
Bull. Aust. Math. Soc. 104 (2021), 11–20

doi:10.1017/S0004972720001094

ON THE GROWTH OF LINEAR

RECURRENCES IN FUNCTION FIELDS

CLEMENS FUCHS � and SEBASTIAN HEINTZE

(Received 21 July 2020; accepted 12 August 2020; first published online 9 November 2020)

Abstract

Let (Gn)∞
n=0

be a nondegenerate linear recurrence sequence whose power sum representation is given by

Gn = a1(n)αn
1
+ · · · + at(n)αn

t . We prove a function field analogue of the well-known result in the number

field case that, under some nonrestrictive conditions, |Gn| ≥ (maxj=1,...,t |αj|)
n(1−ε) for n large enough.
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1. Introduction

Let (Gn)∞
n=0

be a nondegenerate linear recurrence sequence with power sum representa-

tion Gn = a1(n)αn
1
+ · · · + at(n)αn

t . This expression makes sense for a sequence (Gn)∞
n=0

taking values in any field K; the characteristic roots αi as well as the coefficients of the

polynomials ai then lie in a finite extension L of K. In this paper K is either a number

field or a function field in one variable of characteristic zero. The nondegenerate

condition means in the number field case that no ratio αi/αj for i , j is a root of unity

and in the function field case that no ratio αi/αj for i , j is contained in the field of

constants. In the number field case it is well known that, if maxj=1,...,t |αj| > 1, then for

any ε > 0 the inequality

|Gn| ≥ ( max
j=1,...,t

|αj|)
n(1−ε) (1.1)

is satisfied for every sufficiently large n.

The purpose of this paper is to prove an analogous result in the case of a function

field in one variable of characteristic zero. Thus we answer, in the setting we are
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working in, Open Question 3 in [11]; we are grateful to Shparlinski for bringing this

paper to our attention. Firstly, we will prove a theorem which states an inequality for

an arbitrary valuation in the splitting field L of the characteristic polynomial belonging

to the linear recurrence sequence. Secondly, we will derive a corollary for the special

case of polynomial power sums. In this special case the inequality takes a form very

similar to (1.1). At this point we make the following observation: Theorem 1 in [6]

already implies that under some nondegeneracy conditions the degree of polynomials

in a linear recurrence sequence with polynomial roots cannot be bounded and therefore

must grow to infinity as n does. But this theorem does not say how fast it must grow. In

the present paper we will give a bound depending on n for the minimal possible degree

of Gn.

The number field case is often mentioned (see [3, 8] or more recently [1, 2]),

but it is not that easy to access a proof of it (see [10] or the formulation in

[9]). So we give a complete proof based on results of Evertse and Schmidt in the

Appendix. By doing so we contribute to the goal that well-known facts should be

fully accessible with proof following van der Poorten’s wise statement in [9] that

‘all too frequently, the well known is [often] not generally known, let alone known

well’.

2. Results and notations

Throughout the paper we denote by K a function field in one variable over C. By L

we usually denote a finite algebraic extension of K. For the convenience of the reader

we give a short summary of the notion of valuations that can also be found in [4]. For

c ∈ C and f (x) ∈ C(x), where C(x) is the rational function field over C, we denote by

νc( f ) the unique integer such that f (x) = (x − c)νc( f ) p(x)/q(x) with p(x), q(x) ∈ C[x]

such that p(c)q(c) , 0. Further, we write ν∞( f ) = deg q − deg p if f (x) = p(x)/q(x).

These functions ν : C(x)→ Z are up to equivalence all valuations in C(x). If νc( f ) > 0,

then c is called a zero of f , and if νc( f ) < 0, then c is called a pole of f , where

c ∈ C ∪ {∞}. For a finite extension K of C(x) each valuation in C(x) can be extended

to no more than [K : C(x)] valuations in K. This again gives up to equivalence all

valuations in K. Both in C(x) as well as in K the sum formula

∑

ν

ν( f ) = 0

holds, where the sum is taken over all valuations in the relevant function field.

Valuations have the properties ν( f g) = ν( f ) + ν(g) and ν( f + g) ≥ min(ν( f ), ν(g))

for all f , g ∈ K. Each valuation in a function field corresponds to a place and vice

versa. The places can be thought of as the equivalence classes of valuations. For more

information about valuations and places we refer to [13].

