
J. Austral. Math. Soc. {Series A) 41 (1986), 251-267

ABSOLUTES OF ALMOST REALCOMPACTIFICATIONS

MOHAN L. TIKOO

(Received 16 April 1984; revised 28 September 1984)

Communicated by H. Rubinstein

Abstract

Given Hausdorff spaces X and Y and a perfect irreducible and fl-continuous map / from X onto Y, a
technique that carries open (ultra) filters on X to open (ultra) filters on Y back and forth in a natural
way is introduced. It is proved that if / is a perfect irreducible and ^-continuous map from X onto Y,
then X is almost realcompact if and only if Y is almost realcompact. Several conunutativity relations
between the 'absolutes of almost realcompactifications' and the 'almost realcompactifications of
absolutes' of a space X are discussed.
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1. Preliminaries

All spaces considered in this paper are Hausdorff. Throughout, T( X) will denote
the topology on the space X. If A' is a space and A is a subset of X, then
intx(A), clx(A) and bdx(A) will denote the interior of A, closure of A, and the
boundary of A in X, respectively. A subset A of a space X is called regular open
(respectively, regular closed) if A = int xc\ X{A) (respectively, A = c\x\ntX{A).)
The family RO{X) (respectively, R(X)) denotes the complete Boolean algebra of
regular open (respectively, regular closed) subsets of X, and CO( X) denotes the
algebra of all clopen (= closed and open) subsets of X. A space X is called
extremally disconnected if c\x(U) is open in X for each U e r(X). A space X is
called zero-dimensional if it has a basis consisting of clopen subsets. A map from
a space X to a space Y is a (not necessarily continuous) function / : X -* Y. The
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notation / : X -» Y will mean that / is a surjection. Let / : X -> Y. If Z c X, the
small image of A (under / ) is defined (see [3], [14]) by f*(A) = ( y e r :
/*~(F) £ A} (Qf(A)). If / is onto, then f*(A) = Y\f(X\A). For a family
j ^ c P(X), f*(st) will denote the family { f*(A): A e j / } . A map / : X -> 7 is
called compact if, for each j > e y , /*"(>>) is a compact subset of X, perfect if /
is both a compact and a closed mapping, and irreducible if / is onto and, for each
proper closed subset A of X, f(A)±Y. A mapping / : X -* Y is called
O-continuous at a point x e X if, for each open neighborhood G of f(x) in Y,
there is an open neighborhood U of x in X such that /(cl*(£/)) c cly(G). If / is
^-continuous at each x e l , then / is called O-continuous (see [4]). A bijection / :
X -» y is called a 9-homeomorphism provided that both the maps / and / *~ are
^-continuous. Certainly, every continuous function is ^-continuous. If / : X -* Y
is ^-continuous and Y is regular, then / is continuous. Also, the composition of
two ^-continuous functions is ^-continuous. Note that the next two facts contain
well known results about maps.

(1.1) FACTS (see [3], [14], [20]).
(a) Continuous maps with compact domain are perfect.
(b) If / : X -» y is a perfect map, and if C is a compact subset of Y, then

/ *~ (C) is a compact subset of X.
(c) The composition of two perfect (respectively, irreducible and closed) maps

is a perfect (respectively, irreducible and closed) map.
(d)If/: X-* y is a perfect map, then
(i) for each closed subset A of X, f\A is a perfect mapping (whether regarded

as a function into Y or as a function onto f(A)), and
(ii) if B c y, then / | / - ( B ) : / *~ (B) -» B is a perfect mapping.
(e) If / : .Y -» y is a closed and irreducible surjection, and if S is a dense subset

of y, then / *~ (S) is a dense subset of X, and / | / - ( S ) is a closed and irreducible
surjection from f " (S) onto S.

(f) If / : .Y -• y is a perfect surjection, then there is a closed subset C of X
such that / | c : C -» y is irreducible.

(g) A surjection / : X -» Y is closed and irreducible if and only if f*(G) is a
non-empty open subset of Y for each non-empty open subset G of X

(h) If / : X -> y is ^-continuous, then for each U e r(y), / " (c l y ( l / ) ) is a
neighborhood of / <" (£/), and / [c l*( / *" (£/))] £ cly(C/).

(1.2) FACTS (see [3], [14], [20]). Let / : X -> Y be a closed, irreducible and
^-continuous mapping.

(a) If l /GT(y) , then f[clx(f - ([/))] = cly(f/) and int^t/*" (clr(f/))] =
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(b) If Ger(X\ then int^cl^G) = int^[/«-(cly(/*(G)))] c cl̂ (G) c

(c) If G e T(X), then f(clx(G)) = d y ( /*(G)) .
(d) For each C/,FGfltf(y), int^cl ̂ ( / ^ ( t / n F)) = intxc\x(f~ (U)) n

