeomorphic,
equivalently, if it has no strictly weaker topology T' such that (X, T) and
(X, T') are homeomorphic.

The choice of the adjective "reversible" is explained by the fol-
lowing Lemma.

LEMMA 1. A space is reversible if and only if each continuous one-to-one
map of the space onto itself is a homeomorphism.

Let (X, T) be a reversible topological space and / : X -> X continuous,
one to one, and onto. Let T' = {G C X : f[G] e T}. Then T is stronger
than T since if G e T, G = f-xf[G] e T. Moreover / : (X, T) -> (X, T) is a
homeomorphism. Since X is reversible it follows that T' = T, hence / is
a homeomorphism.

The converse is proved similarly.
Thus reversible spaces occupy a place in the category of topological

spaces and maps, similar to that of spaces obeying the closed graph theorem
in the category of linear topological spaces and linear maps.

Reversibility is a topological property. We shall give examples, and
point out, as well, that reversibility is not implied by such properties as
connectedness, local compactness, or second countability, even for topolog-
ical groups. Nor is reversibility hereditary or productive.

Many examples of non-reversible spaces are known and have been
published. The examples given below are chosen to answer some natural
questions. Some of the examples and theorems given are folklore.

EXAMPLE 1. Consider the map x -+ {xjn} from the normed space of
ill sequences {xn} of complex numbers with only finitely many non-zero
:erms, ||o;|| = sup \xn\, to itself. It is continuous, one to one, onto, but
lot a homeomorphism.
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EXAMPLE 2. Let R be either the set of all real numbers or the set of
all rational numbers. We give R its customary open sets and, besides, all
singletons {*} with x < 0, ze R. (Thus the negative half of R has the
discrete topology.) The map x-+x+l is continuous, one-to-one, onto, but
not a homeomorphism.

Example 2 shows that a countable metric space need not be reversible;
the discrete topology shows that it may be reversible.

2. Extremal properties

A topological space is reversible if its topology is maximal or minimal
with respect to some property. The discrete and indiscrete topologies are,
respectively, maximal, minimal. The cofinite topology, [20], §9.1, problem
29, is minimal T1, hence reversible. A compact Hausdorff space is minimal
Hausdorff and maximal compact — thus reversible on two grounds. (See
[20], § 9.5, theorem 3.) As shown by Urysohn, there are non compact
minimal Hausdorff topologies, see [6], p. 421, [2], [14].

Such a space could not be locally compact by the following result of
Katetov, [8], Lemma 6, Theorem 3, and Hewitt, [6], Remark (9).

LEMMA 2. Every locally compact Hausdorff space X can be given a
weaker compact Hausdorff topology. A countable T3 space has a weaker com-
pact Hausdorff topology if and only if it contains no subset which is dense-
in-itself. The second "compact" may be replaced by "locally compact".

The proof of the first part is trivial. One removes an arbitrary point
from the space and takes the one point compactification of the remainder.
The second part follows from the Baire category theorem.

There are also non-Hausdorff maximal compact topologies. The first
examples seem to have been given by V. K. Balachandran, A. Ramanathan,
and Hing Tong (independently) in 1948. The simplest is probably the one-
point compactification of the rationals. See [12], [15]. Such a topology
is reversible of course.

3. Reversible spaces

It is well known that the Euclidean spaces 2?" are reversible. For
n = 1 this follows from the inverse function theorem; it can also be seen
from the fact that R1 is maximal among connected, locally connected
topologies. It is not maximal connected since a simple extension, [11],
of its topology by means of the set of rationals is connected; nor is it minimal
Hausdorff, by Lemma 2. For arbitrary n, the reversibility of Rn follows
from the Brouwer in variance of dimension theorem.
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THEOREM 1. A locally Euclidean space is reversible.
Let / be a one-to-one continuous map of such a space X onto itself;

let x e X, y = f(x), and let V be a neighborhood of y with <£ : V -> W a
homeomorphism onto an open subset W of Euclidean «-space. Then /"1[F]
contains a neighborhood U oi x with y> : U -> Z a homeomorphism onto
an open subset Z of Euclidean w-space. Let g = <j> o / o y>-1 : Z -> W.
Then g is one-to-one and continuous. Hence, by the Brouwer theorem,
g is a homeomorphism of Z into an open neighborhood of <j>(y) and
/ - ' = yo g-1 o ^ - 1 is continuous in a neighborhood of y.