For any power sum Gn = a1(n)αn
1
+ · · · + at(n)αn

t with aj(n) =
∑mj

k=0
ajknk and any

valuation µ (in a function field L/K containing the αj and the coefficients of the aj) we
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[3] Growth of linear recurrences in function fields 13

have the trivial bound

µ(Gn) = µ(a1(n)αn
1 + · · · + at(n)αn

t ) ≥ min
j=1,...,t

µ(aj(n)αn
j )

≥ min
j=1,...,t

µ(aj(n)) + min
j=1,...,t

µ(αn
j )

≥ min
j=1,...,t

min
k=0,...,mj

µ(ajknk) + n · min
j=1,...,t

µ(αj)

= min
j=1,...,t

k=0,...,mj

µ(ajk) + n · min
j=1,...,t

µ(αj) = C̃ + n · min
j=1,...,t

µ(αj).

Our main result is now the following theorem which gives a bound in the other

direction.

THEOREM 2.1. Let (Gn)∞
n=0

be a nondegenerate linear recurrence sequence tak-

ing values in K with power sum representation Gn = a1(n)αn
1
+ · · · + at(n)αn

t . Let

L=K(α1, . . . ,αt) be the splitting field of the characteristic polynomial of that sequence

and let µ be a valuation on L. Then there is an effectively computable constant C,

independent of n, such that, for every sufficiently large n, the inequality

µ(Gn) ≤ C + n · min
j=1,...,t

µ(αj)

holds.

For the special case of a linear recurrence sequence of complex polynomials having

complex polynomials as characteristic roots we get the following lower bound for the

degree of the nth member of the sequence.

COROLLARY 2.2. Let (Gn)∞
n=0

be a nondegenerate linear recurrence sequence of

polynomials in C[x] with power sum representation Gn = a1(n)αn
1
+ · · · + at(n)αn

t such

that α1, . . . ,αt ∈ C[x]. Then there is an effectively computable constant C, independent

of n, such that, for every sufficiently large n, the inequality

deg Gn ≥ n · max
j=1,...,t

degαj − C

holds.

In the case of a binary recurrence sequence of polynomials, that is, t = 2 in

Corollary 2.2, one can use Mason’s function field abc theorem (see [7]) to show that

the number of distinct zeros of Gn must go to infinity as n does. By considering this in

slightly more detail, the number of distinct zeros of Gn can be bounded above (trivially)

and below (by means of the abc theorem) both by linear polynomials in n.

It would be interesting to prove a function field variant of Corollary 3.1 in [1].

However, because of Lemma 3.1, which is based on Dirichlet’s classical approximation

theorem, we are not (yet) able to prove such a statement.

In the proof given in the next section we will apply the following special case of

Theorem 1 in [6].
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LEMMA 2.3. Let K be as above and L be a finite extension of K of genus g.

Furthermore, let α1, . . . ,αd ∈ L∗ with d ≥ 2 be such that αi/αj < C
∗ for each pair of

subscripts i, j with 1 ≤ i < j ≤ d. Moreover, for every i = 1, . . . , d, let πi1, . . . , πiri
∈ L

be ri linearly independent elements over C. Put

q =

d∑

i=1

ri.

Then, for every n ∈ N such that

{πilα
n
i : l = 1, . . . , ri, i = 1, . . . , d}

is linearly dependent over C, but no proper subset of this set is linearly dependent over

C, we have

n ≤ C = C(q, g, πil,αi : l = 1, . . . , ri, i = 1, . . . , d).

The proof will also make use of height functions in function fields. Let us therefore

define the height of an element f ∈ L∗ by

H( f ) := −
∑

ν

min(0, ν( f )) =
∑

ν

max(0, ν( f )),

where the sum is taken over all valuations in the function field L/C. For every z ∈

L \ C,

H(z) =
∑

ν

max(0, ν(z)) =
∑

P

max(0, νP(z))

= deg
∑

P

max(0, νP(z))P = deg(z)0 = [L : C(z)] = deg
C

(z),

by Theorem I.4.11 in [13], where we have used the fact that all places have degree one

since we are working over C (instead of the height, one can use deg
C

(z) = [L : C(z)] as

in [14]). Additionally, we define H(0) = ∞. This height function satisfies some basic

properties that are listed in the next lemma which is proven in [5].