(e) For each JF G r(y), f*[mtxclx[f^(intYclY(W)))] = intycly(JF).
(f) If / is also perfect, then for each G in RO(X), f*{G) G /?0(y).
(1.3) An open filter on a space X will always mean a filter in the lattice T(A') of

all open subsets of X. A subcollection <28 of T( A') is said to be an open filter base
for some open filter on X if for every BX,B2 G 38, there exists a B e J such that
B Q Bl C\ B2. If s& is any non-empty family of open subsets of X with the finite
intersection property, then (s/) will denote the open filter on X generated by s/.
An open ultrafilter on X is an open filter on X which is a maximal element (with
respect to set inclusion) in the family of all open filters on X. It is proved in [21,
Example 12 G] that an open filter * o n a space X is an open ultrafilter if and
only if for each nonempty open subset t/of X, either U G ty or X\ dx(U) e <%,
if and only if for each V e T(X), if Vn U ¥= 0 for every U G # , then F 6 <3f.
This characterization of open ultrafilters will be used subsequently without
reference. Note that every open ultrafilter <% is prime (i.e. ^ U B e * implies
that A e % or B e <# for each v4, £ in T(A')), and for a set U e r(X), U (= <% if
and only if vcitxclx(U) e # . If J^ is a filterbase on * , then adA-(J?r) =
n{clA-(F): f e f } denotes the adherence of J*" inX J^ is called /ree if
ad ̂ ( ^ ) = 0 ; otherwise, & is called /weed. For an open filter & on X, we shall
denote by ̂  the open filter on X generated by the filterbase {intact^(v-l):
A

The following fact is needed in the sequel.

(1.4) FACT [16,1.9]. Let & be an open filter on a space X.
(a) D{#: <# is an open ultrafilter on X, <% ? &} = {T <= T( A"): intA-clA-(r)

&}, and a d ^ { T G T(A'): i n t ^ c l ^ r ) E ^ } = a d ^ J ^ ) .
(b) ^ is contained in a unique open ultrafilter °U if and only if °lls c Jf c <%.

( ) A ( ) x ( ^ )
(d) If ^ is an open ultrafilter on X, then # , is contained in a unique open

ultrafilter on X, viz., 4/ itself.
We now prove two results which will be used frequently in the coming sections.

(See for instance 1.15,1.17,1.21,1.22, 2.2, 2.3, 2.13, 2.14 and 2.15.)

(1.5) DEFINITION. Let X and Y be spaces and / a map from X onto Y. If & is

an open filter on X and $ is an open filter on Y, we define

j r - = {WGT(Y): int yc l y (W)2/*( ,4)forsomev4 G & },
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and
S^= {[/£T(l) : /»e 9).

(1.6) PROPOSITION. Let X and Y be Hausdorff spaces and f: X -» Y a perfect,
irreducible and 0-continuous surjection. If & is any open filter on X, then the
following statements are true.

(a) f*(&) is an open filter base on Y, and f{2Ax^)) = ad y ( / # ( J^)) =
ady</*(jF)>.

(b) (i) & - is an open filter on Y containing f#(S^), ^^ = C\{^r: if is an
open ultrafilter on Ysuch that TTD/ '* (&)} , and ady(J*"^) = ad y ( / * (^ ) ) .

(ii) Furthermore, if & is an open ultrafilter on X, then ^"~* is an open
ultrafilter on Y.

PROOF. Obviously, f*(&) is an open filter base on Y. Also, f(adx(^)) =
W{<AX(A): A <=&}]<zn{f(c\x(A)): A e ^ } = n{cly(/%4): A e.F)}(by
1.2) = ad y ( / # (^") ) . To prove the reverse inequality, let p e ady(/*(Jf ')). It
suffices to show that f~(p)n adx(^) * 0 . Assume that /*"(/>) n ad x(&)
= 0 . Then /*"(/>) c {X\clx(A): A G ^ " } and, since f*~(p) is a compact
subset of X, there exist finitely many A,f e &, i = 1,2,..., n such that f"(p)Q
\JiX\clAAJ: i = l,2,...,n}QX\dx(C\{Ai: i=l,2,...,n}) = X\dx(A),
where A = D{^,: / = 1,2,..., n} e ^ . Thus f ~(p) n clX(A) = 0, whence
p (£f(clx(A)) = clY(f*(A)), contradicting the fact that p e ady(/*(J^)).
Therefore, p e / (ad^(^ ) ) , and (a) follows. An easy verification shows that & ~*
is an open filter on Ycontaining f*(&r), and the first equality in (b)(i) is a direct
consequence of 1.4. The last part of (b)(i) follows from 1.4. To prove (b)(ii), let V
be an open subset of Y such that Vn W± 0 for all We&~*. Then Vn
f*(A) * 0 for each A e J^. So, (inty cly(F)) n /*(/4) # 0 , whence
int j - c l ^ / *" (intycly(F))) n y4 ̂  0 for each A e&. Using 1.2(e) and the fact
that & is an open ultrafilter, we obtain inty cly(F) e f*(^) £ &"" , whence
K e J " , and ̂  ~" is an open ultrafilter on Y. The proof of the proposition is
complete.

(1.7) PROPOSITION. Let X and Y be Hausdorff spaces and f: X -» Y a perfect,
irreducible and 0-continuous surjection. If 9 is an open filter on Y, then the
following statements are true.

(a) S? *• is an open filter on X such that for every U e &, int^cl x{f " (£/)) e

(b) jy S? « an open ultrafilter on Y, then & *~ is an open ultrafilter on X.

