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Abstract

The geometric Satake correspondence gives an equivalence of categories between the
representations of a semisimple group G and the spherical perverse sheaves on the
affine Grassmannian Gr of its Langlands dual group. Bezrukavnikov and Finkelberg
developed a derived version of this equivalence which relates the derived category of
G∨-equivariant constructible sheaves on Gr with the category of G-equivariant O(g)-
modules. In this paper, we develop a K-theoretic version of the derived geometric Satake
which involves the quantum group Uqg. We define a convolution category KConv(Gr)
whose morphism spaces are given by the G∨ × C×-equivariant algebraic K-theory of
certain fibre products. We conjecture thatKConv(Gr) is equivalent to a full subcategory
of the category of Uqg-equivariant Oq(G)-modules. We prove this conjecture when G =
SLn. A key tool in our proof is the SLn spider, which is a combinatorial description
of the category of Uqsln representations. By applying horizontal trace, we show that
the annular SLn spider describes the category of Uqsln-equivariant Oq(SLn)-modules.
Then we use quantum loop algebras to relate the annular SLn spider to KConv(Gr).
This gives a combinatorial/diagrammatic description of both categories and proves our
conjecture.

1. Introduction

1.1 The geometric Satake correspondence
Let G be a semisimple complex group. Let G∨ be its Langlands dual group and let Gr =
G∨((t))/G∨[[t]] be the affine Grassmannian. Let P (Gr) denote the abelian category of perverse
sheaves on Gr which are constructible with respect to the stratification by G∨[[t]]-orbits. This
category is naturally equipped with a monoidal structure using convolution. The geometric
Satake correspondence of Mirković and Vybornov [MV07] gives the following result.

Theorem 1.1. There is an equivalence of monoidal categories

P (Gr) ∼= Rep(G).

Let DG∨(Gr) and DG∨×C×(Gr) denote the G∨-equivariant and G∨×C×-equivariant derived
categories of constructible sheaves on Gr. Here G∨ acts naturally on Gr by left multiplication
and C× acts by loop rotation.

The derived geometric Satake correspondence describes these categories of sheaves in terms
of representation theory/geometry of the group G. Let CohG×C

×
(g) = O( g

G)-mod denote the
category of G-equivariant Z-graded O(g)-modules and likewise let U~( g

G)-mod denote the
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category of G-equivariant graded U~(g)-modules. Here U~(g) denotes the Rees algebra of the
universal enveloping algebra Ug with respect to the Poincaré–Birkhoff–Witt (PBW) filtration
(U~(g) is sometimes called the asymptotic universal enveloping algebra; it should not be confused
with the quantum group Uqg). The C× action on g is by scaling, which means that in the induced
Z-grading on O(g) and U~(g), elements of g as well as ~ have degree 1. As usual, we will write
{1} for a shift in the Z-grading. Typical objects of O( g

G)-mod and U~( g
G)-mod are O(g)⊗V and

U~(g)⊗ V where V is a finite-dimensional representation of G.
The following result is due to Bezrukavnikov and Finkelberg [BF08, Corollary 1].

Theorem 1.2. There are monoidal functors

F : D(O( g
G)-mod)→ DG∨(Gr),

F : D(U~( g
G)-mod)→ DG∨×C×(Gr)

such that for any two objects A,B ∈ O( g
G)-mod, F gives an isomorphism⊕

n,m

Extm(A,B{n}) ∼=
⊕
k

Extk(F (A), F (B))

(and similarly for A,B ∈ U~( g
G)-mod).

Using a standard result of Ginzburg [CG97, Theorem 8.6.7] (see § 3.4 below), we can translate
this into a statement about homology of certain fibre products. Suppose that λ = (λ1, . . . , λm)
and µ= (µ1, . . . , µm′) are two sequences of minuscule dominant weights forG. Then the geometric
Satake equivalence and its derived version (Theorem 1.2) imply the following isomorphisms.