LEMMA 2.4. LetH denote the height on L/C as above. Then, for f , g ∈ L∗:

(a) H( f ) ≥ 0 andH( f ) = H(1/ f );

(b) H( f ) −H(g) ≤ H( f + g) ≤ H( f ) +H(g);

(c) H( f ) −H(g) ≤ H( f g) ≤ H( f ) +H(g);

(d) H( f n) = |n| · H( f );

(e) H( f ) = 0 ⇐⇒ f ∈ C∗;

( f) H(A( f )) = deg A · H( f ) for any A ∈ C[T] \ {0}.

We will also use the following function field analogue of the Schmidt subspace

theorem.

PROPOSITION 2.5 (Zannier [14]). Let F/C be a function field in one variable and of

genus g. Let ϕ1, . . . ,ϕn ∈ F be linearly independent over C and let r ∈ {0, 1, . . . , n}.
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Let S be a finite set of places of F containing all the poles of ϕ1, . . . ,ϕn and all the

zeros of ϕ1, . . . ,ϕr. Put σ =
∑n

i=1 ϕi. Then

∑

ν∈S

(ν(σ) − min
i=1,...,n

ν(ϕi)) ≤

(
n

2

)
(|S| + 2g − 2) +

n∑

i=r+1

H(ϕi).

3. Proofs

PROOF OF THEOREM 2.1. Denote the coefficients of the polynomial aj(n) ∈ L[n] by

aj0, aj1, . . . , ajmj
where mj is the degree of aj(n). So

aj(n) =

mj∑

k=0

ajknk.

First assume that the recurrence sequence is of the shape Gn = a1(n)αn
1
. Using

Lemma 2.4,

µ(Gn) = µ(a1(n)) + nµ(α1) ≤ H(a1(n)) + nµ(α1)

≤

m1∑

k=0

H(a1knk) + nµ(α1) =

m1∑

k=0

H(a1k) + nµ(α1).

Thus from now on we can assume that t ≥ 2. Let πj1, . . . , πjkj
be a maximal C-linear

independent subset of aj0, aj1, . . . , ajmj
. Then we can write the sequence as

Gn =

t∑

j=1

( kj∑

i=1

bji(n)πji

)
αn

j

with polynomials bji(n) ∈ C[n]. Since aj(n) is not the zero polynomial, there is for

each j at least one index i such that bji(n) is not the zero polynomial. Without loss of

generality we can assume that no bji(n) is the zero polynomial since otherwise we can

throw out all zero polynomials and renumber the remaining terms. It does not matter

whether all πji occur in the sum or not. Moreover, we assume that n is large enough

such that bji(n) , 0 for all j, i.

Consider as a next step the set

M := {πjiα
n
j : i = 1, . . . , kj, j = 1, . . . , t}.

We intend to apply Lemma 2.3. If M is linearly dependent over C, then we choose a

minimal linearly dependent subset M̃ of M, that is, a linearly dependent subset M̃ with

the property that no proper subset of M̃ is linearly dependent. Let G̃n be the linear

recurrence sequence associated with this subset M̃, that is,

G̃n =

s∑

j=1

( k̃j∑

i=1

bji(n)πji

)
αn

j
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for s ≤ t and after a suitable renumbering of the summands. Since πj1, . . . , πjkj
are

C-linearly independent we have s ≥ 2. Applying Lemma 2.3 to

M̃ := {πjiα
n
j : i = 1, . . . , k̃j, j = 1, . . . , s}

gives an upper bound for n. Thus for n large enough this subset M̃ of M cannot be

linearly dependent. Because of the fact that there are only finitely many subsets of M,

for n large enough the set M must be linearly independent.

We assume from here on that n is large enough such that M is linearly independent.

For each fixed n we have bji(n) ∈ C∗. Thus the set

M′ := {bji(n)πjiα
n
j : i = 1, . . . , kj, j = 1, . . . , t}.

is linearly independent over C and contains for each j = 1, . . . , t at least one element.

