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Abstract
One of themost fundamental properties of a proof system is analyticity, expressing the fact that a proof of a
given formula F only uses subformulas of F. In sequent calculus, this property is usually proved by showing
that the cut rule is admissible, i.e., the introduction of the auxiliary lemmaH in the reasoning “ifH follows
from G and F follows from H, then F follows from G” can be eliminated. The proof of cut admissibility is
usually a tedious, error-prone process through several proof transformations, thus requiring the assistance
of (semi-)automatic procedures. In a previous work by Miller and Pimentel, linear logic (LL) was used as a
logical framework for establishing sufficient conditions for cut admissibility of object logical systems (OL).
The OL’s inference rules are specified as an LL theory and an easy-to-verify criterion sufficed to establish
the cut-admissibility theorem for the OL at hand. However, there are many logical systems that cannot
be adequately encoded in LL, the most symptomatic cases being sequent systems for modal logics. In this
paper, we use a linear-nested sequent (LNS) presentation of MMLL (a variant of LL with subexponentials),
and show that it is possible to establish a cut-admissibility criterion for LNS systems for (classical or
substructural) multimodal logics. We show that the same approach is suitable for handling the LNS system
for intuitionistic logic.

Keywords: Linear logic; cut elimination; multimodal logics; linear-nested systems

1. Introduction
Proof systems are frameworks for formalizing reasoning, where inference rules dictate how theo-
rems can be derived from the given hypotheses. Since proofs themselves are mathematical objects
of study, proof systems can also be used as (meta-level) tools for analyzing the structural properties
of proofs. One of the most important of such properties is analyticity.

Analytic calculi consist solely of rules that decompose the formulas to be proved in a step-
wise manner. As a result, proofs from an analytic calculus satisfy the subformula property:
every formula that appears (anywhere) in the proof must be a subformula of the formulas to
be proved. This is a powerful restriction on the shape of proofs, and it can be exploited to
prove important meta-logical properties of logical systems such as consistency, decidability, and
interpolation.

The best-known formalism for proposing analytic proof systems is Gentzen’s sequent cal-
culus (Gentzen 1969), which manipulates consequence relations between contexts of formulas,
represented by � � �. In sequent calculus systems, analyticity is often guaranteed by proving a
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property called cut admissibility: if �1 � �1,H is provable and H, �2 � �2 is provable, then so is
�1, �2 � �1,�2. In other words, one needs to prove that the cut rule below can be eliminated.

�1 � �1,H H, �2 ��2
�1, �2 � �1,�2

cut

Note the inherent duality: the cut formula H is both a conclusion of a statement and a hypothesis
of another. In analytic systems, this duality is often an invariant, being preserved throughout the
cut-elimination process. Developing general methods for detecting such invariants enables the use
of meta-level frameworks to uniformly reasoning about object-level properties.

Unfortunately, sequent systems are not expressive enough for constructing analytic calculi for
many logics of interest. The critical examples are modal logics: sequents appear to be too coarse
for capturing the subtle behavior of modalities. As a result, many new formalisms extending
sequent systems have been proposed over the last 30 years, including hypersequent calculi (Avron
1996), nested calculi (Brünnler 2009; Bull 1992; Kashima 1994; Poggiolesi 2009) and labeled
calculi (Simpson 1994; Viganò 2000).

In this work, we study cut admissibility under the linear nested system formalism (LNS for short,
Lellmann 2015), where a single sequent is replaced by a list of sequents, and the inference rules
govern the transfer of formulas between the different sequents. LNS form a particular subclass of
nested systems, where the tree structure is restricted to a line.

While such a more expressive formalism enables calculi for a broader class of logics, the greater
bureaucracy makes it harder to prove logical properties, such as analyticity itself (Bruscoli and
Guglielmi 2006). We hence lift to LNS the method developed by Miller and Pimentel (2013) and
revisited by Felty et al. (2021). The idea is to use a meta-level framework in order to specify and
reason about, in a uniform way, different logical (object-level) proof systems. Such a framework
should be powerful enough so as to be able to handle a great amount of systems. In Miller and
Pimentel (2013), the meta-logical framework was linear logic (LL Girard 1987). The advantage of
having LL as a framework is that it is a relatively simple, resource aware system, where steps of
computation can be naturally specified. The problem is that simplicity often comes with a price,
and LL is not suitable for reasoning about modalities other than its own. In the present work, we
adopt MMLL, a multimodal extension of LL, as the meta-level framework. Object-level logical sys-
tems (OL for short) are specified as MMLL theories, where OL rules are specified as MMLL clauses.
Such clauses have a very special shape: they are bipoles, formulas that can be totally decomposed
in one focused step (Andreoli 1992). In this way, the focusing proof strategy enforces a one-to-one
correspondence between aOL-rule application and the decomposition of the respectiveMMLL for-
mula in its focused system LNSFMLL. This is called adequacy, and it completely ties OL-{formulas,
rules, derivations} to MMLL-{formulas, bipoles, focused derivations}. We thus smoothly general-
ize the cut-admissibility criterion given in Miller and Pimentel (2013) to the linear nested setting,
capturing at the meta-level the duality invariant mentioned above for the specified logical sys-
tems. In this work, we will apply this method for reasoning about classical/substructural normal
multimodal logical systems, as well as the multiconclusion system for intuitionistic logic.

This paper extends our previous work (Olarte et al. 2020) in the following ways. (1) The meta-
level frameworks adopted here and in Olarte et al. (2020) are based on LL with multimodalities
(called subexponentials). Different from op. cit., MMLL considers both unbounded (classical) and
bounded (linear) subexponentials, depending if they assume or not the axioms of weakening and
contraction. Hence, in this paper, we can also reason about (multimodal) substructural systems;
(2) In Olarte et al. (2020), both the object- and meta-level logical systems had the sequent system
presentation. In this work, all systems are represented as LNS, so we can reason about a broader
class of OL (including multi-modal ones); (3) In the focused system proposed here (LNSFMLL), the
modal rules are completely deterministic, improving the proof search procedure; (4) The proof of
cut admissibility of the meta-logic is done directly in LNSFMLL, without the need of translating
this system to the unfocused version and proving the completeness of focusing; (5) We provide
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a companion repository available at Xavier and Olarte (2021) with the Coq formalization of the
cut-admissibility theorem for LNSFMLL, as well as adequacy and the application of the cut-coherent
criterion for some specified OL.

Organization and contributions.We start Section 2 by recalling linear nested systems, and pre-
senting LNS systems for propositional classical and intuitionistic logics, as well as for modal logics
that are extensions of the basic modal logic K with axioms from the set {T, 4, D}. In Section 3, we
show how to lift the LNS formalism to LL with subexponentials, considering not only the struc-
tural axioms for contraction and weakening, but also the subexponential version of modal axioms
(system MMLL). Section 3.1 presents LNSFMLL, a focused linear nested system for MMLL, which
will be the adopted logical framework for specifying and characterizing OL cut-admissibility. In
Section 3.2, we prove that LNSFMLL is itself analytic, with the proof formalized in Coq. As far as we
know, this is the first formalization of cut admissibility of a LNS-focused system. Section 4 shows
how object logics can be specified as MMLL theories. The encoding is natural and direct, and the
proof of adequacy is immediate due to the focusing discipline. Different from Olarte et al. (2020),
such encoding is general enough to consider multimodal substructural logics. Finally, the criteria
for establishing OL cut admissibility are presented in Section 5. We show that such criteria can be
easily checked. Section 6 concludes the paper.

2. Linear Nested Systems
In this section, we present a brief introduction to linear nested systems. For further details, please
refer to Lellmann (2015), Lellmann and Pimentel (2019).

One of the main problems of using sequent systems as a framework is that sequents are often
not adequate for expressing modal behaviors. Indeed, the usual introduction rule for the box
modality in the modal logic K

G1, . . . ,Gn � F
�G1, . . . ,�Gn ��F k

is somehow unsatisfactory: it modifies the context (by adding boxes to the hypothesis), and the
distinction between left and right rules for the modal connective box is lost. In order to propose a
better formulation, we need a tighter control of formulas in the context, something that sequents
do not provide. Hence, the need for extending the notion of sequent systems.

Definition 1. Let L be a formal language consisting of well-formed formulas. A sequent is an
expression of the form � �� where � (the antecedent) and � (the succedent) are finite multisets of
formulas in L , and � is the consequence symbol.

The set LNS of linear nested sequents is given recursively by

(i) if � �� is a sequent then � �� ∈ LNS
(ii) if � �� is a sequent and G ∈ LNS then G //� �� ∈ LNS.

We call each sequent in a linear nested sequent a component and slightly abuse notation, abbrevi-
ating “linear nested sequent” to LNS. We shall denote by LNSL a linear nested sequent system for
the logic L .

In words, a linear nested sequent is simply a finite list of sequents. This data structure matches
exactly that of a history in a backwards proof search in an ordinary sequent calculus (Lellmann
2015). The local behavior of modalities in the rule k is obtained as follows:

G //� ��//· � F
G //� � �,�F �R

G //� � �//�′, F ��′

G //�,�F � �//�′ � �′ �L
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G //�,A�A,� init
G //�, f � �

fL
G //� � t,�

tR

G //�, F � � G //�,G��

G //�, F ∨G��
∨L

G //� � F,�
G //� � F ∨G,�

∨R1
G //� �G,�

G //� � F ∨G,�
∨R2

G //� � F,� G //� �G,�
G //� � F ∧G,�

∧R

G //�, F � �

G //�, F ∧G� �
∧L1

G //�,G� �

G //�, F ∧G� �
∧L2

G //�1 � F,�1 G //�2,G� �2
G //�1, �2, F→G� �1,�2

→L
G //�, F �G,�

G //� � F→G,�
→R

Figure 1. System LNSG for classical logic.

G //�, F, F � �

G //�, F � �
CL

G //� � F, F,�
G //� � F,� CR

G //� � �

G //�, F � �
WL

G //� ��

G //� � F,� WR

Figure 2. The structural rules of contraction and weakening.

� � �// �, F ��

�, F � �// � ��
lift

� � �//F �G
G //� � F⊃G,�

⊃R
G //�1 � F,�1 G //�2,G� �2

G //�1, �2, F⊃G� �1,�2
⊃L

Figure 3. Rules for intuitionistic implication in the system LNSI.

Reading bottom up, while in �R a new nesting/component is created and F is moved in it, in �L
exactly one boxed formula is moved into an existing nesting, losing its modality.

We will explore the local/linear structure of LNS in two ways. First, components have a
tight connection to worlds in Kripke-like semantics, so that LNS is an adequate framework for
describing alethic modalities in logical systems driven by this kind of semantics. Second, since
information is fragmented into components, rules act locally on formulas and are usually context
independent. Hence, the movement of formulas on derivations can be better predicted and con-
trolled. This implies that both: we will be able to adequately specify a representative class of logical
systems (see Section 4); and the techniques developed in Miller and Pimentel (2013) will remain
valid in the proposed framework.

A further advantage of this framework is that it is often possible to restrict the list of sequents
in a LNS to the last two components, that we call active.

Definition 2. (End-active). An application of a linear nested sequent rule is end-active if the
rightmost components of the premises are active and the only active components (in premises and
conclusion) are the two rightmost ones. The end-active variant of a LNS calculus is the calculus with
the rules restricted to end-active applications.

All the logical systems studied in Lellmann (2015), Lellmann et al. (2017), Lellmann and
Pimentel (2019) can be restricted to the end-active version. This means that, for example, when
restricted to classical logic, new components are never created (this reflects the fact that the
Kripke structure for classical logic is flat). Hence, the LNS collapses to the usual sequent system
LK (Gentzen 1969). Figure 1 presents the (end-active) LNS rules for classical propositional logic
where the history “G // ” is always empty. Figure 2 presents the structural rules of weakening and
contraction.