PROOF. It is easy to see that & *~ is an open filter on X. Now, if U e $, then
by 1.2 and the fact that U Q f*(intx(f~ (clY(U))), it follows that
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f#(intxc\x(f~(U)))<=&. Hence intxc\x(f~ (U)) e 8f-. Now, let p G
(^*~)). If p £ ady(^), then there exists a regular open set U G 3? and a

regular open neighborhood F of p in 7 such that V C\ U = 0 . By 1.2, G =
intA-clA-/*~(F) is an open neighborhood of /*"(/») in X such that G n
i n t ^ c l ^ / "(U))= 0 . Since i n t ^ c l j . / " ^ ) ^ g? - , it follows that /*"(/») n
ad^S?*") = 0 , contradicting the fact that /> G/(ad^(9?*")). Thus, /(ad^S?*"))
c ady(^). To prove the reverse inequality, let p G ady(8?). It suffices to show
that /*"(/>) n ad;r(^*~) # 0 . Assume that f"(p) n adx(@") = 0 . Then
f~(p) Q U{X\clx(A): A G 8? *"}. Since/*"(/>) is compact, there exist finitely
many 4,, i = l ,2 , . . . ,« in S?^ such that /*"(/>) c U{ A ^ c l ^ ^ , ) : / =
l ,2 , . . . ,n} = fi (say). Then, ^ =D{^, : / = 1,2,...,«} e ^ ^ . Consequently,
/*(>4) G 3?, / # ( f i ) is an open neighborhood of p in Y and /*(^4) n / * ( 5 ) = 0 ,
contradicting the fact that p G ad r (^ ) . Thus, /*"(/>) n ad^(^ ")± 0, whence
/» G/(adA-(^'")). Therefore, ady(^) c /(adx(^*"», and (a) follows. To prove
(b)let S? be an open ultrafilter on Y. If fi e T ( Z ) and 5 « ^ ^ ,1hen / # ( 5 ) « ^.
Since ^ is an open ultrafilter, it follows that f*(X\ clx(B)) = Y\f(clx(B)) =
y \ c l y ( / * ( 5 ) ) G ^. So X\clx(B) G 9*~. Hence, 3?^ is an open ultrafilter
on X.

(1.8) REMARK. A straightforward verification shows that if X -» Y is a perfect,
irreducible and ^-continuous surjection, if !F is an open ultrafilter on X, and if 3?
is an open ultrafilter on Y, then

(a) &=

(1.9) EXTENSIONS OF SPACES. An extension of a space A' is a pair [Y, j], where 7
is a Hausdorff space and j is a topological dense embedding of X into 7.
However, as is customary, we shall identify j(x) with x for each x & X and
regard X as a dense subspace of Y. Two extensions Yj and Y2 of a space X are
called equivalent if there is a homeomorphism from one onto the other whose
restriction to X is the identity map ix on X We identify two equivalent
extensions of a space X. With this convention, if E(X) is the class of all the
extensions of a space X, then E(X) is a set and ^X)\ < |P(P(P(P(Ar))))|. If Y,
Z G E( A*), then 7 is said to be projectively larger than Z (written hereafter
7 > Z) if there is a continuous mapping <j>: Y -* Z such that ^1^ = t^. If P is a
topological property and P(X) = {7 G E(Ar): 7 has the property P}, then an
element 7 of P( A') is called a projective maximum for P( X) if Y ^ Z for each
Z G P( A'). A projective maximum in P(Ar), if it exists, is unique.

(1.10) (See [12].) Let 7 be an extension of a space X.
(a) If <# is an open (ultra) filter on X, then °U* = {£/ G T ( 7 ) : C / n J f 6 * } i s

an open (ultra) filter on 7 which converges in 7 if and only if °U converges in 7.
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(b) If HT is an open (ultra) filter on Y, then if* = {Wn X: W e TT} is an
open (ultra) filter on X which converges in Y if and only if "W converges in Y.

If more than one extension is involved, the meanings of <tl* and OT^ will be
clear from the context.

(1.11) Let Y G E( X). For a point y G 7, let
(a) ^ = ( 4 = {(/nJf:(/e/,}
where ^ , is the open neighborhood filter of y in Y. For an open subset U of A',
let
(b) *Y(U)={yeY:Ue0}}.
The family (<?y((/): 1/G T ( X ) } forms an open base for a coarser Hausdorff
topology T* on y. The space (Y, r*), denoted by y* is an extension of X, and
(y#)# = y*(see[l],[15]).

Now, let y + be the space with the underlying set of Y and the topology
generated by the family @= {U U {y}: y <E Y, 1/ e 0 y } U T(X) . The space Y+

is a Hausdorff extension of X, T{Y) C T(Y+), X is an open-dense subspace of
y+, and y + \ X is closed and discrete. Moreover, (y + ) + = y+. It is well known
and easy to prove that for each U G T(X) , cly({/) = cly+(l/) = cly«(C/) [15].
The following facts are used in the sequel.

(1.12) FACTS (see [15]). Let Y be an extension of a space X.
(a)Foreachl/GT(X), UQ*Y(U) = Y\clY(X\U) = U{W<= T(Y): Wn

Xc U).
(b)If H^GT(y),then

(i) x n *Y(W n X) = w n x,
(ii) w c *Y(w n X) c dY(W n X) = dY(W) = ciy[^y(n^ n

(iii) intycly(W) = intycly(W n X) = ̂ Y(iatxclx(W n
(c) For each y € 7, {0 y . : ^ e y*} = {0y: ̂  e y} = (0y +: ̂  e y + } .
(d) If Z is an extension of X such that Z and y have the same underlying set,

then y * < Z < y + if and only if {0y: y e y} = {(5^: j e Z} and, in both
cases, Z* = y # , and Z + = y+.