Let S be a finite set of places of L containing all zeros and poles of αj for j = 1, . . . , t

and of the nonzero aji for j = 1, . . . , t and i = 1, . . . , mj as well as µ and the places lying

over∞. Now applying Proposition 2.5 yields

∑

ν∈S

(
ν(Gn) − min

j=1,...,t
i=1,...,kj

ν(bji(n)πjiα
n
j )

)
≤

(∑t
j=1 kj

2

)
(|S| + 2g − 2) =: C1

and, since each summand in the sum on the left-hand side is nonnegative,

µ(Gn) − min
j=1,...,t
i=1,...,kj

µ(bji(n)πjiα
n
j ) ≤ C1.

Therefore for all j0 = 1, . . . , t and i0 = 1, . . . , kj0 ,

µ(Gn) ≤ C1 + min
j=1,...,t
i=1,...,kj

µ(bji(n)πjiα
n
j )

≤ C1 + µ(bj0i0 (n)πj0i0α
n
j0

)

= C1 + µ(πj0i0 ) + nµ(αj0 )

≤ C1 + max
j=1,...,t

i=0,...,mj, aji,0

µ(aji) + nµ(αj0 )

≤ C1 + max
j=1,...,t

i=0,...,mj, aji,0

H(aji) + nµ(αj0 )

= C2 + nµ(αj0 ).

Since this holds for all j0 = 1, . . . , t,

µ(Gn) ≤ C2 + n · min
j=1,...,t

µ(αj). �

PROOF OF COROLLARY 2.2. We can apply Theorem 2.1 with L = K = C(x) and

µ= ν∞. This yields

− deg Gn = ν∞(Gn) ≤ C + n · min
j=1,...,t

ν∞(αj) = C − n · max
j=1,...,t

degαj

which immediately implies the inequality in question. �
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Appendix A. The number field case

In this appendix we will give a proof of the following theorem.

THEOREM A.1. Let (Gn)∞
n=0

be a nondegenerate linear recurrence sequence taking

values in a number field K and let Gn = a1(n)αn
1
+ · · · + at(n)αn

t with algebraic integers

α1, . . . ,αt be its power sum representation satisfying maxj=1,...,t |αj| > 1. Denote by |·|

the usual absolute value on C. Then, for any ε > 0, the inequality

|Gn| ≥ ( max
j=1,...,t

|αj|)
n(1−ε)

is satisfied for every sufficiently large n.

Note that this result is not effective in the sense that we do not give a bound n0

such that the inequality is satisfied for all n greater than n0. If we were to look more

precisely at the limitations placed on n in the proof given below, it would be possible

to give an (admittedly) rather complicated upper bound on the number of exceptions.

This bound would have the following form: if n/ log n > B1, then there are at most B2

values of n for which the inequality is not valid. Since the explicit constants are not so

enlightening we will not calculate them in detail.

From here on K will denote a number field. In the proof we will need three auxiliary

results which are listed below. The first one is a result of Schmidt.

LEMMA A.2 (Schmidt [12]). Suppose that (Gn)n∈Z is a nondegenerate linear recur-

rence sequence of complex numbers, whose characteristic polynomial has k distinct

roots of multiplicity at most a. Then the number of solutions n ∈ Z of the equation

Gn = 0

can be bounded above by

c(k, a) = e(7ka)8ka

.

The second is a result of Evertse. We use the notation

‖x‖ = max
k=0,...,t
i=1,...,D

|σi(xk)|

with {σ1, . . . ,σD} the set of all embeddings of K in C and x = (x0, x1, . . . , xt).

Moreover, we denote by OK the ring of integers in K.

LEMMA A.3 (Evertse [3]). Let t be a nonnegative integer and S a finite set of

places in K, containing all infinite places. Then for every ε > 0 a constant C exists,

depending only on ε, S, K, t such that for each nonempty subset T of S and every vector

x = (x0, x1, . . . , xt) ∈ O
t+1
K

with

xi0 + xi1 + · · · + xis , 0
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for each nonempty subset {i0, i1, . . . , is} of {0, 1, . . . , t},

( t∏

k=0

∏

ν∈S

‖xk‖ν

)∏

ν∈T

‖x0 + x1 + · · · + xt‖ν ≥ C

(∏

ν∈T

max
k=0,...,t

‖xk‖ν

)
‖x‖−ε.