A more interesting case is the linear-nested system for propositional intuitionistic logic.
LNSI (Lellmann 2015) is the system sharing with LNSG the axioms, structural rules , and rules
for conjunction and disjunction, but adding the rules for intuitionistic implication ⊃ shown in
Figure 3. Observe that, bottom-up, the rule for implication right creates a new component, adds
the sequent F �G there, and erases the back history. The lift rule, on the other hand, moves left
formulas into the next component. The consecutive application of these rules mimics, possibly
in many steps, the behavior of the sequent right rule for implication in the multiconclusion
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Axioms: K : �(F→G)→ (�F→�G) D : ¬(�F ∧�¬F) T : �F→ F 4 : �F→��F

� � �// �, F � �

�,�F � �// � ��
�L

� ��// · � F
G // � � �,�F �R

� � �//· � ·
G //� � �

d
G //�, F � �

G //�,�F ��
t

� ��//�,�F � �

�,�F � �//� � �
4

Figure 4. Somemodal axioms and their linear-nested sequent rules.

intuitionistic sequent systemmLJ (Maehara 1954)

�, F �G
� � �, F⊃G ⊃R

.... G
�

· � �//�, F �G
� � � //F �G lift

G //� � �, F⊃G
⊃R

where the double line indicates multiple applications of the lift rule.
This also interprets, proof theoretically, the definition of satisfaction for intuitionistic logic

(see Pimentel 2018). Observe that, once all formulas in the left context are lifted, the only possible
action is the application of rules in the last (right-most) component. Hence, the right context �

is forgotten. This shows an interesting dynamic in end-active systems: apply first rules that do
not involve moving-between or creating-new components; then apply a rule that creates a new
component, followed by the lift rules as much as possible; finally, come back to the beginning of
the cycle, with local rules applied to the (active) last component.

The possibility of having such a notion of “proof normalization” was studied in Pimentel et al.
(2019) in the nested systems framework. In that work, it was shown that end-active nested sys-
tems with very specific rules’ shape can be sequentialized. This implies that such nested systems
correspond to well-known sequent systems. In this work, we will use this result in a very prag-
matic way. Namely, since some sequent systems are not adequate for specification and reasoning,
we will consider the corresponding (end-active) LNS that: have the same logical properties as the
original systems; can be easily specified in our framework; and entails easy-to-check meta-level
conditions for cut admissibility.

In the present work, besides reasoning about intuitionistic and classical logics, we shall also
reason about linear nested systems for some notable extensions of the normal modal logic K.
Figure 4 presents some modal axioms and the respective linear nested rules.1 The calculus LNSK
contains the rules of LNSG together with the rules�R and�L. LetA = {T, 4, D}. Extensions of the
logic K are represented by K�, where � ⊆ A . As usual, we write S4= KT4.

Modalities can be combined, giving rise to multimodal logics.

Definition 3. Simply dependent multimodal logics (Demri 2000) are characterized by a triple
(N,�, f ), where N is a denumerable set, (N,� ) is a partial order, and f is a mapping from N
to the set L of extensions of modal logic K with axioms from the set A . The order � is upwardly
closed with respect to f , that is, if i� j then f (i)⊆ f (j). The logic described by (N,�, f ) has modali-
ties �i for every i ∈N, with axioms for the modality i given by the logic f (i) and interaction axioms
�jF→�iF for every i, j ∈N with i� j.

The linear nested system LNS(N,�,f ) for the simply dependent multimodal logic given by the
description (N,�, f ) is given in Lellmann and Pimentel (2019, Figure 6).

3. LL and its Variants
Classical LL (Girard 1987) is a resource conscious logic, in the sense that formulas are con-
sumed when used during proofs, unless marked with the exponential ? (whose dual is !). Formulas
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marked with ? behave classically, i.e., they can be contracted and weakened during proofs. LL con-
nectives include the additive conjunction & and disjunction ⊕ and their multiplicative versions
⊗ and �, together with their units and the first-order quantifiers:

LITERALS MULTIPLICATIVES ADDITIVES QUANTIF. EXP.

F,G, . . . ::= A | F⊗G | 1 | F⊕G | 0 | ∃x.F | !F
| A⊥ | F�G | ⊥ | F�G | � | ∀x.F | ?F

Note that (·)⊥ (negation) has atomic scope. For an arbitrary formula F, F⊥ denotes the result
of moving negation inward until it has atomic scope. We shall refer to atomic (A) and negated
atomic (A⊥) formulas as literals. The connectives in the first line denote the deMorgan dual of the
connectives in the second line. Hence, for atoms A, B, the expression (⊥& (A⊗ (!B)))⊥ denotes
1⊕ (A⊥

�(?B⊥)). The linear implication F−◦G is a short hand for F⊥
�G. The equivalence F≡G

is defined as (F−◦G) & (G−◦ F).
The rules for the exponentials in LL are promotion, dereliction, weakening, and contraction,

presented below in the one-sided sequent presentation
�?G1, · · · , ?Gn, F
�?G1, · · · , ?Gn, !F ! � �, F

� �, ?F der � �
� �, ?F ?W

� �, ?F, ?F
� �, ?F ?C

Note that, in the promotion rule, the banged formula ! F can be introduced only if all the formulas
in the context are marked with the exponential ?. That is, promotion is not context-independent,
just like the rule k in the previous section.

In the quest for locality, Guerrini et al. (1998) proposed 2-sequents systems for LL variants, with
separate rules for the exponentials. In Lellmann et al. (2017), this work was revisited, establishing
a lighter notation and extending the discussion to multimodalities.
LNSLL (Lellmann et al. 2017) is an end-active, linear nested system for linear logic. In this

system, the promotion rule is split into the following local rules:
� �//� F
E//� �, !F ! � �//��, ?F

� �, ?F//� �
?

Observe that no checking must be done in the context in order to apply the ? rule: the only check-
ing is in the ! rule, where E should be the empty sequent or an empty list of components. Note
the similarities between the LNS rules ! and �R, as well as ? and 4 are shown in Figure 4. Indeed,
in Lellmann et al. (2017) such similarities were exploited in order to propose extensions of LNSLL
with multimodalities, called subexponentials, allowing for different modal behaviors.

Since the proof of adequacy of the proposed encodings in Section. 4 is greatly alleviated if a
focusing discipline is used, we introduce next LNSFMLL, a novel focused version of the LNS for
linear logic with subexponentials. As we shall see, the modal/subexponential phase of the system
LNSFMLL has a better control of the flow of formulas than the system in Olarte et al. (2020).

3.1 Multimodalities in linear logic and the focused system LNSFMLL
Similar to modal connectives, exponentials in LL are not canonical (Danos et al. 1993), in the sense
that, even having the same scheme for introduction rules, marking the exponentials with different
labels does not preserve equivalence: if i �= j then !iF �≡ !jF and ?iF �≡ ?jF.

Let I be a set of labels, organized in a preorder�. We will call !i, ?i, for i ∈ I , subexponentials,
which can be seen as substructural multimodalities.

There are, however, two main differences between multimodalities in normal modal logics and
subexponentials in linear logic:
(i). Substructural behavior. Subexponentials carry the possibility of being unbounded (or clas-
sical) if weakening and contraction are allowed or bounded otherwise (thus having a linear
behavior);
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(ii).Nature of modalities. Normal modal logics start from the weakest version, assuming only the
axiom K. Then, extensions are considered, by adding other axioms. Exponentials in linear logic,
on the other side “take for granted” the behaviors expressed by axioms K, T, and 4 (Martini and
Masini 1994) – and this is inherited by subexponentials.

We observe that (i) opened a venue for proposing different multimodal substructural logi-
cal systems, that encountered a number of different applications e.g. in the specification and
verification of concurrent systems (Nigam et al. 2017), biological systems (Olarte et al. 2016),
bigraphs (Chaudhuri and Reis 2015), applications in linguistics (Kanovich et al. 2019), and the
specification of systems with multiple contexts, which may be represented by sets or multisets
of formulas (Nigam et al. 2016). Regarding (ii), Guerrini et al. (1998) unified the modal and LL
approaches, with the exponentials assuming only the linear version of K, with the possibility of
adding modal extensions to it.

In Lellmann et al. (2017), we brought this discussion to themultimodal case, extending the con-
cept of simply dependent multimodal logics to the substructural setting, where subexponentials
consider not only the structural axioms for contraction and weakening:

C : !i(F)−◦ !iF⊗ !iF W : !iF−◦ 1 U= {C,W}
but also the subexponential version of axioms {K, 4, D, T}:

K : !i(F−◦G)−◦ !iF−◦ !iG 4 : !iF−◦ !i!iF D : !iF−◦ ?iF T : !iF−◦ F
This means that ?i can behave classically (U) or not, but also with exponential behaviors different
from those in LL. Hence, by assigning different modal axioms one obtains, in a modular way, a
class of different substructural modal logics. For instance, subexponentials assuming T allow for
dereliction, those assuming 4 are persistent, and those assuming only K are functorial (Girard
1998). In particular, substructural KD can be seen as a fragment of elementary linear logic ELL
(Guerrini et al. 1998).

The main goal of the present work is to show how this new class of subexponentials can be
applied to the problem of characterizing cut admissibility of object-level logical systems. This line
of work of using LNS systems at the meta-level started in Olarte et al. (2020), where we have
considered a finite class of unbounded subexponentials for specifying classical modal logics. In
this work, we extend the meta-logic to support an infinite set of subexponentials, which can be
bounded or unbounded, for specifying classical and linear LNS systems for multimodal logics.

Before presenting the formal definition, let us start with some intuitions. First of all, observe
that systems at meta- and object levels are presented in the linear nested formulation. This allows
not only broadening the range of specified systems, but also a more granular control of modalities.
However, this comes with a price: the meta-level role of exponentials becomes highly overloaded.
Indeed, they should not only handle the internal structural properties of formulas, but also the
external structural properties of modalities. For example, how a classical, nonpersistent OL box
modality� should be encoded at the meta-level? The natural answer would be: via an unbounded,
non persistent subexponential ?i. Note that the object rule�L suppresses themodality of the boxed
formula whenmoving between components (reading the rule in Figure 4 bottom-up). If the subex-
ponential modality ?i is also removed at themeta-level (whenmoving to the next component), this
would impose a linear nature on formulas. On the other hand, keeping the subexponential while
moving between components implies that the box will be persistent (a mismatch with respect to
the OL behavior).

We solve this problem by introducing the unbounded, confined subexponentials !c, ?c, match-
ing the exact same behavior of the LL exponentials in sequent systems. That is, promotion is
restricted to a component, and it can be applied only when the linear context is empty (see rule !c
in Figure 5). Although it seems that we are sacrificing locality for the sake of modularity and uni-
formity, this is not the case: banged formulas with label c will never appear in the encodings – the
confined classical behavior is encoded using the question-mark exponential. Hence, the nonlocal
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Negative rules:
��; � ⇑�, L � � �; � ⇑ L

� �; � ⇑⊥, L ⊥ � �; � ⇑ F,G, L
��; � ⇑ F�G, L �

� �;�, S⇑ L
��; � ⇑ S, L store

� �; � ⇑ F, L � �; � ⇑G, L
� �; � ⇑ F &G, L &

� �; � ⇑ F[y/x], L
� �; � ⇑ ∀x.F, L ∀

� �, i : F;� ⇑ L
� �; � ⇑ ?iF, L

stores

Positive rules:

� �u,�l
1;�1 ⇓ F � �u,�l

2;�2 ⇓ G
� �u,�l

1,�
l
2;�1, �2 ⇓ F⊗G

⊗ � �;� ⇓ F1
� �;� ⇓ F1 ⊕ F2

⊕1
��;� ⇓ F2

��;� ⇓ F1 ⊕ F2
⊕2

� �;� ⇓ F[t/x]
� �;� ⇓ ∃x.F ∃ � �;· ⇓ 1 1

Structural:

� �u;A⇓ A⊥ Il � �u, i :A;· ⇓ A⊥ ls

� �;� ⇓ P
� �;�, P⇑ · Dl

��, i : Pa;� ⇓ Pa
� �, i : Pa;� ⇑ · Dus

��;� ⇓ Pa
� �, i : Pa;� ⇑ · Dls

� �; � ⇑N
� �;� ⇓ N Rn

Modal:

��;· ⇑ ·//i� ·;· ⇑ F
� �;· ⇓ !iF !i � ϒ ;· ⇑ L

� �u;· ⇑ ·//i�ϒ ;· ⇑ L
Rr

� �;· ⇑ ·//i� ·;· ⇑ ·
� �;· ⇑ · Dd

� �u;· ⇑ F
� �u;· ⇓ !cF !c

��; � ⇑ ·//i� ϒ , j+ : F;· ⇑ L
� �, j : F;� ⇑ ·//i� ϒ ;· ⇑ L

?i4
� �;· ⇑ ·//i� ϒ ;· ⇑ L, F

� �, j : F;· ⇑ ·//i� ϒ ;· ⇑ L
?ikl

� �;· ⇑ ·//i� ϒ , c : F;· ⇑ L
� �, j : F;· ⇑ ·//i�ϒ ;· ⇑ L

?iku

Figure 5. End-active focused system LNSFMLL. �u (resp. �l) contains only unbounded (resp. linear) subexponentials. In ls
and Il, A is atomic. In ∀, y is fresh. In store, S is a literal or a positive formula. In Rn, N is a negative formula. In Dl, P is positive,
and in Dus , Dls, Pa is not atomic. In Dus , Dls and ls, T ∈U (i). In all question-marked rules i� j. Moreover, i �= c in !i ; D ∈U (i) in
Dd; 4 ∈U (j) in ?i4; {4, C, W} ∩U (j)=∅ in ?ikl; 4 �∈U (i) and U⊆U (i) in ?iku and in D

u
s .

promotion rule !c will never be applied. It is part of the systems, however, for completeness of the
cut-elimination procedure (see Section 3.2).