Theorem 1.3. There are canonical isomorphisms

Htop(Z(λ, µ)) ∼= HomG(V (λ), V (µ)),

HG∨
∗ (Z(λ, µ)) ∼= HomO( g

G
)-mod(O(g)⊗ V (λ),O(g)⊗ V (µ)),

HG∨×C×
∗ (Z(λ, µ)) ∼= HomU~( g

G
)-mod(U~(g)⊗ V (λ), U~(g)⊗ V (µ)).

Here Z(λ, µ) is a certain fibre product defined using Gr (see § 3.4), and V (λ) = V (λ1)⊗· · ·⊗
V (λm) is a tensor product of irreducible representations.

1.2 A conjectural K-theoretic version
One goal in this paper is to extend the geometric Satake correspondence and the isomorphisms
from Theorem 1.3 to the quantum group Uqg. We will introduce the quantum parameter q by
replacing homology with C×-equivariant K-theory.1 We begin with the ansatz that passing from
homology to K-theory on the left-hand sides on Theorem 1.3 corresponds to passing from O(g)
to O(G) on the right-hand sides. Let Oq(G) be the braided quantum function algebra, which is
a quantization of O(G). This leads us to the following conjecture.

Conjecture 1.4. Let λ and µ be two sequences of minuscule dominant weights. Up to
appropriate localizations, there are canonical isomorphisms

KG∨(Z(λ, µ)) ∼= Hom
O(

G
G )-mod

(O(G)⊗ V (λ),O(G)⊗ V (µ)),

1 It is clear from Theorem 1.3 that working with C×-equivariant homology does not introduce the quantum group.
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KG∨×C×(Z(λ, µ)) ∼= Hom
Oq(GG )-mod

(Oq(G)⊗ V (λ),Oq(G)⊗ V (µ)),

where O(GG)-mod is the category of G-equivariant O(G)-modules and Oq(GG)-mod the category

of Uqg-equivariant Oq(G)-modules.

Notice that we do not make any statement concerning HomUqg(V (λ), V (µ)). This is because

we do not have an analog of ‘top homology’ within the world of C×-equivariant K-theory.
In § 3.5, we define a category KConvG

∨×C×(Gr) whose objects are sequences of minuscule
dominant weights and whose morphisms are given by KG∨×C×(Z(λ, µ)) (and similarly without
the C×). Then Conjecture 1.4 can be reformulated as the existence of full embeddings

KConvG
∨
(Gr)→ O(GG)-mod,

KConvG
∨×C×(Gr)→ Oq(GG)-mod

(see Conjecture 3.4).

There are two explanations for the appearances of the categories O(GG)-mod and Oq(GG)-mod.

On the one hand, they are the natural ‘multiplicative’ analogs of the categories O( g
G)-mod and

U~( g
G)-mod from the work of Bezrukavnikov and Finkelberg [BF08]. On the other hand, as we

will recall in § 2.4, they are the horizontal traces of the monoidal categoriesRep(G) andRepq(G).

Both perspectives will play a role in this paper.

The algebras O(g), U~(g),O(G),Oq(G) fit into a natural ‘diamond’, which we learnt from

Jordan [Jor14].2

Oq(G)

U~(g) O(G)

O(g)

This leads to a diagram of categories.

Oq(GG)-mod

U~( g
G)-mod O(GG)-mod

O( g
G)-mod

Conjecture 1.4 can then be formulated as saying that this diagram of ‘algebraic’ categories is

2 We emphasize here that U~(g) is not the quantum group, just the asymptotic enveloping algebra, and the
parameters ~ and q are unrelated.
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related to the following diagram of ‘topological’ categories.

KConvG
∨×C×(Gr)

DG∨×C×(Gr) KConvG
∨
(Gr)

DG∨(Gr)

1.3 Proof in type A
Most of this paper is devoted to proving the above conjecture for G = SLn.

Let Omin
q (SLn

SLn
)-mod be the full subcategory of Uqsln-equivariant Oq(SLn)-modules of the

form Oq(SLn) ⊗ V , where V is a tensor product of fundamental representations. Our strategy
is to give a combinatorial/diagrammatic presentation of both categories Omin

q (SLn
SLn

)-mod and

KConvSLn×C×(Gr) using the annular SLn spider. We believe that these presentations are of
their own independent interest.