Remark: A proof of theorem 1 may be based on ideas borrowed from
Banach algebra. See § 8. part (e).

COROLLARY. Every Lie group, and every space of the form DxRn where
D is discrete, is reversible.

We shall see that in this respect Rn is better behaved than a compact
Hausdorff space. (Theorem 7.)

4. Non-reversible spaces

We are indebted to Victor Klee for the following two theorems, the
first of which replaces an earlier and less satisfactory version.

THEOREM 2. No infinite dimensional normed space is reversible.
Let p be a strictly weaker norm for the infinite dimensional normed

space X. (For example let u be a discontinuous automorphism of X*,
and for / e l * , xeX define ?(/) = ||/|| + ||w/||, and p{x) = sup {\f(x)\ :
j(f) ^ 1}. See [20], § 7.5, Problem 10 and Example 8; also [10], chapter
11,problem I.) Define T:X^Xby Tx = (p(x) l\\x\\)x. Since \\Tx\\ ^P(x)
and p is continuous it follows that T is continuous. But T-^fa) = (| \x\ \/p(x))x,
thus T is one-to-one and onto, and T~* is not continuous at 0 (although
it is continuous everywhere else) since there exists a sequence {xn} in
Y with \\xn\\ > n,p(xn) < 1, ([20], § 4.2, Fact vi.) so that T^xJnWx^) +* 0.

THEOREM 3. No infinite dimensional F space is reversible.
Let s be the space of all sequences of complex numbers with

lx\ =^2-n\xn\l(l + \xn\),d(x,y) = \x—y\. It is proved in [4] that every
F space which is not normable is a product of spaces, one of which is s.
[t is sufficient, in view of this fact and Theorem 2, to show that s is non-
eversible. Let E be the complex plane, and let U C E be {(#, y) : y > 0,
)r y = 0 and x ^ 0} (upper half plane and non-negative X-axis). There
s a continuous one-to-one map / of U*° onto s whose inverse is not con-
inuous ; for example , if x = {xn}, l e t f(x) = {x\, x%, x 3 , x t , • • •). T h e r e
LISO exists, ([1]), a homeomorphism h from [/**» onto s. Then h o / is a
ontinuous one-to-one map of s onto itself which is not a homeomorphism.
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EXAMPLE 3. The space Q of rational numbers is not reversible.
The proof of Example 4 could be used; the following is briefer and

more elegant. It is sufficient to show that Q can be given a strictly weaker
metric topology T, for (Q, T) will be a countable metric space which is
dense-in-itself, hence homeomorphic with Q, ([17], p. 11, and [16], p. 141,
corollary 1.)

Let R be the reals and consider the one point compactification of
R ~ {0}. Giving the point at infinity the name 0 we arrive at R again but
with a weaker (compact) topology. Call this space Ro. Let T be the topology
induced on Q by Ro. Since Ro is a plane figure 8, T is metrizable and the
proof is concluded. (Note, T is strictly weaker than the Euclidean topology
for Q since, in T, n -> 0 while {«} is not convergent in the Euclidean
topology.)