Definition 4. (MMLL). Multimodal linear logic (MMLL) shares with linear logic all connectives
except the exponentials:MMLL contains labeled subexponentials !i, ?i, specified by the subexponential
signature given by � = 〈I ,�,U (i)〉, where

– I is a set of labels;
– U (i) represents the set of axioms within {C,W, K, 4, D, T} that the subexponential i ∈ I
assumes, with K ∈ U (i) for all i ∈ I ;

– � is a preorder among the elements of I that is upwardly closed with respect to U (i), i.e., if an
axiom A ∈ U (i) and i� j, then A ∈ U (j).

We assume c ∈ I to be a distinguished element s.t. U (c)= {C,W, K, T} and c is only �-
related with itself. Finally, for every subexponential i ∈ I , we assume a subexponential i+∈ I s.t.
U (i+)= U (i)∪ {T}, i� i+, and if i� j then i+� j+.

As usual, the upwardly condition is needed for cut elimination (Danos et al. 1993). Since we
are considering extensions of normal modal logics, all the subexponentials are assumed to have
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the axiom K. Finally, the subexponential i+, that adds T to U (i), will be used to give a more
deterministic rule for exponentials containing the axiom 4 (more on this below).

The focused proof system for MMLL is presented in Figure 5 and explained in the follow-
ing. Focusing (Andreoli 1992) is a discipline on proofs aiming at reducing nondeterminism
during proof search. Focusing in LL-based systems is grounded on two kinds of separations:
(a) classical/linear behavior of formulas and (b) invertible/non invertible introduction rules.

For (a), observe that it is possible to incorporate the structural rules of contraction and weaken-
ing for formulas of the shape ?F into the LL introduction rules. This is reflected into the syntax in
the so called dyadic sequents where the context is split into two, a classical (set of formulas �) and
a linear (multiset of formulas �). The dyadic sequent � �; � is then interpreted as the linear logic
sequent � ?�, � where ?�= {?F | F ∈�}. This idea can be generalized to the case of the subex-
ponentials. The subexponential context is a multiset of the form � = {i : F | i ∈ I }, and the dyadic
sequent � �; � is interpreted as the (subexponential) linear logic sequent � {?iF | i : F ∈�}, �.
That is, i : F ∈ � represents that F is stored in the (subexponential) context in � labeled by i. We
extend the indexed notation to contexts as follows: given a linear context � = {F1, . . . , Fn}, we will
write i : � for the subexponential context {i : F1, . . . , i : Fn}. Finally, we shall use the superindex�u

(resp. �l) to denote a context where all the subexponentials are unbounded (resp. linear). When
we simply write �, the context may contain both, linear and unbounded subexponentials.

For (b), it turns out that proofs can be organized in two alternating phases: negative con-
taining only invertible rules, and positive containing only noninvertible rules. The connectives
�,⊥, &,�, ?i, ∀ have invertible introduction rules and are thus classified as negative. The remain-
ing connectives ⊗, 1,⊕, 0, !i, ∃ are positive. Formulas inherit their polarity from their main
connective, e.g., F⊗G is positive and F�G is negative. Although the bias assigned to atoms does
not interfere with provability (Andreoli 1992; Miller and Saurin 2007), here we follow Andreoli’s
convention of classifying atomic formulas as negative, thus negated atoms as positive.

The inference rules of the focused system LNSFMLL in Figure 5 involve two kinds of sequents

�; � ⇑ L and �; � ⇓ F

where L is a (possibly empty) list of formulas. The formula occurrence F in a ⇓-sequent is called
the focus of that sequent. Moreover, linear nested sequents in LNSFMLL have the shape

� G //i Seq

where G is either an unfocused sequent or it is empty (in this case//iis not present). The superscript
in “//i” indicates that the component was created by a subexponential labeled with i. Seq, above, is
a focused or unfocused LNSFMLL sequent.

The different LNS above reflect not only the negative/positive proof phases but also the
behavior of the promotion rule:

– � �; � ⇑ L belongs to the negative phase. During this phase, all negative formulas in the list
L are introduced and all positive formulas and literals are moved to the linear context �;

– � �; � ⇓ F belongs to the positive phase, where all positive connectives at the root of F are
introduced; and

– � G //i� �; � ⇑ F belongs to the exponential/modal phase. During this phase, only applica-
tions of the rules for ?i are allowed, ending with an application of Rr (release rule).
The dynamics of the different phases is detailed below.

Negative Phase.Negative rules can be applied eagerly, in any order. This process includes storing
formulas. Note that the rule store moves, to the linear zone �, the literal or positive formula S
since it cannot be decomposed during the negative phase; stores stores formulas marked with ?i
into the correspondent subexponential context.
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The negative phase ends when the list L in unfocused sequents is empty. A decision rule is then
applied. There are four possibilities.

• Dl, Dus , Dls: a positive phase starts by focusing on a non-atomic formula F such that
– Dl: F is taken from the linear context (and thus erased from it);
– Dus : a copy of F is taken from the subexponential context i, thus making an implicit
contraction (U⊆ U (i)) and a dereliction (T ∈ U (i));

– Dls: analogous to Dus , with the difference that U∩ U (i)=∅ and the formula is not
contracted.

• Dd: starts an exponential phase.

Positive Phase. Once we focus on a formula, the proof follows by applying positive rules, where
the focus persists on the decomposed subformulas until either: the proof ends with an instance
of an axiom; a negative formula is reached, and the positive phase ends with the application of
Rn; or a banged formula is derived, which either moves the proof to the negative case (if the
subexponential is !c) or triggers an exponential phase execution (otherwise). In the latter, only the
rules for ?i, moving formulas between components, are allowed. When this moving is over, the
exponential phase ends with an application of the rule Rr, starting again a negative phase.

There are two initial rules. In Il, the atom A is in the linear zone and the subexponential context
must be unbounded (being implicitly weakened); in Is, the atom is placed in a subexponential
context iwith T ∈ U (i). The need of the axiom T comes from the fact that it embodies the capacity
of using the formula in the same component, corresponding to dereliction in linear logic.

Exponential Phase. The exponential phase starts with the application of a !i rule, with i �= c, or
the rule Dd. The distinguished subexponential !c behaves as the LL bang exponential. Hence, its
introduction rule simply ends the positive phase and assumes that the subexponential context is
unbounded. For any other subexponential in MMLL, the rule !i creates a new component, moving
the active formula to it. Once the new component is created, the ?i rules dictate the movement of
formulas between components, as described in the following.

Usually, nested-based systems for modal/linear logics present one core box left/question mark
rule, and other modal rules with different behaviors are added on the top of it, depending on the
modal axioms of the underlying modality/subexponential. In Olarte et al. (2020), we have adopted
such approach, lifting to the meta-level the OL modal rules. Although resulting into adequate
specifications, in the sense of successfully capturing the object-level behavior, this approach is not
satisfactory for the meta-level focused system, since it adds a great deal of nondeterminism during
proof search.

In this work, we propose more efficient modal rules from the proof theoretical point of view
using all the subexponential features present in MMLL. First of all, when 4 ∈ U (j), the rules ?ikl
and ?iku cannot be applied. Dually, if 4 �∈ U (j), then the rule ?i4 is not enabled and the use of
?ikl (resp. ?iku) is only possible if U �⊂ U (j) (resp. U⊆ U (j)). Second, the proposed rules have a
better control of contraction, thus avoiding the need of guessing the number of times a formula
must be copied to the next component. Note that the rule ?i4 moves the formula F stored in the
context j to the context j+. This has two immediate effects: the formula F can be copied to yet
another component (once it is created) reflecting the behavior of the modal rule 4 (persistence);
moreover, since T ∈ U (j+ ), the formula F can be also used in the last component by applying the
decision rule. Finally, when U⊆ U (j), j+ is also unbounded and decision/dereliction on the same
formula can be performed several times. In other words, the rule ?i4 embeds both the behavior of
K (moving formulas between components) and also 4 (by keeping the modality of the formula).
On the other hand, the behavior of K, without 4, is specified by the rules ?ikl and ?iku. In the first
case, j is linear and then F is not contracted. In the second case, F is placed in the context c. Since
T ∈ U (c), F can be used as many times as needed in the last component (by using the decision
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rule during the positive phase). Also, since c is not related to any subexponential, the formula F
cannot be moved to other components and thus confined to the last component.

All this is illustrated in the next example.

Example 3.1. Let 4, 4+, k, k+ be subexponentials s.t. U (4)= {K, 4}, U (4+ )= {K, 4, T}, U (k)=
{K, C,W} and U (k+ )= {K, C,W, T}. The following derivations show, respectively, that the
axioms K and 4 are provable:

� ·;A⇓ A⊥ ll

� 4+ :A⊥;A⇑ · D
l
s

� ·;· ⇑ ·//4� 4+ :A⊥;· ⇑A
Rr, store

� 4+ :A⊥;· ⇑ !4A store, Dl, !4, ?44
� ·;· ⇑ ·//4� 4+ :A⊥;· ⇑ !4A Rr

� 4 :A⊥;· ⇑ ·//4� ·;· ⇑ !4A ?44

� 4 :A⊥;· ⇓ !4!4A !4

� 4 :A⊥;!4!4A⇑ · Dl

� ·;· ⇑ ?4A⊥
�!4!4A �, storec, store

� c : (A⊗ B⊥), c :A⊥ ;A⇓ A⊥ Il

� c : (A⊗ B⊥), c :A⊥ ;· ⇓ A
Rn, store, Dus � c : (A⊗ B⊥), c :A⊥ ;B⇓ B⊥ Il

� c : (A⊗ B⊥), c :A⊥ ;B⇓ A⊗ B⊥ ⊗

� c : (A⊗ B⊥), c :A⊥ ;· ⇑ B
store, Dus

� ·;· ⇑ ·//k� c : (A⊗ B⊥), c :A⊥ ;· ⇑ B
Rr

� k : (A⊗ B⊥), k :A⊥ ;· ⇑ ·//k� ·;· ⇑ B
2× ?kku

� k : (A⊗ B⊥), k :A⊥ ;· ⇓ !kB !k

� k : (A⊗ B⊥), k :A⊥ ; !kB⇑ · Dl

� ·;· ⇑ !k(A−◦ B)−◦ (!kA−◦ !kB)) �, storec,�, storec, store

The first derivation involves three components (two of them created using the !4 rule). The infor-
mation A⊥ is passed from the 1st to the 2nd and 3rd components through the subexponential 4+
via rule ?44. Since this subexponential is linear, the context 4+ disappear after the application of
Dls. The second derivation illustrates the application of the rule ?iku in the unbounded subexp. k.
Note that the formula A⊗ B⊥ is copied to the context c. All the other axioms in Figure 4 can be
proved similarly, using a subexponential featuring the needed modal behaviors.