Our strategy involves a series of functors and categories summarized in the commutative
diagram (1). We now briefly discuss these categories and functors.

(U̇qLglm)n
AΨm //

Φm

((

ASpn(q)
AΓ //

Φ
��

Omin
q (SLn

SLn
)-mod

KConvSLn×C×(Gr)

(1)

1.3.1 Annular spiders. The SLn spider category Spn is a combinatorial/diagrammatic
presentation of the representation category of SLn due to the authors and Morrison [CKM14].3

In this paper, we use the annular version ASpn of this category, where morphisms are linear
combination of webs (with boundary) in an annulus modulo the same local relations as in Spn.
Using the machinery of horizontal trace and the main result in [CKM14], we obtain the following.

Theorem 1.5. There is an equivalence of categories

AΓ : ASpn(q)
∼−→ Omin

q (SLn
SLn

)-mod.

1.3.2 Quantum loop algebras. The main tool in [CKM14] was the realization that via skew-

Howe duality, Repq(SLn) (and thus Spn(q)) is the limit as m→ ∞ of truncations (U̇qglm)n of
the idempotented version of quantum groups. In this paper, we will use that ASpn(q) is the limit
of truncations (U̇qLglm)n of idempotented quantum loop algebras. This is achieved by defining

an annular ‘ladder-formation’ functor AΨm : (U̇qLglm)n→ ASpn(q).
On the other hand, Nakajima [Nak01] (following Ginzburg and Vasserot) constructed actions

of quantum loop algebras on the K-theory of quiver varieties. In type A, the varieties Z(λ, µ)

3 In [CKM14], we worked over C(q), as we (mostly) do in this paper. Later, Elias [Eli15] extended the equivalence
Spn(q) ∼= Repmin

q (SLn) to Z[q, q−1]. Thus it is possible that the results of the current paper hold over Z[q, q−1].
However, we have not explored this in depth.
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are closely related to Steinberg varieties of quiver varieties. Motivated by this connection and by
our earlier work [CKL10, Cau05, CK17], we construct functors

Φm : (U̇qLglm)n→ KConvSLn×C×(Gr)

for each m. These functors are compatible with the inclusion of (U̇qLglm)n into (U̇qLglm+1)n

and thus induce a functor

Φ : ASpn(q)→ KConvSLn×C×(Gr).

1.3.3 The proof. Since we have an equivalence AΓ : ASpn(q)
∼−→ Omin

q (SLn
SLn

)-mod, it suffices

to show that Φ : ASpn(q) → KConvSLn×C×(Gr) is an equivalence. Using a simple trick, this

can be reduced to showing that the map Φ : EndASpn(q)(1
m) → KSLn×C×(Z(1m, 1m)) is an

isomorphism (where 1m = (1, . . . , 1)). To do this we consider the composition

EndASpn(q)(1
m)→ KSLn×C×(Z(1m, 1m))→ End(KSLn×C×(Y (1m)))

and compute explicitly the images of everything inside the right-hand term.
Here Y (1m) is an iterated fibre product of m copies of Pn−1 which is defined using the

affine Grassmannian. To do this computation, we study a certain ring Rmn,[q±] (see § 7.3 for the

definition) which we identify with the equivariant K-theory of Y (1m) (Lemma 8.14). We also
study certain endomorphisms of this ring which give us an algebra closely related to cyclotomic
affine Hecke algebras (we discuss this in § 10). All these rings are quite explicit and may be of
independent interest.

1.4 Relationship to other work
1.4.1 Betti geometric Langlands. The work of Kapustin and Witten [KW07], and more

recent work of Ben-Zvi and Nadler (in progress), describes a Betti version of the geometric
Langlands program. In this setup one has a (partially defined) four-dimensional topological field
theory. To a surface this theory associates a category. These categories were studied recently
in [BBJ15]. In the case when the surface is an annulus the theory gives Oq(GG)-mod. This category
along with the category associated to a pair of pants form the building blocks of this topological
field theory (TFT).