(e) For any space Y e EX^), (y*) + = y+ and (y + )* = Y*.
An extension y of a space X is called a simple (respectively strict) extension if

y = y+ (respectively Y = y # ) . The extensions Y+ and y* were introduced by
Banaschewski [1].

REMARK. If X is a space, then RO(X) forms an open base for a Hausdorff
topology rs on X The space (X,TS) is denoted by X, and is called the semiregu-
larization of X (see [15]). A space X is semiregular if and only if X = X,. If
y G E(X), then y, G E(XJ. Moreover if y e E(X) and Y is semiregular, then
y= Y*.

https://doi.org/10.1017/S1446788700033668 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033668


[7] Absolutes of almost real compactifications 257

(1.13) THE KATETOV AND FOMIN EXTENSIONS. Recall that a space X is H-closed
provided that X is closed in every Hausdorff space Y in which X is embedded.
Let I b e a space and let F(X) = {<&: <& is a free open ultrafilter on X). Let
X = X U F(X). Define a topology T+ on X as follows: X is open in X, and for
We X\X a basic open neighborhood of <2f is U U {# } where £/ is open in X
and £/ e <2e. Then (X, T + ) is a simple .//-closed extension of X, denoted by KX,
and is called the Katetov extension of X (see [9]). Now let T* be another topology
on X generated by the (open basis) {o(U): U e T(X)}, where o(U) = U U {<%
G X\X: U e # }. Then (£, T*) is a strict //-closed extension of X, denoted by
aX, and is called the Fomin extension of X (see [4]). For more details see [9], [15],
[16].

(1.14) THE ABSOLUTE EX OF A SPACE X. A complete description and historical
development of the theory of absolutes occurs in the survey paper of Woods [23].
Here we shall briefly summarize those properties of the absolutes which will be
used subsequently in this paper. In what follows fiX (resp. vX) will denote the
Stone-(5ech compactifications (resp. Hewitt realcompactifications) of a Tychonoff
space X.

Let I b e a Hausdorff space and let EX be the set of all the convergent open
ultrafilters on X. For each U e T(X), let

(a) OXU = {&: &<Ei EX,£/ e jF}.
The family {OXU: [ /GT(A')} forms an open base for a Hausdorff topology
T(EX) on EX. The space (EX, r(EX)), denoted by EX henceforth, is extremally
disconnected and zero-dimensional, and it has the following properties (see [8],
[13], [14], [19], [20] and [23]).

(b) For each U e r(X) and {Ut: i e A} c r(X), Ox(X\clx(U)) =
EX\ OX(U), and c l^ [U{0^ : i e A}] = Ox\UieAUt].

(c) The map kx: EX -» X given by kx(^) = adx(^) is well defined and is a
perfect irreducible and ^-continuous surjection such that kx(OxU) = clx(U) for

(d) The space EX is unique in the sense that if Z is any extremally discon-
nected and zero-dimensional space, and </>: Z -» X is a perfect, irreducible and
^-continuous surjection, then there is a homeomorphism / : EX -* Z such that
4> o / = kx. In this case we write [Z, <}>] = x [EX, kx\.

(e) The space X is //-closed if and only if EX is compact.
(f) /?£* = S(R(X)), the Stone space of the complete Boolean algebra R(X).

Moreover if hX is any //-closed extension of X, then there exists a perfect,
irreducible and ©-continuous mapping from fiEX onto hX.

(g) fiEX\ EX = oX\ X. In particular, oX\ X is zero-dimensional,
(h) (i) If U <= T(X), then kx(OxU) = wtxdxU.
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(ii) If Wer(EX), then clx(kx(W)) = c\x(k#(W)), and there is a set
VeRO(X) such that c\EX(W) = OXV. Furthermore, clx(kf(W)) = cl^(F)
and Ox(k*(W)) = OXV.

(i) Let U be an open subset of the space X. Let kv: OXU -» c\xU be defined
by ^t/ = kx\o (j. Then A:̂  is a perfect, irreducible and ^-continuous mapping
from OXU onto cl X(U).

An immediate application of 1.6, 1.7, and 1.8 leads to a short proof of a well
known theorem proved by Iliadis and Fomin [8].

(1.15) THEOREM. Let X and Y be Hausdorff spaces such that there exists a
perfect, irreducible and 6-continuous mapping / : X -» Y. Then there exists a
homeomorphism </>: EX -» EY such that kY ° </> = / ° kx.

PROOF. Let <$t, i^, be two distinct members of EX. Then there exist open sets
( / e f a n d f e f such that U n V = 0 . Now f*(U) e * - (see 1.6), f*{V)
e f " and /*(£/) nf*(V)= 0 . Hence, # - # "T - . Moreover, by 1.6, * -
e £Y for each # e £X Thus, <f>: EX -> EY, defined by <f>(<20 = * "*, is a
one-to-one mapping from EX into £y. By 1.8, </> is onto, and /cr°<J> = f°kx.
Let O f̂/ be a basic open set in EX. Then <# e Ô -f/ if and only if U e # , if and
only if intj-cl;<•((/) G ^ = (<2r^)^, if and only if /*(intA.clA-([/)) e <%~ , if
and only if <*>(#) = ^ " G Oy(/*(intA.clx(l/))), which is open in EY. Thus,
4>(OXU) = OY(f#(intxclx(U)), and since <J> is a bijection it follows that <$> is an
open mapping. To show that </> is continuous, let OYV be a basic open set in £7.
Note that OyF = O^in t^c l^F) ) = OY[f*(mtxc\xU ~ (intrcly(K))))] =
<J>[(9A.[intA.clA.(/<"(intrcly(F)))]]. Since <j> is a bijection, the set </>^"(Oy(F)) =
Ojjint j . c l ^ / *" (intycly(F)))] is open. Hence <J> is continuous, and the proof of
the theorem is complete.