Finally, it should be noted that the proposed focused system is complete w.r.t. the unfo-
cused version. For the plain linear logic rules, completeness is guaranteed by Andreoli’s result
in Andreoli (1992). For the modal rules, it is straightforward to simulate the LNS rules from the
focused ones, following the same lines as the process of obtaining sequent rules from the LNS ones
(see the example for implication right rule formLJ in Section 2).

3.2 Cut Admissibility for LNSFMLL
In this section, we present a cut-admissibility result for the system LNSFMLL. It should be noted that
this is, for the best of our knowledge, the first formally verified proof of cut admissibility for focused
LNS.2 This is not a simple enhancement w.r.t. other formalizations: usually cut-admissibility of
focused systems is done in two steps, first translating it into the unfocused version, then proving
the completeness of focusing. Here, we prove the cut admissibility of LNSFMLL directly, observing
that the multimodal flavor of the system makes the task even less trivial.

We proceed by double induction on the complexity of the cut formula and the sum of the
premises’ heights of the cut rule. Since we are proving the theorem directly on a focused system,
we require to eliminate, simultaneously, different rules dealing with the different phases of the
proof (see e.g., Liang and Miller 2009). The cut rules are in Figure 6.

In the following, we show the most interesting proof reductions needed to establish the main
result (Theorem 3.5). In the repository (Xavier and Olarte 2021), the reader can find the formal-
ization in Coq of all the results of this section, together with a companion PDF with extra details
about the proof.

Auxiliary results.We start with a series of auxiliary results for the system LNSFMLL. They are not
only needed for the proof of the main theorem, but they will also help on understanding better
the dynamics of the system.
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Notation 5. We use � �; � � X to represent a sequent that can belong to the negative phase –
and X is a list of formulas, or to the positive phase – and X is a formula. We use �n S to indicate
that the linear nested sequent S has a derivation of height at most n. If � = {i1 : F1, ..., in : Fn} is
a subexponential context, then �+ denotes the subexponential context {i1+ : F1, ..., in+ : Fn} and
F (�) denotes the list of formulas F1, . . . , Fn. For easing the notation, we will write i :� instead of
i : F (�)= {i : F1, . . . , i : Fn}. Finally, �= (�1, . . . ,�n) denotes that �1, . . . ,�n is a partition of
�. In this section, 	 will be used to denote a context assuming axiom 4 (called 4-context), and 
 a
context without 4.

Recall that the axiom T allows for dereliction. The following result shows some particular
behaviors of T-contexts.

Theorem 3.1. (The axiom T). The following propositions hold:

(T1) If {T, C,W} ⊆ U (i) and �n �, i : F, c : F; � � X, then �n �, i : F; � � X.
(T2) If {T, C,W} ⊆ U (i) and �n �, i : F; �, F � X, then �n �, i : F; � � X.
(T3) If T ∈ U (i) and �n �; �, F � X, then �n �, i : F; � � X.

(LA1) If {T, C,W} ⊆ U (i) and � �, i : F;� ⇑ L, F then ��, i : F;� ⇑ L.
(LA2) If T ∈ U (i) and � �; � ⇑ L, F then � �, i : F;� ⇑ L.

All these results can be easily generalized to contexts featuring the corresponding axioms.
For example, in the case of the absorption lemma (LA2), if � �;� ⇑ L, �, then � �, i : �;� ⇑ L.
Moreover, (T1) states that if a formula is stored in a context iwhere T holds, then it is “redundant”
to place that formula also in the local context c. The other results allow us for moving formulas in
the different zones of a sequent where T holds.

The next theorem highlights the difference between multisets and lists in contexts. Namely,
while permuting a list preserves provability, it may not preserve the height of a derivation. On the
other hand, weakening and contraction are height-preserving admissible for unbounded contexts.

Theorem 3.2. (Structural Rules). The following propositions hold.

(≡P) If L1 is a permutation of L2 and ��; � ⇑ L1 then ��; � ⇑ L2
(W) If U⊆ U (i) and �n �; � � X then �n �, i : F; � � X.
(C) If U⊆ U (i) and �n �, i : F, i : F; � � X then �n �, i : F; � � X.

As usual in focused systems, the shape of phases can be totally characterized. In the subexpo-
nential phase, since the only action allowed is moving formulas between components until the
release rule (Rr) is applied, every derivation has the shape

� 	+, c : 
1;· ⇑ L,F (
2)
� 	,
 ,�;· ⇑ ·//i� ·;· ⇑ L

� 	,
 ,�;· ⇑ ·//i� ·;· ⇑ P
� 	,
 ,�;· ⇓ !iP !i � 	,
 ,�;· ⇑ ·//i� ·;· ⇑ ·

�	,
 ,�;· ⇑ · Dd

where � contains all the unbounded subexponentials not related to i, 
 = (
u
1 ,


l
2) and i� j for

all j : F in	∪ 
1. Observe that� is weakened when the release rule is applied. The formulas in	

gain the axiom T, the unbounded formulas in 
 are stored in c and the linear ones are placed in
the linear context (F (
2)). On the left, the subexponential phase is triggered by the promotion
rule and L= P. On the right, the rule Dd is applied and L is empty.
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��,�1, i :H;� ⇓ F � �,�2;· ⇓ !iH⊥
� �,�;� ⇑ F ⇓ CC

��,�1, i :H;� ⇑ L ��,�2;· ⇓ !iH⊥
� �,�;� ⇑ L ⇑ CC

� �,�1;� ⇑H, L � �,�2;�⇓ H⊥
� �,�;�,�⇑ L ⇑ C

� �,�1;� ⇑ L1,H, L2 � �,�2;�⇑H⊥, L3
� �,�;�,�⇑ L1, L2, L3

⇑ C∗ ��,�1;�,H ⇑ L1 � �,�2;�⇑H⊥, L2
��,�;�,� ⇑ L1, L2

⇑ LC∗
Figure 6. Cut-rules for the system LNSFMLL.� is unbounded and� = (�1,�2) is linear.

Theorem 3.3. (Subexp. phase). Assume that � is unbounded, 
 = (
u
1 ,


l
2), 	= (	u

1,	
l
2), and if

j : F ∈	 ∪
1 then i� j. Then

(S) �m 	+, c : 
1;· ⇑ L,F (
2) iff �m+n+1 	,
 ,�;· ⇑ ·//i·;· ⇑ L
where n= |	,
|.

This result can be further specialized depending whether the index i in the subexponential
phase (·//i·) is unbounded or 4 ∈ U (i). Remember the upwardly closeness condition: if i� j and
some axiom A ∈ U (i) then, A ∈ U (j). Hence, if i is unbounded, there is no linear subexponentials
in	,
 ,� and, thus,
2 and	2 are necessarily empty in (S). Moreover, if 4 ∈ U (i),
 (containing
the indices without 4)must be necessarily unbounded andweakened in the application of Rr. More
precisely:

(SU) �m 	1+, c :
1;· ⇑ L iff �m+k+1 	1,
1,�;· ⇑ ·//i·;· ⇑ L
(S4) �m 	 + ;· ⇑ L iff �m+r+1 	,�;· ⇑ ·//i·;· ⇑ L

where k= |	1,
1| and r= |	|.
It is also interesting to revisit the two different promotion rules: !c and !i. The following

theorem shows that they coincide when {C,W, T} ⊆ U (i).

Theorem 3.4. Let i be unbounded and T ∈ U (i). If �n �;· ⇓ !iP then �n−1 �;· ⇑ P.

Cut-rules and reductions. The five cut-rules admissible in LNSFMLL are presented in Figure 6.
In all cases, � contains only unbounded subexponentials whereas � = (�1,�2) is a linear con-
text. Below we explain the interdependencies between these rules during the cut-elimination
procedure. For the sake of readability, in most of the derivations, we omit the unbounded
context �.
Elimination of ⇑C. Since the cut formula is the first element in the list of formulas in the left
premise, it must be necessarily principal. Take for instance the following case:

π1� �1;� ⇑ P,Q, L
� �1;� ⇑ P�Q, L �

π2
��2;�1 ⇓ P⊥

π3
� �3;�2 ⇓ Q⊥

� �2,�3;� ⇓ P⊥ ⊗Q⊥ ⊗
��1,�2,�3;�,� ⇑ L ⇑ C

�
π1� �1;� ⇑ P,Q, L

π2
� �2;�1 ⇓ P⊥

� �1,�2;�,�1 ⇑Q, L ⇑ C π3
� �3;�2 ⇓ Q⊥

� �1,�2,�3;�,� ⇑ L ⇑ C

When the cut formula has the shape ?iF (resp. a positive formula or a literal), a shorter cut
using ⇑CC (resp. ⇑LC∗) is used. For example:

� �1, i :H;� ⇑ L
stores� �1;� ⇑ ?iH, L ��2;· ⇓ !iH⊥

⇑C��1,�2;� ⇑ L

� � �1, i :H;� ⇑ L ��2;· ⇓ !iH⊥
⇑CC� �1,�2;� ⇑ L
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When the cut formula is an atom, the right premise of the cut must necessarily finish with the
initial rule. We show below the case where A is in the (linear) subexponential context i (where,
necessarily, T ∈ U (i)) and we use the admissible rule (T3), which is is justified by the respective
statement in Theorem 3.1.

� �1; A, � ⇑ L
store� �1; � ⇑A, L

Is� i :A;· ⇓ A⊥
⇑C� �1, i :A;� ⇑ L

� � �1; A, � ⇑ L
T3� �1, i :A; � ⇑ L

In the following, we will adopt the same procedure of reading the results in Theorem 3.1 as rules.
Elimination of ⇑CC. The elimination of this rule is easy when the list L is not empty: it suffices
to permute down the application of the introduction rule.

When L is empty, the left premise necessarily starts with a decision rule or an application
of Dd. We show below the case where Q is taken from the linear subexponential context a and,
necessarily, T ∈ U (a). We proceed with a (smaller) application of ⇓CC:

� �1, i :H; � ⇓ Q
Dls� a :Q,�1, i :H; � ⇑ · � �2;· ⇓ !iH⊥

⇑CC� a :Q,�1,�2; � ⇑ ·
� � �1, i :H;� ⇓ Q � �2;· ⇓ !iH⊥

⇓CC� �1,�2;� ⇑Q
LA2� a :Q,�1,�2;� ⇑ ·

Consider now the case where the left premise starts with an application of Dd. Assume that
D ∈ U (a), a� i and 4 ∈ U (i). Moreover, let 
 = (
u

1 ,

l
2) and 	= (	u

1,	
l
2,	

l
3). Hence

π1
� 	

�a
1 +,	2+, c :
�a

1 , i+ :H;· ⇑ F (
2)
� 	1,	2,
 , i :H;· ⇑ ·//a� ·;· ⇑ · ?a, Rr

� 	1,	2,
 , i :H;· ⇑ · Dd

π2
� 	

�i
1 +,	3 + ;· ⇑H⊥

�	1,	3,
1;· ⇓ !iH⊥ !i, ?i, Rr
� 	,
 ;· ⇑ · ⇑ CC

The leaves in the above derivation are obtained from Theorem 3.3. The notation 	
�a
1 represents

the subset of formulas in 	1 whose indices are above a and that were not weakened in the end of
the subexponential phase. Note that, due to the upwardly closeness condition, the linear context

2 must necessarily be moved to the left premise (since 4 is not present in 
). Also, 
1 is
necessarily weakened in the right premise after applying the release rule. The reduction consists
in cutting with !i+H⊥ instead of !iH⊥ as follows:

πw
1

� 	′+,	2+, c :
�a
1 , i+ :H;· ⇑ F (
2)

πw
2

� 	′+,	3 + ;· ⇓ !i+H⊥

�	′+,	2+,	3+, c :
�a
1 ;· ⇑ F (
2)

⇑ CC

� 	,
 ;· ⇑ · Dd, ?i, Rr
In the above derivation, 	′ contains all the formulas in both 	

�a
1 and 	

�i
1 , i.e., the formulas from

	1 that were not weakened in neither of the derivations. Note that a� i and then, the application
of Dd can preserve all the formulas in 	

�i
1 (similarly for 	3). Derivations πw

i for i ∈ {1, 2} are
obtained from πi by weakening the formulas in 	′

1 not needed in each derivation.