EXAMPLE 4. The space of irrational numbers is not reversible.
In the exposition of this example, notations such as (a, b) for intervals

will refer to intervals of irrational numbers, even if a, b are rational. It
is sufficient to show that / = (—1, 1) is not reversible. Choose an arbitrary
irrational u in / . Let / ' be the same as / but with the topology strengthened
by adjoining the set [u, 1) to the class of open sets, a simple extension in
the sense of [11]. Let / = (0, 1) u (2, 4). Then / is homeomorphic with I.
We shall show that I' is homeomorphic with / , hence with / . Now
/ ' = (0, u) u [u, 1), the union of two disjoint open and closed subsets,
and so the proof will be complete when we show that [u, 1) is homeomorphic
with (2, 4), each having its natural (Euclidean) topology. To this end, we
construct three sequences. Let {«„} be a strictly increasing sequence of
rational numbers with a0 = 2, an -»• \ / 8 ; {bn} a strictly decreasing sequence
of rationals with b0 = 4, bn -> -\/8; {cn} a strictly decreasing sequence of
rationals with c0 = 1, cn ->- u. For n = 1, 2, • • •, let /„ be a homeomorphism
from (cn, cn_x) onto (ai(n_i), ai{n+1)) if n is odd, onto {b^, b^) if n
is even. The required homeomorphism of [u, 1) onto (2, 4) is given by
f(u) — \ / 8 and f\(cn, cn-1) = / „ . (Notice that each a, b, and c interval
is open and closed.)

THEOREM 4. There exists a reversible space which is the union of two
disjoint non-reversible subspaces. There exists a non-reversible space which
is the union of two disjoint reversible subspaces, each of which is open and
closed.

The first part follows from Examples 3 and 4. The second part is given
in the following example.

EXAMPLE 5. Let X be the space consisting of the positive integers,
0, and the reciprocals of the positive integers. A map carrying 2w onto l/2»
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for all n cannot have a continuous inverse. Such a map which is one-to-one,
continuous, and onto is easy to construct. Thus X is not reversible.

Remarks 1. The spaces given for Theorem 4 are very special, the
first is R, the second a closed countable subspace of R.

2. In the second part of Theorem 4, the subspaces are closed and
open; this condition cannot also be placed on the first part of the theorem.

THEOREM 5. An open and closed subset of a reversible space is reversible.
Neither open nor closed can be omitted.

A continuous map of the subspace onto itself can be extended to the
whole space. Example 5 shows that open cannot be omitted. Example 8,
below, shows that closed cannot be omitted.

5. Components and discrete products

THEOREM 6. Let X be a topological space with finitely many components.
Then X is reversible if and only if each component is reversible. The result
is false if "finitely" is replaced by "countably".

Necessity follows from Theorem 5, and the last remark follows from
Example 3. Now suppose that X = u {Ct- : i = 1, 2, • • • nj, each Ct a
component of X. Let / : X -> X be one-to-one, continuous, onto. Then
f[Ct] is connected for each i hence it is C, for some /. Thus / permutes the
components and it follows that for each i, there is an integer k, 1 tSt k ^ n
such that /*[C(] = Cf and so by hypothesis, /* is a homeomorphism of
Ci onto itself. Then f~x = f1'-1 o {fk)~1 is continuous on C(. Since each
Ci is open and closed, / is a homeomorphism.

COROLLARY. Let D be a finite discrete space and Y a reversible connected
space or a compact Hausdorff space, then DxY is reversible. Both results
are false if D is allowed to be countable.

The first is immediate from Theorem 6. The second because DxY
is compact Hausdorff. For the counterexamples, let us call a topological
space Y fissionable if it is the disjoint union of two copies of itself. For
example a half-open interval (of reals) is fissionable, while no Euclidean
space is. Let D be the positive integers with the discrete topology and
Y a connected fissionable space, Y = A <u B with A, B disjoint and each
lomeomorphic with Y. Then DxY is not reversible for we may map
L X Y onto 1X A, 2 x Y onto 1x5 , and n X Y onto («—1) X Y for n = 3, 4, • • •.
Fhis yields a continuous one-to-one map of DxY onto itself, but the inverse
nap is not continuous since it maps 1 x Y onto the non-connected set
i x Y ) u (2x7).