Two spaces X and Y are called co-absolute if EX ^ EY.

(1.16) THE ABSOLUTE PX. Banaschewski [2] and Mioduschewski and Rudolf
[13] constructed another absolute PX where the underlying set is EX but the
topology T(PX) is generated by the family {OXU n kx(V): U, F e T( JT)}. It
turns out that the space (PX, T(PX)), written as PX henceforth, is extremally
disconnected and Hausdorff, but is no longer Tychonoff in general. However, the
map kx (which we now denote by irx: PX -» X) is continpous as well as perfect
and irreducible. Clearly X is i/-closed if and only if PX is //-closed, and
[PX, irx] = X[EX, kx] if and only if X is regular. Also, EX=(PX)S, and
RO(EX) = RO(PX) = CO(EX) = {OXU: U e T(X)} (see [19]). Moreover,
[PX, irx] is unique in the sense that if Z is any extremally disconnected space and
g: Z -» X is a perfect, irreducible, continuous surjection, then there is homeo-
morphism h: PX -* Z such that g° h = ITX.
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T h e following results will be used later.

(1.17). LEMMA. Let a be an open ultrafilter on EX (respectively, PX). Then
a ^ = {W <E T(X): OxW<=a).

PROOF. Let ">T= {W e T(X): OXW e a}. To show that a^=iT, let f f e i f .
Then OXW e a. Since vaixdx(W) = kx(OxW) e k%(a) Q a~ (see 1.6 and
1.14(f)), and since a~* is an open ultrafilter, it follows that W e a"". Hence
^ c a ~*. To prove the reverse inequality, let W e a"*. Then there is a set v4 e a
such that k%(A) c int^cl^fT). Now O^(JkJ(yl)) c O^int^-cl^W)) = OXW,
and Ox(k*(A)) = cl£jr(^4) (see 1.14(f)). Since EX is extremally disconnected,
cl£A-(^) e a. Hence, OXWe a, and therefore W e ^ . Thus a " e r . The
same argument holds for PX, and the result follows.

(1.18) LEMMA. Let X be a space and # e EX (respectively We PX). If G is
open in EX (respectively PX), and if t e G , then k%(G) e <2r (respectively
mx(G) e * ) .

PROOF. Suppose / t^G) £ 'ZC. Since )kf(G) e T(X), and since <2C is an open
ultrafilter on X, there exists a set vl e * such that )tf (G) C\ A = 0. Therefore,
by 1.14(f), CIEA-G

 n
 ^A-^

 = 0 - Hence G n O ^ = 0 , which is impossible since
a G G and a e 0^,4. This proves the result for EX. For PX, the result follows by
the same proof using 1.16 and the fact that for any space Z, and any open subset
f/of Z,clz(U) = c\z(U).

(1.19) LEMMA. Let X be a space such that every closed and nowhere dense subset
of EX is compact. Let G be a nonempty open subset of EX and a e caEX(G). Then
there exists an open subset U of Xsuch that a e *><,EX(QXU) £ *a

PROOF. If a e 0aEX(OxG) n EX = G, there is an open subset f/of X such that
a e OXUQ G. Hence a e *aEx(OxU) £ "<,EX(G)-

 I f « G
 *OEX(G)\EX> then

G G a. By 1.14(0, there is a regular open subset Uo of X such that clEX(G) =
O f̂/g. Also, clEX(G)\G is compact by hypothesis. Let p e cl£A-(G)\G. Since
a is a free open ultrafilter on EX, there is a set Ap e a such that /? £ cl£A-(yl )
= O ^ for some Up e /?O(Ar). So p e £Jir\ O ^ . Hence {EX\ OxUp: p e
cl£A-(G)\G} is an open covering of the compact set c\EX(G)\EX. Therefore
there exist finitely many indices / = 1,2,..., n with OxUp e a for all i =
1, 2, . . . , n and dEX(G) \G c U r = 1 ( £ ^ \ OxUp) = £ X \ nf=1 O ^ =
EX\ ^ (D," . ! Up) = EX\OXUV where L̂  = n,"=1 Upi is open in X Obviously,
Ox(U0 n I/O = 6XUO n Ô -I/x e a. Also, OXUX n cl£A-(G) = (O^I/j n G) U
( O ^ n (cl£A-(G)\G))= O -̂t/i n G. So Ox(U0 n I/O c G. Take 1/ = I70 n t/x.
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Then U is open in A" (in fact regular open in A"), and OXU c G e a. Thus, again,
a e oaEx(OxU) ^ °OEX(G), and the result follows.