Furthermore, we will need the following lemma which also can be found in [3].

LEMMA A.4. Suppose K is a number field of degree D, let f (X) ∈ K[X] be a

polynomial of degree m and T a nonempty set of primes on K. Then there exists a

positive constant c, depending only on K, f such that for all r ∈ Z with r , 0 and

f (r) , 0,

c−1|r|−Dm ≤

(∏

ν

max(1, ‖ f (r)‖ν)

)−1

≤
∏

ν∈T

‖ f (r)‖ν

≤
∏

ν

max(1, ‖ f (r)‖ν) ≤ c|r|Dm.

PROOF OF THEOREM A.1. Since the characteristic roots αj of Gn are algebraic integers

we can find a nonzero integer z such that zaj(n)αn
j

are algebraic integers for all j =

1, . . . , t and all n ∈ N. Set L = K(α1, . . . ,αt), the splitting field of the characteristic

polynomial of the sequence Gn. Choose S as a finite set of places in L containing all

infinite places as well as all places such that α1, . . . ,αt are S-units. Let µ be such that

‖·‖µ = | · | is the usual absolute value on C. In particular, µ ∈ S. Further, define T = {µ}.

As Gn is nondegenerate, the sequence G̃n = zGn is also nondegenerate. Therefore

by Lemma A.2, for n large enough,

zaj1 (n)αn
j1
+ · · · + zajs (n)αn

js
, 0

for each non-empty subset { j1, . . . , js} of {1, . . . , t}. Thus we can apply Lemma A.3 and

get

( t∏

j=1

∏

ν∈S

‖zaj(n)αn
j ‖ν

)
|zGn| ≥ C max

j=1,...,t
|zaj(n)αn

j | ‖zx‖−ε

for x = (a1(n)αn
1
, . . . , at(n)αn

t ). Without loss of generality, we can assume that |α1| =

maxj=1,...,t |αj|. Since z is a fixed integer and the αj are S-units, we can rewrite this as

( t∏

j=1

∏

ν∈S

‖aj(n)‖ν

)
|Gn| ≥ C1 max

j=1,...,t
|aj(n)αn

j | ‖x‖
−ε

≥ C1|a1(n)αn
1| ‖x‖

−ε
= C1|a1(n)| |α1|

n‖x‖−ε. (A.1)

In preparation for the next step, note that there exists a positive constant A such that

max
j=1,...,t
i=1,...,D

|σi(αj)| ≤ A · |α1|.
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[9] Growth of linear recurrences in function fields 19

We decompose ε = γ · δ with small δ and Aγ ≤ |α1|. This gives the estimates

‖x‖ = max
j=1,...,t
i=1,...,D

|σi(aj(n)αn
j )| = max

j=1,...,t
i=1,...,D

|σi(aj(n))σi(αj)
n|

≤ max
j=1,...,t
i=1,...,D

|σi(aj(n))| · max
j=1,...,t
i=1,...,D

|σi(αj)|
n

≤ C2nm · max
j=1,...,t
i=1,...,D

|σi(αj)|
n ≤ C2nmAn|α1|

n,

with m = maxj=1,...,t deg aj, and

‖x‖ε ≤ C3nmεAγnδ|α1|
nε ≤ C3nmε|α1|

n(ε+δ).

Now we insert this into inequality (A.1), giving

( t∏

j=1

∏

ν∈S

‖aj(n)‖ν

)
|Gn| ≥ C4|a1(n)| |α1|

nn−mε|α1|
−n(ε+δ) ≥ C5n−mε|α1|

n(1−ε−δ).

Applying Lemma A.4 to the product in the brackets on the left hand side gives the

bound

t∏

j=1

∏

ν∈S

‖aj(n)‖ν ≤

t∏

j=1

C
(j)

6
nDm ≤ C7ntDm.

Altogether, for n large enough,

|Gn| ≥ C8n−tDm−mε|α1|
n(1−ε−δ).

Hence, recalling that |α1| = maxj=1,...,t |αj|, for n large enough,

|Gn| ≥ ( max
j=1,...,t

|αj|)
n(1−ε̃).

This proves the theorem. �
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