To give an example in which Y is compact Hausdorff (suggested by
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S. L. Gulden; see also Example 6) let Y be a perfect, nowhere dense sub-
set of the line. It follows immediately from [16], Theorem 7, that Y is
fissionable, say Y = A u B as before. Then with D the positive integers,
D x Y is not reversible, for Y includes infinitely many disjoint copies of
itself and we may map each 2nxY, n = 1, 2, • • •, onto one of these so
that u 2 « x Y is mapped onto l x Y . Mapping nxY onto («— l ) x Y
for n = 3, 5, 7, • • • yields a map from D x Y onto itself whose inverse is
not continuous since it carries 1 x Y onto the non-compact set u 2nxY.

Remark. It is interesting that in the first construction just given we
could take Y = [0, 1), but not (0, 1) by the Corollary to Theorem 1. (Of
course (0, 1) is not fissionable.)

EXAMPLE 6. An extremally disconnected non-reversible space. The
example is NxpN, N the positive integers with the discrete topology,
and fiN its Stone-Cech compactification, ([20], § 14.3). SinceN is fissionable,
fiN is also; hence the construction given in the Corollary of Theorem 6
applies.

THEOREM 7. The product of two reversible spaces need not be reversible.
This is true even if one is discrete and the other a connected or compact Haus-
dorff space.

This follows from the Corollary to Theorem 6.
The following example extends Theorem 7 by increasing the allowable

assumptions.

EXAMPLE 7. There exists a non-reversible locally compact abelian group.
The group is the product of a discrete space and a compact connected metric
group. The map with discontinuous inverse is also a homomorphism.

(We have been informed that L. C. Robertson has also constructed
continuous automorphisms, without continuous inverse, of a locally com-
pact group, in a 1965 U.C.L.A. thesis.)

Let G be the full direct product of a countable number of copies of
the circle group C with Euclidean topology. (This is the product with
coordinatewise multiplication.) Let F be the full direct product of a
countable number of copies of D, where D is the circle group. Let F be
given the discrete topology. Then FxG is the required example. Define
T:FxG-+FxGby T(f,g) = (u, v), un = /n+1, vn+1 = gniorn = 1, 2, • • •,
vt = xy. Then I is a continuous automorphism oi FxG whose inverse
is not continuous.

EXAMPLE 8. A non-reversible open subspace of a reversible space. Let
D be the positive integers with the discrete topology. Then Dx [0, 1] is
easily seen to be rigid, but its open subset Dx (0, 1] is not, as pointed
out in the Remark before Example 6.
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6. Heredity

Theorem 5 shows that reversibility is not hereditary. Identification
of hereditarily reversible spaces appears difficult; we know only one non-
trivial example, given in Example 9 below.

Trivial examples of hereditarily reversible spaces are

(a) Any discrete space,
(b) Any space with only finitely many open sets, in particular any

indiscrete space and any finite space,
(c) The cofinite topology. (See § 2.)

EXAMPLE 9. A hereditarily reversible non-discrete Hausdorff space. The
space is also countable and extremally disconnected (compare Example 6);
it is not first countable, however, since, being extremally disconnected,
it would be discrete, [5], Theorem 1.3. Let N, /?2V be as in Example 6,
ind let x e /WV ~ N. (All the definitions and results needed for this example
may be found in [20] § 14.3, Application 2.) Let X = N u {a;}, with the
relative topology of /32V. Let S be a subspace of X; we shall show that S
s reversible. This is trivial if x $ S since then S is discrete, so we may
issume xe S. Let T be the topology of S; let V be any strictly stronger
:opology. There exists a subset F of S which is T' closed, but not T closed.
Then x e F ~ F, taking the T-closure, since x is the only possible limit

joint of F. It follows that x e So ~ F, where So = S <->•' {x}, since the
:haracteristic function of F can be extended from N to a continuous real
'unction defined on X. Now if we take T' closures, we have x $ F since
P = F,x$S0~ F since T is stronger than T, and so x 4 F u 50 ~ F = So.
fhus, in the T' topology, x is an isolated point of S. Since all other points
>f 5 are isolated in the T topology which is weaker than T', it follows that
T' is discrete, thus not homeomorphic with T.