(1.20) REMARK. Iliadis and Fomin [8] shows that EhX = fiEX for every
//-closed extension hX of a space X. Porter, Vermeer and Woods [17] showed
that EKX = KEX if and only if X is //-closed. Porter and Votaw [16] proved that
aEX — EaX if and only if the set of nonisolated points of EX is compact.
Kate"tov [9] proved that every closed nowhere dense subset of a space is compact
if and only if the set of nonisolated points of X is compact. From [10] and [16] it
follows that oEX = EaX if and only if every closed and nowhere dense subset of
EX is compact. In [13] it is proved that PKX = KPX for every space X. Below, in
1.21 and 1.22, we shall briefly describe these homeomorphisms explicitly. These
homeomorphisms will be used in the sequel (see 2.13, 2.15).

(1.21) Suppose that every closed and nowhere dense subset of EX is compact.
We construct a homeomorphism <j> from oEX onto EaX as follows. Let a e EX.
Then a* = {G e T(OA'): G C\ X e a} is a convergent open ultrafilter on aX
such that adA-(a) = adoA-(a*). If a e oEX\EX, then (a"*)* is an open ultra-
filter on aX which converges to a point in aX\ X. An easy verification (using 1.6,
1.7,1.8,1.10, and 1.17) shows that the mapping <f>: aEX -» EaX given by

•<•>-{:
o*, a e EX,

*, a<EoEX\EX,

is well defined, one-to-one, and onto. Now let iU e T(X), and let K e r(aX).
Then, using 1.12 and 1.14, we obtain

(a) <f>[Ox(V n X)] = HEX) n OoXV,
(b) 4>[OXU] = HEX) n OaX(*aX(U)), and
(c) HEX) = k~x(X).

From (a), (b), and (c) it follows that <1>\EX'- EX -* k^~x(X) is a homeomorphism,
and that HEX) is dense in EaX. Now suppose that G e T(EX), V e T(OX),

and U e T( X). A routine verification using 1.18 shows that
(d) <t>[*oEX(G)] c O^U^ik^G))],
(e) *[*aEX(Ox(V n X))] = OaXV, and
(f) *[*oEx(OxU)] = OaX(*aX(U)).

In particular, it will follow that <f> is continuous. From 1.19, it follows that the
family {*>aEX(0xU): ^ e T(^)} forms an open base for aEX. This fact, com-
bined with (f), now shows that <j> is an open mapping, and hence a homeomor-
phism.

(1.22) Let X be a Hausdorff space. We describe explicitly a homeomorphism ip
from KPX onto P K X For a e PX, let a* = {G e T(KA'): G n X e a}. Then
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from 1.6,1.7,1.8,1.10, and 1.17 it follows that the map \p: KPX -> PKX given by

V , a<=PX,
a~*, a G K P X \ P X ,

is a well defined bijection. Further, for each A, U e T ( X ) and V, B e T(KX) one
can show (using 1.16 and 1.17) that

(a) xplir^ (A)] = 77^(^4),
(b) yp[OxU] = (OKXU) n .

(d) (OKXV) n <f>(PX) = UOX(V n X)), and
(e) «£ ( * ) n *(PJf) = * (» ; - ( * n X)).

These facts show that \p\PX: PX -» \p(PX) is a homeomorphism, and that
\j/(PX) is open and dense in P K X The continuity of <// follows from the fact that
if a e KPX, and if (OKXV) n ^ ( f i ) is any basic open neighborhood of \p(a) in
PKX, where K, B are open subsets of KX, then ip[oKPX(Ox(V n X))] = 6>KA.F,

and, for a e KPX\PX, the set ŵ ~ (fi n X) U {a} is an open neighborhood of
a in KPX such that ^[{mx {B n X)) U {a}] c ir^iB). To show that ifr is open,
it suffices to show that ip(U U {a}) is open in PKX for each open subset
U c PX, and for each a e K P X \ P X such that U e a. If \ G ^([ / U {a}) n

= i|/(l/), then ^(£7) is an open neighborhood of X in PKX contained in
{a}). Also, since U G a, we have 7r^(C/)Ga", and irJc(ir*(U)) =

4/['*x~(vx(U))] - $(U)- Also> w *(^) u {«"} i s an °Pe n neighborhood of a "
in KX and, moreover, wKJ(a~') = a~** = ^(a). Thus, ir,!x\irx{U) U {a""}] is
an open neighborhood of a"** in PKX contained in tp(U U {a}). Hence each
point of »//(£/ U {a}) is an interior point in PKX. Hence ip(U U {a}) is open in
PKX. Thus yp is an homeomorphism.

2. Almost realcompact spaces

Almost realcompact spaces were introduced and investigated by Frolik [5], and
almost realcompactifications were investigated by Liu and Strecker [12]. Proper-
ties of almost realcompact spaces can be found in [5], [6], [7], [12], and [22].

(2.1) DEFINITION, (a) An open filter & on a space X is said to have the
countable closure intersection property (abbreviated c.ci.p.) in X if for each
countable subcollection J / C ^ " , n{cl^(^4): A esf) =t 0.

(b) [5] A Hausdorff space X is called almost realcompact if every open
ultrafilter on X with c.ci.p. in X converges.

(c) [12] An almost realcompactification of a space X is a space Y such that Y is
almost realcompact and X is a dense subspace of Y.
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(d) [12] An extension Y of a space X is called a p-extension of X provided that
Y is almost realcompact, and that, if Z is any almost realcompactification of X,
then there is a continuous mapping g: Y -» Z such that g|^ = t^.