Elimination of⇓CC. When the focused formula on the left premise is principal and focus cannot
be lost, an invertibility lemma is used. Below a representative case using the invertibility lemma
(L ⊕ ) : If � �; � ⇑ L, F then � �; �, F⊕G⇑ L.

� �1, i :H; � ⇓ P
Dls� �1, i :H; � ⇓ P⊕Q � �2;· ⇓ !iH⊥

⇓CC� �1,�2; � ⇑ P⊕Q

�
� �1, i :H; � ⇓ P � �2;· ⇓ !iH⊥

⇓CC� �1,�2; � ⇑ P
L⊕��1,�2; �, P⊕Q⇑ ·
store� �1,�2; � ⇑ P⊕Q
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When the left premise starts with the promotion rule, we also have several cases depending
on the axioms of the introduced subexponential. Consider the case where i is unbounded and
4 /∈ U (i). Let 
 = (
u

1 ,

l
2) and 	= (	u

1,	
l
2):

� 	+�a, c :H, c :
�a
1 ;· ⇑ P,F (
2) !a, ?a, Rr� 	,
 , i :H;· ⇓ !aP

� 	
�i
1 +, c : 
�i

1 ;· ⇑H⊥
!i, ?i, Rr� 	1,
1;· ⇓ !iH⊥

⇓ CC� 	,
 ;· ⇑ !aP
Note that H is stored in the context c. The reduction considers a cut with ?cH (instead of ?iH):

� 	′+, c :H, c : 
 ′
1;· ⇑ P,F (
2)

� 	′+, c :
 ′
1;· ⇑H⊥

!c� 	′+, c : 
 ′
1;· ⇓ !cH⊥

⇑ CC�	′+, c : 
 ′
1;· ⇑ P,F (
2) !a, ?a, Rr� 	,
 ;· ⇓ !aP

store, Dl�	,
 ;· ⇑ !aP

 ′

1 contains all the formulas in both 

�a
1 and 


�i
1 (the same with 	′). Since i is unbounded, note

that the application of !c above is valid.
Another interesting case, similar to the previous one, is when {C,W, 4} ⊆ U (i). Hence, H is

moved to the context i+ and the reduction considers a (smaller) cut with i+ (instead of i).

Elimination of ⇑C∗.When the list L1 is not empty, the first formula in L1 is necessarily principal
in the left premise. Hence, we simply permute down the application of that rule.

When L1 is empty, we consider two cases: either the cut formula is stored in the left premise,
or it is necessarily stored in the right premise. The reductions for these cases are as follows:

��1;�,H ⇑ L1 store��1;� ⇑H, L1 � �2;�⇑H⊥, L2 ⇑C*� �1,�2;�,� ⇑ L1, L2

� � �1;H, � ⇑ L1 � �2;�⇑H⊥, L2 ⇑LC∗
��1,�2;�,� ⇑ L1, L2

��1;� ⇑H, L1

� �2;�,H⊥ ⇑ L2 store� �2;�⇑H⊥, L2 ⇑C*� �1,�2;�,� ⇑ L1, L2

� � �2;H⊥,�⇑ L2 � �1;� ⇑H, L1 ⇑LC∗
��1,�2;�,� ⇑ L2, L1 ≡P��1,�2;�,� ⇑ L1, L2

Elimination of⇑LC∗ Similarly to the previous case, when the list L1 is not empty the reduction is
easy. When this is not the case, the left premise must start with a decision rule. When the focus is
on the cut formula, the reduction is as follows:

��1;� ⇓ H
Dl��1;�,H ⇑ · ��2;�⇑H⊥, L ⇑LC∗

��1,�2 : �,� ⇑ L

� � �2;�⇑H⊥, L � �1;� ⇓ H ⇑C� �1,�2;�,�⇑ L

When the proof continues by focusing on a formula different from the cut formula, an invert-
ibility result is needed. Here, the case of⊕ when F is a positive formula and F⊕G was taken from
the unbounded context � (omitted in the derivation):

� �1;�,H ⇓ F ⊕��1;�,H ⇓ F⊕G
Dus� �1;�,H ⇑ · � �2;�⇑H⊥, L ⇑LC∗

� �1,�2;�,� ⇑ L

�

� �1;�,H ⇓ F
Dl� �1;�, F,H ⇑ · ��2;�⇑H⊥, L ⇑LC∗

� �1,�2;�,�, F ⇑ L
LU� �1,�2;�,�⇑ L, F
L ′⊕� �1,�2;�,�⇑ L

whereLU is the following lemma: if F is a positive formula and� �;�, F ⇑ L then� �;� ⇑ L, F.
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L ′⊕ is a tailored version of the invertibility result we have already seen (L⊕) when F⊕G is
stored in a unbounded context.

Theorem 3.5. (Admissibility of Cut). The cut rules in Figure 6 are admissible.

3.3 Discussion
Before concluding this section, let us explain some further motivations on the design of the five
rules in Figure 6, as well as the proof of the above theorem in Coq.
Cut-rules. The Rule ⇑C is the starting point of the procedure since the cut-formula H is princi-
pal in both premises. The other rules appear during the elimination process. For instance, as we
already know, the elimination of ⇑C depends on ⇑LC∗ when H is stored. Notice that the same
case can be also solved with an application of ⇑C*. In fact, one may inline the elimination proce-
dure of⇑LC∗ directly in the elimination of⇑C and⇑C* and hence, only four rules will be needed.
However, this implies replicating the same procedure several times during the proof. In particular,
during the elimination of ⇑ C∗, we need to consider whether H or H⊥ is stored when L1 is empty
and, in each case, we have to apply a similar procedure from ⇑LC∗. The inclusion of ⇑LC∗ thus
makes easier to understand the elimination process (and more amenable for mechanization).

The set of rules we have chosen is not the only possible alternative. For instance, instead of
⇑LC∗, one may think in reducing the same case in ⇑C (whenH is stored) with the following rule:

��,�1; �,H ⇑ L ��,�2; � ⇓ H⊥
⇑LC� �,�; �,� ⇑ L

In this case, H⊥ is a negative atom or it must lose focus. In the first case, the cut can be elim-
inated without any additional cut. In the second case, we obtain an instance of ⇑LC∗. Therefore,
⇑LC can be seen as an instance of ⇑LC∗.

Consider now the elimination of ⇑CC when the list L is empty and the left premise focuses on
some formula F. One may eliminate this case by applying the following rule:

� �,�1, i :H; � ⇓ F � �,�2;· ⇓ !iH⊥
⇓CC*� �,�; � ⇓ F

However, this rule requires a side condition: H cannot be a positive atom. Without that
condition, the (nonprovable) sequent � i : �;· ⇓ A⊥ can be proved by using ⇓CC* with H =A.
Hence, the atomic case in the elimination of ⇑CCmust be treated separately and some additional
lemmas need to be proved. In particular, it is required to show that if � �,�1, (i :A);� ⇓ F and
� �,�2;· ⇓ !iA⊥ then � �,�; � ⇑ F. Note that this lemma is an instance of the rule ⇓CC.
Mechanization in Coq. Besides the inherent complexity of dealing with the several cases appear-
ing during the cut-elimination procedure, in this formalization we have to cope also with the
problem of encoding the higher-order quantifiers. There are several alternatives for representing
binders in proof assistants (see e.g., Chlipala 2008; Heberlin et al. 2017; Laurent 2021; Pitts 2003).
The current formalization builds on our previous work (Felty et al. 2021), where the Hybrid sys-
tem (Felty and Momigliano 2009) is used to represent the syntax. From the positive side, this
choice has the immediate effect of allowing us to define binders at two levels: the meta-logic (spec-
ification logic in the terminology of the two-level approach in Hybrid) and the object logic, the
logical system to be encoded as a theory in the specification logic. This separation reflects the dif-
ferent logics defined here: the specification logic is MMLL (and its system LNSFMLL) used to reason
about different object logics (more on this in the next section). From the negative side, sequents
cannot be defined as an inductive Type but as an inductive proposition (Prop). Hence, we cannot
manipulate derivations as objects (due to the impossibility of doing pattern matching on a Prop
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value). Therefore, we cannot extract a program (the cut-elimination procedure) from the proof of
the theorem above and what we have is a proof of cut admissibility. The work of Laurent (2021)
allows for defining first-order binders and sequents in Type. However, such binders cannot do
pattern matching as in ∃F,G.P(F �G), where P(·) is a predicate symbol and � is a connective of
the OL, nor to encode first-order object logics. As far as we know, it is not possible to represent
in Coq quantifiers at the specification level and also at the object level and keep the definition
of sequents in Type. The reader can find in Felty et al. (2021) details about the representation
of syntax in Hybrid. The repository (Xavier and Olarte 2021) also includes further documenta-
tion on how to define the subexponential signature in MMLL as well as some tactics to improve
automatization when using the library in Coq.

It is worth noticing that there are some recent advances towards providing native support in
Coq for reasoning about binders. Frameworks, mainly using de Bruijn terms, have been developed
to automatize some of the tasks in such reasoning. The work of Stark (2020) covers the mecha-
nization of binders and it makes use of the Autosubst 2 framework, that translates second-order
HOAS specifications into potentially mutual inductive term sorts (Stark et al. 2019). We also refer
the reader to Forster (2021), that uses de Bruijn terms to formalize Computability Theory in the
Calculus of Inductive Constructions.

4. LNS Systems asMMLL Theories
This section dwells on the specification of a class of LNS systems asMMLL theories. More precisely,
we encode the inference rules of a given OL as an MMLL theory. The encoding is modular and it
allows for the specification of multimodal logics in a uniform way. We prove that the resulting
specifications are adequate in the sense that an OL-sequent S is provable iff the encoding of S
together with the resulting theory given by OL’s rules is also provable in LNSFMLL. This level of
adequacy (Nigam and Miller 2010) is usually known as FCP (full completeness of proofs).

In Miller and Pimentel (2013), LL was used as a logical framework for specifying a number
of logical systems. Here we shall proceed similarly, but with MMLL as the meta-level system. In
what follows, we assume that the subexponential signature of MMLL includes a distinguished
label ω for storing theories, such that i� ω for all i ∈ I , and U (ω)= {C,W, K, T, D, 4}. Other
subexponentials will be added to the base signature depending on the logical system encoded.

OL formulas are specified using the meta-level predicates �· and "·#, that identify the occur-
rence of such formulas on the left and on the right side of the sequent respectively. Hence, OL
sequents of the form F1, . . . , Fn �G1, . . . ,Gm, n,m≥ 0, are specified as the multiset of atomic
MMLL formulas �F1 , . . . , �Fn , "G1#, . . . , "Gm#. As a mnemonic, formulas on the (L)eft side of
OL sequents are specified with the predicate starting with �. Given a set of OL-formulas �, we
shall use �� to denote the set of MMLL-formulas {�F | F ∈ �}, similarly for "�#.

OL-Inference rules are specified as rewriting clauses that replace the principal formula in the
conclusion of the rule by the active formulas in the premises. The LL connectives indicate how
these OL-formulas are connected: contexts are copied (&) or split (⊗), in different inference rules
(⊕) or in the same sequent (�). Such clauses are members of the MMLL theory TL , specifying
the behavior of the logical system L . Theories will be stored in the subexponential ω, since these
clauses can be used as many times as needed and also copied to any component. Figure 7 presents
the specification of the LNS rules in Figure 1.