The same argument proves:

THEOREM 8. N u fa;}, where x e (IN ~ N, has a maximal non-discrete
apology.

THEOREM 9. There exists a non-discrete topology such that any simple
xtension, [11], is discrete.

7. Partial orders

Let t be the set of all topologies on a set X, and for T, T' 61, define
n >- T' if T is stronger than and homeomorphic with T'. The reversible
opologies are precisely the isolated points in the partially ordered set
*» >")• J- D. Weston [19] has introduced what appears to be a very im-

https://doi.org/10.1017/S1446788700004705 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004705


136 M. Rajagopalan and A. Wilansky [8]

portant partial ordering; he writes T S: T if T is stronger than V and
for each xe X, each neighborhood of x in either of the two topologies,
as a subset of X with the other topology, is dense in a neighborhood of x.

We have T > T' but not T ^ T' for the topologies obtained from
Example 2, and T IS: T' but not T >- T' if T, T' are the norm and weak
topologies on a Banach space. For T, T' as in Example 1 we have both
T >- T' T ^ T'. Any topology which is minimal or maximal with respect
to some property is isolated in (t, >-), but in (t, 5?) any complete metric
topology is minimal T2 but not necessarily isolated; the discrete topology
is isolated, the indiscrete topology is a minimum.

8. Miscellany

(a) A reversible space may have a strictly stronger topology with the
same homeomorphism class, [21].

(b) Suppose that X is a non-reversible locally compact Hausdorff
space, that X = u {Kn : n — 1, 2, • • •} where each Kn is compact, included
in the interior of Kn+1, and has connected complement. Let D = {x : x
has a neighborhood which is not a neighborhood of x in the strictly weaker
homeomorphic topology.} Then D is closed, not compact; moreover D is
connected in the weaker topology, [18].

(c) Let T(X) be the number of T3i topologies on a T3i space (X, T)
which are weaker than T. Lower bounds for T(X) are given in [7]. Example
2 shows that the cardinal of the class of those members of T(X) which are
homeomorphic with T may be as large as that of X.

(d) Let us say that a space has property KP (compact preserving) if
every stronger homeomorphic topology has the same compact sets, equiva-
lently if every one-to-one continuous map of the space onto itself preserves
non-compactness. For example any pseudofinite space has the KP property.
Then any reversible space has the KP property and any k space with the
KP property is reversible. (For k spaces see [9], p. 230, [13], p. 76.)

Proof: The identity map from the weaker topology is continuous on
each compact set, hence continuous.

(e) If C^X] denotes the Banach algebra of all bounded continuous
complex functions on a non-reversible T3i space X, let A denote the
subalgebra consisting of those functions which are continuous when X
is given a strictly weaker homeomorphic topology; A is a proper subalgebra
since it determines the topology of X. (See for example, [20], § 9.4, Lemma 3,
and, for the following remarks, §§ 14.4, 14.5; B* and C* are synonymous.)
Moreover A is a C* subalgebra which separates points of X and contains
constants; by the Stone-Weierstrass theorem, A must not separate points
of (IX, thus there are distinct scalar homomorphisms of Ct[X] which agree
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on A. Finally, A is isometric, and star isomorphic with Ct[X].
It is clear from this type of argument that if X' is X with the weaker

topology, fiX' is a continuous, not one-to-one, image of fiX; indeed it is a
quotient of fiX obtained by identifying points which C^X'] fails to separate.
A discussion of these ideas is given in [6], §§ 2, 3, especially Theorem A.

(f) A non-reversible connected subset of R2 may be obtained by
joining all the rationals on the .X"-axis to the point (0, 1).

9. Questions

I. Is the product of a two-point discrete space and a reversible space
reversible? In other words, can "connected" be omitted in the Corollary
to Theorem 6? (Compare Theorem 4.)