(2.2) LEMMA. Let X and Y be spaces and let f: X -* Y be a perfect, irreducible
and 6-continuous mapping from X onto Y. Then:

(a) / / "U is an open ultrafilter on X with c.c.i.p. in X, then *"* is an open
ultrafilter on Y with c.c.i.p. in Y, and

(b) / / V is an open ultrafilter on Y with c.c.i.p. in Y, then •f" is an open
ultrafilter on Xwith c.c.i.p. in X.

PROOF. The proof of (a) is easy and is left as an exercise to the reader. To prove
(b), observe that by 1.7, "P *~ is an open ultrafilter on X. Let { Vt: i = 1,2,3,...}
be a countable subfamily of "V *~ . Without loss of generality, assume that
Vn -D Vn+l for all =1 ,2 ,3 , . . . . Then {f*{Vt): / = 1,2,... } is a countable
subfamily of V and hence, by hypothesis, n{cly[/*(^)]: / = 1,2,3,...} # 0 .
Let p e D{cly[/*(^)]: / = 1,2,3,...}. Then /*"(/>) is a nonempty compact
subset of * . If / - (p) n n{d,(^ . ) : i = 1,2,3,...} = 0 , then / - (/>) c U{ X\
cl^(^) : / = 1,2,3,...}. Since the Vn's are decreasing, and since /*"(/») is
compact, there is a positive integer n0 such that / *~ (p) c
X\c\x(Vno), and Vno e r ~ . But then p e cly(F;): / = 1,2,3,...} # 0 , and,
hence, "P *~ has c.c.i.p. in X. The proof of the proposition is now complete.

(2.3) THEOREM. Let X and Y be spaces and f a perfect, irreducible and
O-continuous mapping from X onto Y. Then X is almost realcompact if and only if Y
is almost realcompact.

PROOF. The proof follows directly from 1.6,1.7, and 2.2.

(2.4) COROLLARY, (a) A space X is almost realcompact if and only if Xs is almost
realcompact.

(b) A space X is almost realcompact if and only if PX is almost realcompact, if
and only if EX is almost realcompact.

(2.5) COROLLARY. Let Y be an almost realcompactification of X, and let Z be a
space with the same underlying set as Y such that T ( Y # ) C T ( Z ) C T ( 7 + ) . Then
{by 1.12(d)) Z is almost realcompact if and only if Y is almost realcompact.

In [12] Liu and Strecker constructed an almost realcompactification pX of a
space X. In fact, pX = Xu {<#<= F(X): Qt has c.c.i.p. in X) as a set with
subspace topology induced by T(KX). The following results are proved in [12].
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(2.6) pX is a projective maximum in the class of realcompactifications of X.
(2.7) pX is the largest p-extension of X.
(2.8) px is the smallest almost realcompact space between X and KX.
In what follows, we discuss the interplay between the absolutes and almost

realcompactifications. We first state the following corollary.

(2.9) COROLLARY. EpX and PpX are almost realcompactifications of EX and PX
respectively. Moreover, EpX is realcompact (see [22]).

(2.10) The space &EX can also be realized as the space ©A" = {<&: * is an
open ultrafilter on X) whose topology has the open base {OXU: U e T(A')},

where OXU = { # e ©A': U e # } (see [19].) Now, let pX be the almost real-
compactification of X (see [12].) Let * e @X, and let t * = { 6 e T(KA'):

GC\ X <=<%}. Then <W* is an open ultrafilter on KX and &&KX(<%*) = ad^CBf)
consists of exactly one point. Define \1/KX: ®X -* KX by ^KX(^) = adKX(<%*).
If # e @X\ EX, then <2r e KX\ X and 0*x = <&. Since 4>KXC&) = p if and only
if QfxQ <% (for each # e 0Ar\£Ar), it follows that the map ipKX can be
equivalently defined as

^ <&<=®x\EX,
where kx is the usual map from EX onto X. Then i/^j- is a perfect, irreducible
and ^-continuous mapping from ©A'onto KX. NOW, let

EpX = { ^ G ©X: <V has c.c.i.p. relative to X }.

Obviously, .EA" c EpX, EpX is a dense of 0Ar, and EX is dense in £ p X

(2.11) PROPOSITION. For every space X, EpX is a realcompactification of EX,
andEpX= EpX.

PROOF.

X C > pX C » KA'

Define a map i//pA-: ^A" -» pX by >|>pA. = ^KX|£ X. NOW pA1 is a dense subspace of
KX, EpX is a dense subspace of QX, and £ p £ = ^^t.(pAr). Hence, by 1.1 and
1.2, \ppX is a perfect, irreducible, and ^-continuous mapping from £pA'onto pX.
Hence, by 1.15, EpX — EpX. Since pX is almost realcompact, EpX is real-
compact by 2.4.
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(2.12) NOTE. By 2.6, pEX is a projective maximum in the class of all the almost
realcompactifications of EX. Hence there exists a continuous mapping g: pEX -*
EpX (= EpX) that fixes the points of EX. We note that EpX carries the subspace
topology from fiEX, whereas pEX carries the subspace topology from KEX. Also,
EX *-» vEX •-» EpX = EpX •-* fiEX, where each embedding is dense and where,
for a Tychonoff space Z, j8Z and vZ have their usual meaning. We now regard
pX as the subspace of aX given by the points of pX and denote the space

(2.13) THEOREM. Let X be a Hausdorff space such that every closed and nowhere
dense subset of EX is compact. Then £fX = £EX.