Consider the rules ∧Li and ∧R in Figure 1, and the corresponding clauses in Figure 7. The
derivations in Figure 8 illustrate the behavior of these clauses once we focus on them. The first
derivation in Figure 8 corresponds to focusing on the clause∧L from the theoryTG where I= Il or
I= Is and, accordingly, �1 = �F ∧G , or �1 =∅ and �F ∧G ∈�. Bottom-up, the active formula
F ∧G is taken from the linear or the classical context, and the whole positive phase (after the
resulting negative phase) ends by storing the atom �F into the linear context. This derivation
mimics exactly an application of the rule ∧L1 at the object level. Similarly, if instead of ⊕1 we
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∧L : �F ∧G ⊥ ⊗ (�F ⊕ �G ) ∧R : "F ∧G#⊥ ⊗ ("F#& "G#) fL : �f ⊥ ⊗�
∨L : �F ∨G ⊥ ⊗ ("F#& �G ) ∨R : "F ∨G#⊥ ⊗ ("F# ⊕ "G#) tR : "t#⊥ ⊗�
→L: �F→G ⊥ ⊗ ("F# ⊗ �G ) →R: "F→G#⊥ ⊗ (�F �"G#) init : �F ⊥ ⊗ "F#⊥

Figure 7. Encoding of propositional rules of the system LNSG for classical logic. In all the specification clauses, there is an
implicit existential quantification on F and G.

� �,ω : TG;, �1 ⇓ �F ∧G ⊥ I

� �,ω : TG;�2, �F ⇑ ·
� �,ω : TG;�2 ⇓ �F Rn, store

� �,ω : TG;�2 ⇓ �F ⊕ �G ⊕1

� �,ω : TG;�1, �2 ⇓ ∃F,G.(�F ∧G ⊥ ⊗ (�F ⊕ �G )) ∃, ∃,⊗
� �,ω : TG;�1, �2 ⇑ · Ds

� �,ω : TG;�1 ⇓ "F ∧G#⊥ I
��,ω : TG;�2, "F# ⇑ · � �,ω : TG;�2, "G# ⇑ ·

� �,ω : TG;�2 ⇓ ("F#& "G#) Rn, &, store

��,ω : TG;�1, �2 ⇓ ∃F,G.("F ∧G#⊥ ⊗ ("F#& "G#)) ∃, ∃⊗
��,ω : TG;�1, �2 ⇑ · Ds

Figure 8. Examples of derivations focusing on the clauses∧L and∧R.

apply ⊕2, the atom �G is stored, thus reflecting the behavior of ∧L2. The second derivation in
Figure 8 starts by focusing on the clause ∧R, ending up with two premises corresponding exactly
to the two premises of the OL-rule. The clauses for the other connectives and units work similarly.
Moreover, when the clause corresponding to the initial rule is focused on, the proof must finish
by showing that F is on the left and on the right of the OL-sequent. Given the identifier of a clause
r (i.e., an OL-rule), we shall use [r] in LNSFMLL derivations to collapse all the steps involved in the
decomposition of the clause r. For instance:

� �,ω : TG;�F ⇑ ·
� �,ω : TG;�F ∧G ⇑ · [∧L1 ]

Regarding the structural rules of weakening and contraction, it may be the case that an OL
admits some of them on the left, right, or both sides of sequents. We mimic those behaviors by
adding the structural rules in Figure 9 according to each case. For instance, if posi (weakening/-
contraction for the left context) is inTL , we can prove the equivalence �F ≡ ?i�F . Hence, under
the presence of posi, formulas of the shape �F can be stored in a unbounded subexponential con-
text and they are free to be weakened and contracted (if i is unbounded). Similarly for negi and
right formulas. Observe that posi and negi are parametric w.r.t. the subexponential label. For
instance, if i= c, then the use of such clauses is restricted to a component (cf. Definition 4).

Theorem 4.1. (Adequacy of TG). Let TG consist of the set of clauses in Figure 7 together with the
structural rules posc and negc. Then TG is adequate FCP w.r.t. LNSG:

(1) Soundness: If the sequent � �� is provable in LNSG then the sequent
�ω : TG, c : (�� , "�#);· ⇑ · is provable in LNSFMLL.

(2) Completeness: If the sequent � ω : TG, c : (�� , "�#);��′ , "�′# ⇑ · is provable in LNSFMLL
then the sequent �, �′ � �,�′ is provable in LNSG.

Proof. As illustrated in Figure 8, we can prove that focusing on a clause is in one-to-one corre-
spondence to the application of the corresponding rule in the OL. This is the case for all the rules
introducing connectives. However, we cannot establish such a tight correspondence for the struc-
tural rules. In the proof of soundness, we are forced to use posc and negc to store all the atoms in
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Structural rules: posi : �F ⊥ ⊗ (?i�F ) negi : "F#⊥ ⊗ (?i"F#)
Intuitionistic implication: ⊃L: �F⊃G ⊥ ⊗ ("F# ⊗ �G ) ⊃R: "F⊃G#⊥ ⊗ !t4(�F �"G#)
Modal rules: �Li : ��F ⊥ ⊗ ?i�F �Ri : "�F#⊥ ⊗ !i"F#

Figure 9. Encoding of structural, intuitionistic implication, andmodal rules.

the unbounded subexponential context c. Moreover, contraction and weakening at the object level
are mimicked by a meta-level result in LNSFMLL (Theorem 3.2), but no clause in TG is applied. For
completeness, the applications of posc and negc do not have an object-level counterpart (since
there is no linear/classical distinction at the object-level). Note that the images of the LNSFMLL
sequents before and after the application of these rules are the same OL-sequent.

In the intuitionistic system LNSI (see Figures 1, 2 and 3), the rule⊃R creates a new component
while lift moves formulas across components. Such behavior will be specified with the subexpo-
nential t4 where U (t4)= {K, C,W, T, 4}. The encoding is thus obtained by considering the clauses
in Figure 7 but replacing the rules for implication for those in Figure 9.

The proof of adequacy for this encoding requires an intermediary result. Consider the LNSI
derivation on the left:

· �G//F, C �A
F �G//C �A lift

F �G//C � (A∨ B)
∨R1

F �G, C⊃ (A∨ B)
⊃R

F, C �A
F, C � (A∨ B)

∨R1

· �G //F, C � (A∨ B) R

F �G//C � (A∨ B) lift

F �G, C⊃ (A∨ B)
⊃R

(1)

This OL-derivation does not have a corresponding LNSFMLL-derivation: once we focus on the
clause ⊃R, necessarily the formula F is moved to the next component (lift) and, after fin-
ishing the subexponential phase, we are free to focus on the clause ∨R1. Hence, we shall show
adequacy w.r.t. an alternative equivalent system, following the sequentialization procedure for
LNS proposed in Pimentel et al. (2019).

More precisely, we consider the system LNSS
I which is as LNSI where the list G is empty in all

the rules in Figures 1, 2 and 3 and the following release rule is added:
�′ � �′

� ��//i �′ � �′ R (2)

The restriction on G guarantees that the introduction rules of connectives are applied only
after the modal phase as in LNSFMLL. This strategy is complete (Pimentel et al. 2019) since it is
always possible to organize LNS proofs by first applying all the lift operations to later apply the
introduction rules on the last component. For that, it is shown that the application of rules (e.g.,
∨R1 above) permutes down w.r.t the lift rule. See for instance the right derivation in (1).

Theorem 4.2. (Adequacy of TI). Let TI contain post4, negc plus the introduction clauses of TG
with the clauses for implication substituted by the clauses in Figure 9. Then TI is adequate FCP
w.r.t. LNSS

I :

(1) Soundness: If the sequent � � � is provable in LNSS
I then the sequent

� ω : TI, t4 : �� , c : "�#;· ⇑ · is provable in LNSFMLL.
(2) Completeness: If the sequent � ω : TI, t4 : �� , c : "�#;��′ , "�′# ⇑ · is provable in LNSFMLL

then the sequent �, �′ � �,�′ is provable in LNSS
I .

Proof. For all the rules but implication right, the discussion is similar to the classical case.
Consider the following derivation:
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� �,ω : TI;· ⇓ "F⊃G#⊥ Is

� t4 : �, t4 : �F , c : "G#ω : TI;· ⇑ ·
� t4 : �,ω : TI;�F , "G# ⇑ · [post4], [negc]

� ·;· ⇑ ·//t4� t4 : �,ω : TI;· ⇑ �F �"G# Rr,�, 2× store

� �,ω : TI;· ⇑ ·//t4� ·;· ⇑ �F �"G# ?t44

� �,ω : TI;· ⇓ !t4(�F �"G#) !t4

� �,ω : TI;· ⇓ ∃F,G.("F⊃G#⊥ ⊗ !t4(�F �"G#) ∃, ∃,⊗
� �,ω : TI;· ⇑ · Ds

Here, the context � is split into c :� and t4 : �. The former contains all the right formulas that
will be forgotten in the subexponential phase. The latter contains all the left formulas that will
be carried over the components. Note also that T ∈ U (t4) and then, t4+= t4. Moreover, since
t4� ω, the theory TI always moves between components. This derivation corresponds, one-to-
one, to an application of ⊃R at the object level followed by zero or more application of lift and
ending with the release rule R in LNSS

I .

We now analyze the specification of modal logics. In order to propose a parametric and mod-
ular encoding, we consider different subexponentials for each modal behavior. For that, the
following notation will be handy:

• the subexponential structure will include the set of labels M= {k, t, d, 4, t4, d4}, where
{K, C,W} ⊆ U (l) for all l ∈M;

• the name of each l ∈M matches the respective assumed axioms. For example, U (d4)=
{K, C,W, D, 4}.

The (parameterized) clauses specifying the rules for box are given in Figure 9. Remember that
� represents a (possibly empty) subset of A = {T, D, 4} and K� is the modal logic resulting from
extending K with the axioms in �. The theory TK� for K� is given by the clauses of TG (Figure 7)
plus the clauses negc and posc (Figure 9) and the clauses �Ll and �Rl (Figure 9), where l ∈M is
the subexponential corresponding to �. For example, TKT4 = TG ∪ {negc, posc} ∪ {�Lt4,�Rt4}.

For adequacy, we also consider a sequentialized LNS system. As we did for the intuitionistic
case, all the rules introducing the logical connectives rules in LNSS

K� assume that the history G is
empty. Moreover, the release rule (2) is added to the system.

Theorem 4.3. (Adequacy of TK�). TK� is adequate FCP w.r.t. LNSS
K�.

(1) Soundness: If the sequent��, � � � is provable in LNSS
K� then the sequent

�ω : TK�, l : �� , c : (�� , "�#);· ⇑ · is provable in LNSFMLL.
(2) Completeness: If the sequent � ω : TK�, l : �� , c : (�� , "�#);��′ , "�′# ⇑ · is provable in

LNSFMLL then the sequent��, �, �′ � �,�′ is provable in LNSS
K�.

Proof. Consider the following derivation.

� �,ω : TK�;· ⇓ "�A#⊥ Is

π
� �(c/k),�(4+ ), t4 : �,ω : TK�;"A# ⇑ ·

� �(j);· ⇑ ·//l� �(c/k),�(4+ ), t4 : �,ω : TK�;· ⇑ "A# Rr, store

� �,ω : TK�;· ⇑ ·//l� ·;· ⇑ "A# ?lku, ?l4

� �,ω : TK�;· ⇓ !l"A# !l

� �,ω : TK�;· ⇓ ∃F.("�F#⊥ ⊗ !l"F#) ∃,⊗
��,ω : TK�;· ⇑ · Ds

The context � can be split into: �(j) with subexponentials not related to l; �(k) containing
subexponentials without 4; �(4) containing subexponentials with 4 and without T; and �(t4) is
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a context with subexponentials featuring both 4 and T. The context �(j) contains all the right
formulas, together with all the left formulas in contexts not related to i that will be “forgotten”
after the application of the release rule; using the rule ?l4, the formulas in context �(4) are moved
to the next component and the axiom T is added. Using the same rule, the context �(t4) remains
the same when passing to the next component. Moreover, the formulas in the context �(k) are
moved without the box and then, stored in the subexponential c (notation �(c/k)). Derivation π

continues by using negc and storing "A# in the context c. This derivation adequately captures the
behavior of� in the logic LNS�.