II. Which topologies are homeomorphic with a simple extension,
[11]? (The stronger topology in Example 4 is a simple extension of the
Driginal one.)

III. A non-reversible topology gives rise to a linearly ordered sequence
af topologies. What is the cardinality of a maximal chain of homeomorphic
topologies? In particular when is it countable? (Note that it is possible
to have TCT'C T", T homeomorphic with T" but not with T. In Example
i, let T be the given topology, T" the (stronger) topology induced by the
jiven map, and T' a simple extension of T by means of some subset of
(0, 1).)

IV. We conjecture that every weaker Hausdorff topology for Q is
lomeomorphic with the Euclidean topology. (See Example 3 where this is
loted for every such metrizable topology.) An affirmative answer to this
:onjecture would yield the known result that Q has no weaker minimal
rlausdorff topology. [3].

V. Is every connected, locally compact, Hausdorff group reversible?
See Example 7.)

Added in proof. Maximal non-discrete topologies (Theorem 8) are called
Jltraraumen by O. Frolich, Mathematische Annalen 156 (1964), p. 80.

References

[1] R. D. Anderson, 'Topological properties of the Hilbert cube and the infinite product
of open intervals', Theorem 9. To appear in the Transactions of the American
Mathematical Society.

[2] M. P. Berri, 'Minimal topological spaces', Transactions of the American Mathematical
Society 108 (1963), 97—105.

[3] M. P. Berri, 'Categories of certain minimal topological spaces', this Journal 4 (1964),
78—82.

[4] C. M. Bessaga and V. L. Klee, 'Every non-normable F space is homeomorphic with its
closed convex bodies', Mathematische Annalen (to appear).

https://doi.org/10.1017/S1446788700004705 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004705


138 M. Rajagopalan and A. Wilansky [10]

[5] A. Gleason, 'Protective topological spaces', Illinois Journal of Mathematics 2 (1958),
482—489.

[6] E. Hewitt, 'A class of topological spaces', Bulletin of the American Mathematical Society
55 (1949), 421—426.

[7] T. Isawata, 'On a completely regular space X and T(X)', Science Reports Tokyo Daigaku,
A. 5 (1956), 227—236 (MR 19, p. 1069).

[8] M. Katetov, 'On mappings of countable spaces'. Colloquium Mathematicum 2 (1949),
30—33.

[9] J. L. Kelley, General topology (Van Nostrand).
[10] J. L. Kelley and I. Namioka, Linear topological spaces (Van Nostrand).
[11] N. Levine, 'Simple extensions of topologies', American Mathematical Monthly 71 (1964),

22—25.
[12] N. Levine, 'When are compact and closed equivalent?' American Mathematical Monthly

72 (1965), 41—44.
[13] E. A. Michael, Locally multiplicatively-convex topological algebras, Memoirs of the American

Mathematical Society 11 (1952).
[14] C. T. Scarborough and A. H. Stone, Notices of the American Mathematical Society 11

(1964), p. 107, p. 130.
[16] N. Smythe and C. A. Wilkins, 'Minimal Hausdorff and maximal compact spaces', this

Journal 3 (1963), 167—171.
[16] W. Sierpinski, General Topology (University of Toronto, 1952).
[17] W. Sierpinski, 'Sur une proprie'te' topologique des ensembles denses en soi', Fundamenta

Mathematica, 1 (1920), 11—16.
[18] J. Wada, 'One to one mappings on locally convex spaces', Osaka Mathematical Journal

8 (1956), 19—22 (MR 18, p. 140).
[19] J. D. Weston, 'On the comparison of topologies'. Journal of the London Mathematical

Society 32 (1957), 342—354.
[20] A. Wilansky, Functional Analysis (Blaisdell, 1964).
[21] Yu-Lee Lee, 'Finer topologies with the same class of homeomorphisms'. Notices of the

American Mathematical Society 12 (1965), p. 136.

University of Illinois
and Lehigh University

https://doi.org/10.1017/S1446788700004705 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004705