The results in this paper relate Oq(GG)-mod with the K-theoretic convolution category of the
affine Grassmannian for the Langlands dual group. It would be interesting to obtain a similar
result for the category associated to a pair of pants. We hope that our results will be an important
step towards the Betti geometric Langlands program.

1.4.2 Gaitsgory’s work. There is already a quantum version of the geometric Satake
correspondence due to Gaitsgory [Gai08]. In his work, the category of representations of
the quantum group is realized as the category of twisted Whittaker sheaves on the affine
Grassmannian. The relationship between Gaitsgory’s result and the present work is not at all
clear. In particular, it follows that the horizontal trace of the category of twisted Whittaker
sheaves is equivalent to our category KConvSLn×C×(Gr); we do not have a geometric explanation
for this fact.

1.4.3 Elias’ work. Our work can also be compared with a recent paper by Elias [Eli17].

Analogous to the category KConvG
∨
(Gr), one may also define hConvG

∨
(Gr) (see § 3.4), which is

equivalent to a full subcategory of DG∨(Gr). Via the work of Soergel and others (see [Eli17, § 6]),

the category hConvG
∨
(Gr) is equivalent to the category of maximally singular Bott–Samelson

bimodules mSBSBim for the corresponding affine Weyl group.
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Assume now G = SLn. By combinatorial/algebraic methods, Elias has constructed an
equivalence between Spn and the degree-0 part of mSBSBim (in [Eli17] this is done for
n = 2, 3 and the general case will appear in a future work). This reproves the original abelian
geometric Satake equivalence in this case. This should be compared with our equivalence
ASpn ∼= KConvG

∨
(Gr). (Our work gives an equivalence between Spn and a subcategory of

KConvG
∨
(Gr), but it is not clear whether this reproves the original abelian geometric Satake

equivalence.)
Moreover, Elias gives a q-deformation mSBSBimq which he proves is degree-0 equivalent

to Spn(q). We do not know how this q-deformation is related to our equivalence ASpn(q) ∼=
KConvSLn×C×(Gr).

1.4.4 Categorification. In our previous work [CKM14], we suggested that the equivalence
Spn(q) ∼= Repq(SLn) could be used to define a categorification of Repq(SLn), called Foamn, as

the a limit of categorifications of (U̇qglm)n

lim
m→∞

(U̇qglm)n ∼= Foamn.

This program was carried out by Queffelec and Rose [QR16]. The foam category Foamn has
objects sequences from {1, . . . , n − 1}, 1-morphisms given by webs, and 2-morphisms given by
certain bordisms with seams, called foams.

In our current paper, we have functors

(U̇qLglm)n→ ASpn→ KConvSLn×C×(Gr)

and it is natural to look for categorifications of each of these categories. One expects that
(U̇qLglm)n can be categorified by some 2-category (U̇qLglm)n analogous to (U̇qglm)n (though
this has not been done as far as we know). ASpn can be categorified by AFoamn, the category
whose objects are the same as Foamn, whose 1-morphisms are webs in the annulus (with
boundary) and whose 2-morphisms are annular foams. In a recent paper [QR15], Queffelec and

Rose study the endomorphisms of the trivial object in this category. Finally, KConvSLn×C×(Gr)

has a natural categorification CohConvSLn×C×(Gr), where the morphism categories are given
by derived categories of coherent sheaves on the fibre products Z(λ, µ).

Thus it is natural to expect that we should have 2-functors

lim
m→∞

(U̇qLglm)n→ AFoamn→ CohConvSLn×C×(Gr).

The composition of these 2-functors is understood to some extent, based on this paper and
earlier work by the authors. We expect the first 2-functor to be an equivalence while the second
2-functor is more mysterious.

1.4.5 Knot invariants. The spider category Spn(q) can be used to define Reshetikhin–
Turaev (RT) invariants of type A for links in the ball. Similarly, the categorification Foamn

can be used to define homological link invariants (this was done in [QR16] following the original
approach due to Khovanov [Kho04]).