PROOF. We consider the homeomorphism <J> from oEX -* EaX given by 1.21.
Let 8 G $EX\EX. Then 8 G oEX\EX. Hence </>(8) = 8^* G EoX\<t>(EX).
Suppose 8~** does not converge to a point in fX Then a = adoA-(S"^*) =
k<,x(8~**) e aX\£X. Let G G a. Then a e *oA.(G). So, *oA.(G) n £/ ± 0 for
all {/ G 8 "* * and, since 8 ~* * is an open ultrafilter on aX, it follows that
°OA-(G)

 G s " *• Hence, 6 e ( r * ) , = r . Thus, a Q 8". Since both a and
8 ~* are open ultrafilters on X, it follows that a = 8 ~*. Now 8 has the c.ci.p. in
EX. So, by (2.2), a has c.ci.p. in X, whence a e £X, a contradiction. Thus 8 "* *
converges to a point in JX Consequently, J = ( G n f l : G e 8 " * } e £fX Let

b e given by

Then </>0 is a one-to-one mapping from $EX into E$X. To show that <J>0 is onto,
let \ G E£X\EX. Then \° = {G e T(aA'): G n fX G X} is an open ultrafilter
on aX Hence X° = a"** for some a G oEX, and X'i = (a"**), = a"* is a free
open ultrafilter on X, since a"* G fX. So a ~* has c.ci.p. in X Hence a = (a "*) *~
has c.ci.p. in EX. Therefore a G £EX\EX and X = a. Thus </>0 is onto. Since
f£X is dense in oEX, E$X is dense in EaX, <f>0 is a bijection, and <j> is a
homeomorphism, and so the theorem follows.

(2.14). THEOREM. For every space X, fPX = PfX

PROOF.

C

s
PX C ^ i>f X C • PaX

xc • i x c >CTx
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We consider the homeomorphism F from aPX onto PaX given by

8#, 8eoPX\PX,

where 8* = {U c aX: is open, OaXU n PX e 8} (see [17, Theorem 4.2]). Let
8 G fPA'XPX Then 8 G oPA", and F(8) = 8* G PaX\PX. Let a = adoA-(8#).
Then a = {G e T( AT): there is a £/ G 8* such that G = [ / n J f ) is an open
ultrafilter on X. We will show that a G fX. Suppose a £ JX. Then there exists a
countable subfamily {Gt: i e to} c a such that

0 = n CI^(G,)= n i^nc

On the other hand, PX n OoA.(^oA.(G,)) e 8 for all i e «, and 8 has c.c.i.p. in
PX. Hence,

0 #» O JPATI H O.*(^(Gi))| e waX(PX) n fl
L iGu J ieo

= n [xridaX(*.x(Gl))] = n CI^(G,),

a contradiction. Thus a e fX In particular, it follows that 8 = 8*|fA- is a
convergent open ultrafilter on f Z and hence $ e Pf X So, define Fo by

Then Fo is a one-to-one mapping from £PX to P£X. We now show that Fo is
onto. Let X e PfA-XPX Then a = TT^(X) e fJf\ JT, a = { f / n ^ : 1/ e X},
and a* = X* = 8* (where * is taken with respect to aX) for some 8 e aPX. To
show that 8 e $PX, we show that 8 = a*" . It suffices to show that 8* = (a"~)#,
or, alternatively, that (8*)* = ((a*")*),» = a. Obviously, (8*), = (a*)* = a.
Also, ((<O*)* = «• Obviously, («*)„ = (a*)* = a. Also, ( ( O # ) « = { W c I :
W is open, JF = U n A" for some open U QaX and OaA-l7 n ? ^ £ a " } . Since
for every 1/ e T(aA'), OaA-f7 = OaA.[^oA.(intxclA.(C/ n A'))], it follows that PX n
<9aA.l/ = O^int^cl^-W) = OXW and hence, by 1.17, that ((«")*)• = (a*-)"* =
a. Since h = X, it follows that Fo is onto. Now {PX is dense in aPX, P£X is
dense in PaX, Fo = F|fPA-, and Fo is a bijection, so that Fo is a homeomorphism,
and the theorem follows.

(2.15) THEOREM. For every space X, pPX = PpX.

PROOF. We consider the homeomorphism i// from KPX onto PKX described in
1.22. If 8 e pPX\PX, then 8 e KPA", and »//(8) = 8~* e PKA'Xi'X If a =
^^( f i ~* *), then a e KX\X. Moreover, a = 5 "*, and hence, by 2.2, a has c.ci.p.
in X; and so a G pA"\ X Let h = {G c pX: G n Ar G a } . Then $ is an open
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ultrafilter on pX with c.ci.p. in pX. Since pX is almost realcompact, 8 converges
in pX, and hence h e PpX. Define a map \p0: pPX -» PpX by

Reasoning similar to that used in (2.13) shows that «//0 is a one-to-one mapping
from pPX onto PpX The result now follows from the fact that pPX is dense in
KPX, PpX is dense in PKX, \p is a homeomorphism, and »/>0 =
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