It is worth noticing the modularity of the encodings: all the modal systems have exactly the
same encoding, only differing on the meta-level modality. This is a direct consequence of local-
ity, granted by LNS. Therefore, we are able to spot the core characteristics of the logical systems,
allowing punctual actions to be taken at the meta-level. This opens the possibility of being able to
adequately encode a larger class of modal systems inside LNSFMLL. For instance, if we are consid-
ering a (modal) substructural logic where formulas not necessarily behave classically, it suffices to
remove pos and/or neg accordingly and decree that U �⊂ U (l) for the context l storing left boxed
formulas.

The method proposed here is also adequate for specifying simply dependent multimodal OL
logics (see Definition 3). For each i ∈N, we consider a subexponential li and decree that li � lj iff
i� j (and hence, !ljF−◦ !liF). Moreover,U (li)= f (i). That is, each modal behavior specified by the
indices in N is mapped to a subexponential with the same modal behavior. The system LNS(N,�,f )
can be then specified in LNSFMLL as the theoryTK�N as we did before for the one-modality case but
considering a clause �Li (Figure 9) for each i ∈N. As expected, this clause stores F in the context
li when the atom ��iF is present in the linear or subexponential context. Similarly, we have an
instance of�Ri in Figure 9 for each i ∈N that starts a subexponential phase indexed with li.

Theorem 4.4. (Adequacy of multimodal systems). TK�N is adequate FCP w.r.t. LNSS
(N,�,f ).

(1) Soundness: If the sequent {�i�i}, � � � is provable in LNSS
(N,�,f ) then the sequent

� ω : TK�N , {li : ��i }, c : (�� , "�#);· ⇑ · is provable in LNSFMLL.
(2) Completeness: If the sequent � ω : TK�N , {li : ��i }, c : (�� , "�#);��′ , "�′# ⇑ · is provable

in LNSFMLL then the sequent {�i�i}, �, �′ � �,�′ is provable in LNSS
K�.

Let us give a further example comparing derivations in the object- andmeta-systems. In partic-
ular, we illustrate the reason of the apparently missing clause encoding the modal rule T, and the
advantage, from the proof search perspective, of the stricter control of the modal rules in Figure 5,
where applications of the rule K on a subexponential with 4 are not allowed.

Example 4.1. Consider the following OL-derivations:

A�A init B� B init

A⊃ B,A� B ⊃L

�(A⊃ B),A� B T

�(A⊃ B)�A⊃ B
⊃R

A,�A�A init

A�A init

A,�A� ·//· �A K, R

A,�A��A �R

A,�A�A∧�A ∧R

�A� ·//�A�A∧�A K, R

�A,�A� ·//· �A∧�A 4

�A,�A��(A∧�A) �R

�A��(A∧�A) CL

The underlying system in the first (resp. second) derivation is LNSKT (resp. LNSK4). Below we
show the corresponding meta-level derivations in the system LNSFMLL. For simplicity, we omit
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the context ω containing the theory with the clauses of each system, and we do not use pos/neg,
keeping the �· , "·# atoms in the linear context:

� t : �A⊃ B ;· ⇓ �A⊃ B ⊥ Is
� ·;�A , "A# ⇑ · [init] � ·;�B , "B# ⇑ · [init]

� ·;�A , "B# ⇓ "A# ⊗ �B ⊗, Rn, store

� t : �A⊃ B ;�A , "B# ⇑ · [⊃L ]

� ·;��(A⊃ B) , �A , "B# ⇑ · [�L]

� ·;��(A⊃ B) , "A⊃ B# ⇑ · [⊃R ]

� 4+ : �A ;"A# ⇑ · [init]
� 4+ : �A ;"A# ⇑ · [init]

� 4+ : �A ;"�A# ⇑ · [�R]

� 4+ : �A ;"A∧�A# ⇑ · [∧R ]

� 4 : �A ;"�(A∧�A)# ⇑ · [�R]

� ·;��A , "�(A∧�A)# ⇑ · [�L]

It is worth noticing that we do not have an explicit clause for capturing the modal rule T.
Instead, by storing the formula �A⊃ B into the context t, such atom can be used in the current
context by applying the rule Is, as in the leftmost leaf in the first derivation.

In the second meta-level derivation there is no explicit contraction, unlike in the OL deriva-
tion. The reason is the neater control of the rules for 4 and K in LNSFMLL. Note that the formula
�A , after the application of [�R], is located at 4+. Due to the presence of T in 4+, the left most
application of [init] is valid. This branch of the derivation simulates the application of the rule K
at the object level. The topmost application of [�R] (with the corresponding applications of ?44)
simulates the application of 4 at the object level.

The current version of the companion Coq library of this paper contains the mechanization of
some of the adequacy results presented in this section. For each OL, there is a separated directory
defining the derivability relation of the corresponding logic as an inductive proposition. Then,
the clauses of the MMLL theory are introduced and the adequacy theorem is established. Defined
tactics allow for some automation when dealing with the bipoles in the theory. In some cases,
such tactics complete the decomposition of the bipole once the terms substituting the existential
quantified variables have been chosen. For the time being of this publication, the adequacy results
for classical (Theorem 4.1) and intuitionistic (Theorem 4.2) logics have been mechanized, as well
as the instance �= {T, 4} (i.e., the modal logic S4) for Theorem 4.3.

5. Cut Admissibility for Object Logics
In the previous section, we showed how to adequately encode a logical systems L as an MMLL
theory TL . In this section, we introduce clauses that adequately capture the cut rule at the object
level, leading to the theory TL +cut. More interestingly, if the encoding satisfies a condition called
cut-coherence, then both TL and TL +cut prove the same (encoded) sequents, thus showing that
the cut rule is admissible at the object level. This result is proved by relying on the meta-theory
of MMLL. As we shall see, testing cut-coherence is straightforward and hence, LNSFMLL becomes
a suitable logical framework for proving analyticity for a large class of systems, including several
well known modal logical systems and also multi- and substructural-modal logics.

We start by setting some requirements that OLs should comply in order to be amenable for the
MMLL specification.

Definition 6. (Canonical-bipoles). AMMLL-formula is a bipole (Andreoli 1992) if no positive con-
nective is in the scope of a negative one, bangs have negative scope while question marks have atomic
scope. A MMLL-formula F is a canonical-bipole if F is a bipole built from MMLL connectives and
atomic formulas of the shape "G#, �G where G is an OL-formula.

Observe that all the clauses introducing connectives in Figures 7 and 9 have the shape
∃F.(H⊥ ⊗G), whereH is atomic and G a canonical-bipole, e.g. ∃F,G.("F⊃G#⊥ ⊗ !t4(�F �"G#))
and ∃F.(��F ⊥ ⊗ ?i�F ). As seen in Section 4, focusing on this kind of formulas produces specific
and controlled shapes of derivations in LNSFMLL.
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Requirement 5.1. (Canonical theories and encodings). Let C be the set of connectives of the
object logic L . The encoding of L as an MMLL theory is a pair of functions B�| · | and B"| · |# from
C to MMLL canonical-bipoles. The encoding of left and right introduction rules for a given n-ary
connective � ∈ C is defined as, respectively

E�| � | = ∃F1, ..., Fn.(��(F1, ..., Fn) ⊥ ⊗ B�| � | ) E"| � |# = ∃F1, ..., Fn.("�(F1, ..., Fn)#⊥ ⊗ B"| � |#)
The canonical theory for L is the least set TL s.t. (1) for each � ∈ C , E�| � | , E"| � |# ∈ TL ; (2)
posi, negj may belong to TL ; and (3) init ∈ TL (see Figure 7). Moreover, the theory TL must
be adequate for the OL L : a sequent is provable in L iff its encoding is provable in LNSFMLL with
the clauses TL .

In words, TL includes the encoding of left and right introduction rules as well as the initial
rule. Depending on the structural behavior of the OL, TL may include also the encoding of the
rules for weakening and contraction. As already shown in the previous section, the encoded infer-
ence rules determine completely the shape of derivations in LNSFMLL. Also, we have showed that
the proposed encodings are adequate.

Regarding the specification of structural rules via posi and negj clauses, recall that, in intu-
itionistic and modal systems, the right formulas never move between components. This explains
why neg should be instantiated with c. Hence, as an invariant, the use of the rules in the theory
TL can only store atoms of the form "F# in the context c (if negc is part of the theory).

In LNSI, left formulas can always be moved to the next component. Moreover, besides c and ω,
the encoding requires only an extra subexponential: t4 (Theorem 4.2). Hence, posi is instantiated
with t4. On the other hand, in modal systems, only boxed formulas on the left can be moved
between components. Hence, in these logical systems, posi must be instantiated with i= c (and
unboxed formulas cannot be moved between components).

In any case, the following technical requirement, needed in the proof of Theorem 5.2, is valid.

Requirement 5.2. (pos and neg). If negj ∈ TL then j= c. Moreover, if posi ∈ TL then
{C,W, T} ⊆ U (i) and either: (1) i= c or (2) i �= c and i�m for allm ∈ I ,m �= c.

5.1 Cut rules, cut coherence, and admissibility of cut
The (multiplicative) OL-cut rule can be specified as the bipole cut=∃F.(�F ⊗ "F#). In fact,
focusing on that formula mimics exactly the behavior of the cut rule at the object level:

�1 � �1, F �2, F � �2
�1, �2 � �1,�2

cut ⇐⇒
� ω : cut;��1 , "�1#, "F# ⇑ · � ω : cut;��2 , �F , "�2# ⇑ ·

� ω : cut;��1 , ��2 , "�1#, "�2# ⇓ cut ∃,⊗, Rn, store

� ω : cut;��1 , ��2 , "�1#, "�2# ⇑ · Ds

We shall use cutn to denote the rule cut applied to (OL-) formulas of size strictly smaller than n.
For instance, ifG=G1 �G2, a valid application of cut|G| can instantiate the existentially quantified
variable F in cut with either G1 or G2 (but not with G).

Using the formulas cut and init, we can prove that �· and "·# are duals in the sense that the
LNSFMLL sequent � ω : {cut, init};⇑ �F ≡ "F#⊥ is provable. More interestingly, this duality can
be generalized to the right and left bodies of OL rules as well. More precisely,

Definition 7. (Cut coherence). Let TL be the canonical theory of the OL L . We say that TL is
cut-coherent if, for each connective � ∈ C , and F= �(F1, ..., Fn), the sequent below is provable

�ω : cut|F|;⇑ ∀F1, ..., Fn.((B�| � | )⊥�(B"| � |#)⊥)
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Theorem 5.1. All the encodings in Section 4 are cut coherent.

Proof. Proving this kind of sequents in LNSFMLL is almost immediate. Here the example for the
encoding of the rules introducing� in the logic K:

� ω : cut, c : "F#⊥;�F ⊥, �F ⇑ · Dl, Il �ω : cut, c : "F#⊥;"F# ⇑ · Ds, Il
�ω : cut, c : "F#⊥;�F ⊥ ⇑ · [cut(F)]

� ω : cut, k : "F#⊥;· ⇑ ·//k� ·;· ⇑ �F ⊥ ?kku, ?ω, Rr, store

� ω : cut, k : "F#⊥;· ⇓ !k�F ⊥ !k

� ω : cut, k : "F#⊥;!k�F ⊥ ⇑ · Dl

�ω : cut;· ⇑ ∀F.((?k�F )⊥�(!k"F#)⊥)
Note that cut is instantiated with F (a subformula of�F).
We now state the main result of the section. Consider two cut-free proof derivations from the

object-level point of view (i.e., using only TL ) introducing the cut formula F. It is possible to
prove the same sequent using the rule cut (at the object-level) with strict subformulas of F.

Theorem 5.2. (OL cut admissibility). Let TL be the canonical theory of a given OL L , �,� be
multisets, �1,�2 bounded and � unbounded subexponential contexts containing only atoms of the
form "·# and �· . If the sequents � ω : TL ,�,�1;�, �F ⇑ · and � ω : TL ,�,�2;�, "F# ⇑ · are
both provable, then the sequent � ω : {TL , cut|F|},�,�1,�2;�,� ⇑ · is also provable.