The results of this paper show that Spn(q) embeds into KConvSLn×C×(Gr) and thus the

category KConvSLn×C×(Gr) can be used to define Reshetikhin–Turaev invariants. This suggests

that the 2-category CohConvSLn×C×(Gr) can be used to define homological knot invariants. This
is essentially the approach used in our previous papers [CK08a, CK08b, Cau05]. Our current
work gives a little more perspective to these papers.
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Moreover, the results of this paper show that KConvSLn×C×(Gr) can be used to define

RT-invariants for links in the annulus. This suggests that CohConvSLn×C×(Gr) can be used to
obtain homological invariants of links in the annulus. The case G = SL2 should correspond to
sutured Khovanov homology. Using this approach, we immediately obtain an action of SLn on
the SLn-homology of links in the annulus. This is because the resulting invariant lies in the
SLn×C×-equivariant derived category of a point (in the case n = 2, such an action was studied
by Grigsby et al. [GLW15]). This construction is compatible with the recent work of Queffelec
and Rose [QR15]. More details will appear in a future paper.

2. Representation categories

2.1 Notation
Let G be a simply connected semisimple group. Let T be a maximal torus of G, let Λ denote
its weight lattice and let W denote the Weyl group. Let Λ+ denote the set of dominant weights
and ρ∨ half the sum of the fundamental coroots. For λ ∈ Λ+, let V (λ) denote the irreducible
representation of highest weight λ.

Recall that we have an isomorphism O(G)G ∼= O(T )W where G acts on G by the adjoint
action. Let E = O(T )W ∼= C[Λ]W . Recall that E is a polynomial ring in r variables, where r is
the rank of G. We also have an isomorphism R(G) ∼= E, where R(G) denotes the (complexified)
representation ring of G.

Let G∨ denote the Langlands dual group to G and let G̃∨ be its simply connected cover. Let
Λ∨ be the weight lattice of G̃∨ and let E∨ = R(G̃∨) = C[Λ∨]W .

Let ( , ) be the W -invariant bilinear form on t∗ (the dual of the Lie algebra of T ), such that
(α, α) = 2 for all short roots α. This bilinear form gives an isomorphism ι : t∗ → t. From the
W -invariance, it follows that ι(Λ) ⊂ Λ∨ (with equality if G is simply laced). Thus ι gives us an
inclusion E ↪→ E∨ (which is an isomorphism when G is simply laced).

2.2 Classical representation categories
Let Rep(G) denote the usual category of finite-dimensional representations of G. We will be
interested in various enhancements/modifications of Rep(G).

We have the adjoint actions of G on g and G. This makes O(g) and O(G) into (infinite-
dimensional) G representations. Let O( g

G)-mod denote the full subcategory of G-equivariant
O(g)-modules which are of the form O(g) ⊗ V , for V in Rep(G). Here G acts diagonally on
O(g) ⊗ V and O(g) acts on the left tensor factor. Similarly we define O(GG)-mod to be the full
subcategory of G-equivariant O(G)-modules which are of the form O(G)⊗ V . Note that we can
think of O( g

G)-mod as the full subcategory of G-equivariant coherent sheaves of g consisting of

trivial vector bundles with G-action (and similarly for O(GG)-mod).

2.3 Quantum representation categories
2.3.1 Quantum group and quantum function algebra. We will denote by [n] the quantum

integer qn−1 +qn−3 + · · ·+q−n+3 +q−n+1. More generally, we have quantum binomial coefficients[
n

k

]
:=

[n] . . . [1]

([n− k] . . . [1])([k] . . . [1])
.

Let Uqg denote the quantum group over C(q). Let Repq(G) denote the category of finite-
dimensional representations of Uqg. For each λ ∈ Λ+, we have an irreducible representation V (λ).
Recall that the representation ring Rq(G) of Uqg coincides with the representation ring of G, so
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Rq(G) ∼= E. Also recall that for any two representations V,W of Uqg, we have a braiding map
βV,W : V ⊗W →W ⊗ V .

We consider the quantum function algebra Oq(G). There are (at least) two versions of Oq(G)
in the literature. We will need the version introduced by Majid, which sometimes goes under
the name ‘reflection equation algebra’. We define Oq(G) to be the subspace of (Uqg)∗ spanned
by matrix coefficients V ⊗ V ∗ of finite-dimensional representations V . From this we see that as
a vector space Oq(G) =

⊕
λ V (λ)⊗ V (λ)∗ and we have a map rV : V ⊗ V ∗→ Oq(G).

There is an action of Uqg on Oq(G) such that for all V , rV : V ⊗ V ∗ → Oq(G) is Uqg-
equivariant.

The multiplication on Oq(G) is defined so that for any V,W the diagram

(V ⊗ V ∗)⊗ (W ⊗W ∗)
IV ⊗β−1

W⊗W∗,V ∗

//

rV ⊗rW
��

V ⊗W ⊗W ∗ ⊗ V ∗ = (V ⊗W )⊗ (V ⊗W )∗

rV⊗W
��

Oq(G)⊗Oq(G) // Oq(G)

commutes.
Since the upper horizontal line in this diagram is a map of Uqg modules, we see that

multiplication in Oq(G) is equivariant for this action.
Let Oq(GG)-mod denote the full subcategory of Uqg-equivariant Oq(G)-modules which are of

the form Oq(G) ⊗ V , where V is a representation Uqg. Here Uqg acts on Oq(G) ⊗ V by the
diagonal action and Oq(G) acts by left multiplication.

2.3.2 Central elements and enrichment. For any representation V , let tV ∈ Oq(G) denote
the image of the canonical element of V ⊗ V ∗ under the map rV (so interpreted as an element
of (Uqg)∗, tV is the trace along the representation V ).

Proposition 2.1. The elements tV are central and the map [V ] 7→ tV defines an algebra
isomorphism between E(q) ∼= Rq(G) and (Oq(G))Uqg.

Proof. To prove that tV is central, let us write the canonical element of V ⊗ V ∗ as
∑

i xi ⊗ xi
where xi is a basis for V and xi is the dual basis. Consider some element rW (w ⊗ w′) ∈ Oq(G)
for some w ∈W,w′ ∈W ∗. Then we have

tV rW (w ⊗ w′) =
∑
i

rV⊗W (xi ⊗ β−1
W⊗W ∗,V ∗(x

i ⊗ (w ⊗ w′)))

=
∑
i

rV⊗W ((1⊗ 1⊗ β−1
W ∗,V ∗)(xi ⊗ β

−1
W,V ∗(x

i ⊗ w)⊗ w′))

=
∑
i

rV⊗W ((βW,V ⊗ β−1
W ∗,V ∗)(w ⊗ xi ⊗ x

i ⊗ w′))

=
∑
i

rV⊗W (xi ⊗ w ⊗ w′ ⊗ xi),

where the last line follows from the fact that βW,V and βW ∗,V ∗ are dual to each other. A similar
(but simpler) calculation shows that rW (w ⊗ w′)tV is given by the same formula. Thus tV is
central.

Next note that tV is clearly Uqg-invariant. Since tV⊗W = tV tW , we see that the map is an
algebra morphism. It is clearly injective. Finally, to show that it is surjective, we just use the
Uqg-equivariant isomorphism Oq(G) ∼=

⊕
λ V (λ)⊗ V (λ)∗. 2
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Remark 2.2. We believe that these tV generate the centre of Oq(G) and thus the centre is
isomorphic to E(q). We were not able to find a reference for this fact.

Using these elements tV , we can see that the category Oq(GG)-mod is enriched over E(q) (the
hom spaces are E(q)-modules). Equivalently, we have a map from E(q) to endomorphisms of the
identity functor in Oq(GG)-mod given by sending an element of E(q) ∼= (Oq(G))Uqg to its action
on Oq(G)⊗ V given by multiplication on the Oq(G) factor.

2.3.3 Coaction and canonical automorphism. For any representation V of Uqg, we have a
coaction map CV : V → Oq(G)⊗ V defined by

V → V ⊗ V ∗ ⊗ V rV ⊗I−−−→ Oq(G)⊗ V,

where the first map is the canonical coevaluation (creating the second two tensor factors). This
coaction map is a Uqg-module map.