Proof. When the theory includes the structural rules posi and/or negc, the proof of this theorem
requires to count the number of times a formula stored in a unbounded subexponential context
is used in a derivation. Since this is difficult to formalize, we introduce two additional clauses
(depending on the structural behavior of the OL at hand):

(a) cutC=∃F.(?i�F ⊗ ?c"F#) (when both posi and negc are present)
(b) cutN=∃F.(?i�F ⊗ !c"F#) (when only posi is present)

We will write cutCn, cutNn to denote the rules cutC, cutN applied to (OL) formulas of size strictly
smaller than n. Observe that, in the presence of the corresponding structural rules, cutC and cutN
are equivalent to cut (remember that with posi, it is possible to prove the equivalences �F ≡ ?i�F 
and "F# ≡ !i"F#).

Assume that the OL features both, posi and negc. Hence, we consider the rules cut and cutC
and we show, simultaneously, both:

(1) if � ω : TL ,�,�1;	, �F ⇑ · and � ω : TL ,�,�2;
 , "F# ⇑ · are both provable then the
sequent
�ω : {TL , cut|F|, cutC|F|},�,�1,�2;	,
 ⇑ · is also provable; and

(2) if � ω : TL ,�,�1, i : �F ;	⇑ · and � ω : TL ,�,�2, c : "F#;
 ⇑ · are both provable then
the sequent � ω : {TL , cut|F|, cutC|F|},�,�1,�2;	,
 ⇑ · is also provable.

In the proof of (1), if the structural rules are used on �F or "F#, we produce a shorter derivation
with (2), i.e., with cutC.

For the proof of (2), consider the case where �F and "F# are principal in both premises thus
using, respectively, the left and right introduction rules for the same connective:
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π� ω : TL ,�,�1, i : �F ;	⇓ B�| � | (F)
� ω : TL ,�,�1, i : �F ;	⇓ E�| � | (F)

� ω : TL ,�,�1, i : �F ;	⇑ ·
and

π ′
� ω : TL ,�,�2, c : "F#;
 ⇓ B"| � |#(F)
� ω : TL ,�,�2, c : "F#;
 ⇓ E"| � |#(F)

� ω : TL ,�,�2, c : "F#;
 ⇑ ·
Here, E�| � | (F) means that the existential quantifiers of the clause were instantiated with the
formula F. As we already know, the bodies B�| � | (F) and B"| � |#(F) produce well controlled forms
of derivations. They can either end the proof (e.g., with the clause fL) or produce derivations with
one or two premises.

The resulting generated premises, after focusing on the body of the clause, can only add new
atoms to the linear or classical context before ending the negative phase. For simplicity, consider
that both π and π ′ produce one premise. We then have

– � produces a sequent of the form � ω : TL ,�′,�′
1, i : �F ;	′ ⇑ ·.

– �′ produces a sequent of the form �ω : TL ,�′′,�′
2, c : "F#;
 ′ ⇑ ·.

The primed contexts are extensions of the original ones with atoms of the form �· , "·#. By
induction, the sequents:

– � ω : {TL , cut|F|, cutC|F|},�′,�′
1;	

′ ⇑ · ; and
– � ω : {TL , cut|F|, cutC|F|},�′′,�′

2;

′ ⇑ ·

are both provable. Hence, the sequents below are also provable:

– � ω : {TL , cut|F|, cutC|F|},�,�1;	⇓ B�| � | (F) ; and
– � ω : {TL , cut|F|, cutC|F|},�,�2;
 ⇓ B"| � |#(F).

At this point, we rely on cut coherence (see Definition 7) and cut admissibility in LNSFMLL:

� ω : T ,�,�2;
 ⇓ B"| � |#
� ω : T ,�,�1;	⇓ B�| � | � ω : T ,�;· ⇑ (B"| � |#)⊥, (B�| � | )⊥ cut-coherence

� ω : T ,�,�1;	 ⇑ (B"| � |#)⊥ FMLL− cut

� ω : T ,�,�1,�2;	,
 ⇑ · FMLL− cut

where T = TL ∪ {cut|F|, cutC|F|}.
Now let us illustrate a nonprincipal case involving modal behaviors. Consider a derivation

where the left and right premises introduce, respectively, the modal formulas Gn and Fm

� {�,�1}�n, �G, i : �Fm ;�G ⇑ ·
� �,�1, c : "Gn#, i : �Fm ;· ⇑ · [Gn]

� {�,�2}�m, �F ;�F ⇑ ·
��,�2, c : "Gn#, c : "Fm#;· ⇑ · [Fm]

� �,�1,�2, c : "Gn#;· ⇑ · [cutCi]

where �F ,�f (resp. �G,�G) represent the atomic subformulas appearing in the decompo-
sition of "Fm# (resp. "Gn#). In each case, the subindices n andm denote the underlying modalities
of these formulas. Note that n and m cannot be c since modalities of the OL are not mapped to
this index. Also, i �= c, otherwise, �Fm must be necessarily weakened in the left derivation (and
the end sequent is provable by using [Gn]). We then have n� i and, by Requirement 5.2, i� n,
i�m and hence, n�m. Since T ∈ U (i), such axiom is also present in n and m and Theorem 3.1
applies on the context �,�i. We conclude that �,�i ⊇ {�,�i}�n ⊇ {�,�i}�m and the resulting
reduction is:
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�
� {�,�1}�n, �G, i/c : {�G}, i : �Fm ;· ⇑ ·



� {�,�2}�n, �G, i/c : {�G}, c : "Fm#;· ⇑ ·

� {�,�1,�2}�n, �G, i/c : �G;· ⇑ · [cutCi]

� {�,�1,�2}�n, �G;�G ⇑ · store, Rr, [posi, negc]

� �,�1,�2, c : "Gn#;· ⇑ · [Gn]

� is obtained by Theorem 3.1 and 
 is the same as the derivation introducing Fm but
weakening the formulas in �G and �G in the release rule.

Since for every OL formula F, |F| > 0, by induction we conclude the following.

Corollary 8. LetTL be the theory of a given OLL , and let
 be amultiset and� a subexponential
context containing only atoms of the form "·# and �· . The sequent � ω : {TL , cut},�;
 ⇑ · is
provable iff �ω : TL ,�;
 ⇑ · is provable.

The mechanization of Theorem 5.1 is unfortunately not feasible due to the impossibility of
reasoning about derivations (see discussion in the end of Section 3). For instance, it is not pos-
sible to specify, in a general way, the number of premises resulting after the decomposition of
a bipole. The current version of the library offers definitions, in the form of class types, for cut
coherence of constants, connectives, and OL binders. Hence, the clauses encoding OL rules must
be instances of such classes (thus satisfying cut coherence). The proof of OL cut admissibility, for
each specific case, follows the proof shown above: the principal cases rely on cut coherence and
cut-admissibility of MMLL. The current version of the repository exemplifies this procedure for
classical and intuitionistic logics, as well as for the logic S4.

6. Discussion and Conclusion
In this paper, we have extended the sufficient criterion for cut admissibility of object logical sys-
tems given in Miller and Pimentel (2013). For that, we moved from LL to a variant of linear
logic with subexponentials called MMLL, where different modal behaviors were embodied into
the subexponential connectives. This allowed to establish a simple yet powerful criterion –cut-
coherence – for proving analyticity for a large class of systems. This criterion neatly captures the
duality of inference rules. In fact, checking cut coherence is equivalent to checking B�| � | ⊥ ≡ B"| � |#,
and vice versa. And this is the spirit of cut admissibility.

We start the discussion by exploring the similarities and differences between MMLL and other
LL based frameworks. First of all, since LL is a resource conscious logic, it is natural represent-
ing OL rules as meta-level rewriting clauses. The proposal in Miller and Pimentel (2013) explores
this in a very elegant way, with natural and direct encodings, together with an extremely simple
sufficient condition for cut-admissibility of the specified OLs. For broadening the spectrum of sys-
tems amenable for specification, Nigam et al. (2016) considered an extension of linear logic with
subexponentials (SELL, Nigam and Miller 2010) as the logical framework. However, encoding
modalities different from those in LL remained difficult (or even impossible) using only the linear
logic exponentials. In Olarte et al. (2020), we approached this problem by adopting a framework
(SLL) allowing a finite set of unbounded subexponentials with different modal characteristics, giv-
ing a partial solution to the specification of modal systems. MMLL intends to close this series of
works, enabling not only the specification of an infinite set of bounded or unbounded OL systems
(e.g., multimodal normal logics) but also keeping the simplicity of the cut admissibility character-
ization given in Miller and Pimentel (2013). As a side effect, we obtained a system (LNSFMLL), with
a more efficient proof search strategy when compared with SLL, and more general than SELL.
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Cut elimination and focusing are central for the development of logical frameworks. For this
reason, the above series of works have been followed by different system implementations and
formalizations in proof assistants. For instance, cut elimination and invertibility lemmas were
proved for several linear logic calculi in Abella (Chaudhuri et al. 2019). The library YALLA3

also formalizes several meta-properties of different variants of LL in Coq. Linear nested sys-
tems have been formalized in D’Abrera et al. (2021), together with a cut elimination procedure
for the tense logic Kt. The works by Nigam et al. (2014) and Olarte et al. (2018) allow for prov-
ing, semi-automatically, invertibility and cut admissibility theorems for different logical systems,
including LL-based systems. The aforementioned work by Nigam et al. (2016) is also supported by
a tool that automatically checks the cut-coherence conditions proposed there. The work by Xavier
et al. (2017) was the first formalization of completeness of focusing and cut admissibility for first-
order linear logic in Coq. The representation of the binders, needed for the quantifiers, followed
the technique PHOAS (parametric higher order abstract syntax, Chlipala 2008). That work also
formalized the adequacy of the encoding of different logical systems as theories in LL. This for-
malization effort was extended in Felty et al. (2021), by introducing first-order object logics and
using the cut coherence criteria in Miller and Pimentel (2013) to show cut admissibility for some
OLs. Defining quantifiers at the LL-level and also at the OL level was only possible by replacing
the PHOAS representation of syntax with a definitional representation using a de Bruijn style
supported by the Hybrid library (Felty and Momigliano 2012).

Logical frameworks, based on type systems, have also been used for characterizing and proving
cut-elimination theorems of object logics (see e.g., Licata et al. 2017; Pfenning 2000). Usually, the
embedding of the OL into the logical framework is not simple/direct. The approach followed here
is rather different: we provide easy-to-check conditions that guarantee that the property holds.

The key feature for achieving all this is modularity. Everywhere. Starting from the choice of
LNS, a generalization of sequent systems, as the base framework. This allows for the locality of
rules, enabling the central behavior of connectives to be shared among several different logics and
leaving to the subexponentials the work of separating modal behaviors. That is, modalities reflect
modalities, while (vanilla) LL captures rules as rewriting clauses (as it should be). Second, struc-
tural rules are parametric w.r.t. subexponentials, allowing for a clear separation between modals
and local structural behaviors. And last, but not least, since subexponentials in MMLL also reflect
Kripke models, logics having the same semantic behavior share the same modal characteristics.

As future work, it would be interesting to analyze the case of non-normal modal log-
ics (Lellmann and Pimentel 2019), as well as to explore the failure cases: is it possible, at
the meta-level, to identify the reasons for the lack of analyticity? This would push the line of
investigation towards finding necessary conditions for cut admissibility.
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Notes
1 Axiom D usually appears in the literature as�F→♦F, where ♦ is the possibilitymodality. Here we prefer not to introduce
the diamond connective in the syntax. Instead, we adopt the system with box and negation, where ¬A is a shorthand for
A→ f.
2 We note that, in D’Abrera et al. (2021), a cut-elimination procedurewas mechanized in Coq for the LNS system for the tense
logic Kt.
3 https://perso.ens-lyon.fr/olivier.laurent/yalla/.
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