Using the coaction, the category Oq(GG)-mod comes with an automorphism X of the identity
functor. For V ∈ Repq(G), we define XV as the composition

Oq(G)⊗ V I⊗CV−−−→ Oq(G)⊗Oq(G)⊗ V m⊗θV−−−−→ Oq(G)⊗ V, (2)

where m : Oq(G) ⊗ Oq(G) → Oq(G) is the multiplication, and where θV is the balancing
isomorphism (which acts by a power of q on each irreducible representation, see [BK01, § 2.2]).
Since each arrow is a map of Uqg-modules, so is the composite.

Remark 2.3. If we work with O(GG)-mod, this definition also makes sense. In this case, XV is the
automorphism of the trivial vector bundle over G with fibre V , given by acting by g in the fibre
over g.

2.4 Horizontal trace and Oq(G
G

)-mod

One reason why these categories Oq(GG)-mod are important for us is because they arise as
horizontal traces. We now explain this construction. The results in this section seem to be
known to experts, but we were not able to find an adequate reference.

2.4.1 Definition of horizontal trace. Given a skeletally small monoidal category C, we define
its horizontal trace C(S1) to have the some objects as C but with morphisms defined as follows.
Fix two objects A,B in C. We consider pairs (Z, φ) where Z is an object of C and φ is a morphism

φ : A⊗ Z → Z ⊗B

in C.
We define an equivalence relation on these pairs as follows. Suppose that Z,Z ′ are objects

of C, α : Z → Z ′ is a morphism in C, and ψ : A⊗ Z ′→ Z ⊗B is a morphism in C, then we can
form two pairs (Z,ψ ◦ 1⊗ α) and (Z ′, α⊗ 1 ◦ ψ). Under this circumstance, we say (Z,ψ ◦ 1⊗ α)
and (Z ′, α ⊗ 1 ◦ ψ) are related and we consider the equivalence relation generated by these
relations. Then we define the set HomC(S1)(A,B) to be the set of equivalence classes of these
pairs. Composition of morphisms is defined in the natural way.

Remark 2.4. We learned of the definition of horizontal trace from Scott Morrison. This definition
was introduced by Walker [Wal06] under the name ‘annularization’. The name ‘horizontal trace’
appears in the paper [BHLZ17]. Finally, in the paper [BBJ15], the same concept is defined under
the name ‘zeroth Hochschild homology’.
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2.4.2 Monoidal structure. In general the category C(S1) has no monoidal structure.

However, if C is a braided monoidal category with braiding β, then C(S1) has a natural monoidal

structure, where tensor product of objects is the same as in C and tensor product of morphism

is given by

[Z1, φ1]⊗ [Z2, φ2] = [Z1 ⊗ Z2, I ⊗ βB1,Z2 ⊗ I ◦ φ1 ⊗ φ2 ◦ I ⊗ βA2,Z1 ⊗ I]

where [Z1, φ1] ∈ HomC(S1)(A1, B1) and (Z2, φ2) ∈ HomC(S1)(A2, B2).

2.4.3 Semisimple case. If C is semisimple, then we can get a simpler description of

morphisms in C(S1).

Lemma 2.5. Suppose that C is a semisimple abelian category, with simple objects {Vi}i∈I . Then

we have an isomorphism

HomC(S1)(A,B) ∼=
⊕
i∈I

HomC(A⊗ Vi, Vi ⊗B).

Proof. Fix A,B objects of C. First, we define an abelian group structure on HomC(S1)(A,B) as

follows.

Given [Z1, φ1] and [Z2, φ2] in HomC(S1)(A,B), we define

[Z1, φ1] + [Z2, φ2] =

[
Z1 ⊕ Z2,

[
φ1 0
0 φ2

]]
,

where the matrix represents a morphism A ⊗ (Z1 ⊕ Z2) = (A ⊗ Z1) ⊕ (A ⊗ Z2)→ (Z1 ⊗ B) ⊕
(Z2 ⊗B) = (Z1 ⊕ Z2)⊗B. This extends the usual addition of morphisms; if Z1 = Z2 = Z then

the diagonal map Z → Z ⊕ Z gives an equivalence between (Z, φ1) + (Z, φ2) and (Z, φ1 + φ2).

Along with the usual scaling of morphisms, we obtain a C-vector space structure on

HomC(S1)(A,B).

This gives us a map ⊕
i∈I

HomC(A⊗ Vi, Vi ⊗B)→ HomC(S1)(A,B). (3)

On the other hand, suppose that Z = Z1 ⊕ Z2 and [Z, φ] ∈ HomC(S1)(A,B). Then we can

write

φ =

[
φ11 φ12

φ21 φ22

]
=

[
φ11 φ12

0 0

]
+

[
0 0
φ21 φ22

]
.

Consider the inclusion map α : Z1→ Z1 ⊕ Z2. Using this map, we can see that
[
Z,
[
φ11 φ12
0 0

]]
=

[Z1, φ11]. Similarly,
[
Z,
[

0 0
φ21 φ22

]]
= [Z2, φ22]. Thus [Z, φ] = [Z1, φ11] + [Z2, φ22]. Applying this

repeatedly leads to an inverse to (3). 2

When C = Repq(G), then C(S1) is quite familiar. (This result also appears as [BBJ15,

Theorem 4.16].)

Proposition 2.6. We have an equivalence of categories Repq(G)(S1) ∼= Oq(GG)-mod.
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Proof. Let V,W ∈ Repq(G). Then,

HomRepq(G)(S1)(A,B) ∼=
⊕
λ∈Λ+

HomRepq(G)(A⊗ V (λ), V (λ)⊗B)

∼=
⊕
λ∈Λ+

HomRepq(G)(A, V (λ)⊗B ⊗ V (λ)∗)

∼=
⊕
λ∈Λ+

HomRepq(G)(A, V (λ)⊗ V (λ)∗ ⊗B)

∼= HomRepq(G)(A,Oq(G)⊗B)
∼= Hom

Oq(GG )-mod
(Oq(G)⊗A,Oq(G)⊗B).

Here in the third line we use the inverse braiding β−1
V (λ)∗,B and in the last line, we use that

Oq(G)⊗A is free as an Oq(G)-module.

Moreover, these isomorphisms are compatible with composition on both sides. 2

2.4.4 Idempotent completion. Finally, we will need to examine the behaviour of horizontal

trace under idempotent completion.

Proposition 2.7. Let C be a monoidal category and let C be its idempotent completion. Then

the functor C(S1)→ C(S1) is fully faithful.

Proof. By general results, we know that the functor C → C is fully faithful.

Let A,B be objects of C. We would like to show that the map

HomC(S1)(A,B)→ HomC(S1)(A,B)

is an isomorphism.

To show surjectivity, let [Z, φ] be a morphism in C(S1). Then there is an object Y of C and

an isomorphism Y = Z ⊕ Z ′ in C. Then consider ψ : A ⊗ (Z ⊕ Z ′)→ (Z ⊕ Z ′) ⊗ B defined by

the matrix
[
φ 0
0 0

]
; it is a morphism in C. Then [Y, ψ] is a morphism in C(S1) and the image of

[Y, ψ] in HomC(S1)(A,B) will be [Z, φ].

The proof of injectivity is similar. 2

2.5 Action of annular braids

As mentioned above, the procedure of horizontal trace is closely related to the circle or annulus.

In particular, if C is braided monoidal, then the annular braid group acts on tensor products in

C(S1). Let us formulate this fact in a precise fashion in the case of Repq(G).

2.5.1 The annular braid group. Consider the annular braid group ABm (sometimes it is also

called the extended affine braid group). It has generators X1, . . . , Xm and T1, . . . , Tm−1 subject

to the following relations:

(i) TiTj = TjTi if |i− j| > 1 and TiTjTi = TjTiTj if |i− j| = 1;

(ii) TiXj = XjTi if j 6= i, i+ 1;

(iii) TiXiTi = Xi+1 for i = 1, . . . ,m− 1;

(iv) XiXj = XjXi.
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Figure 1. Some generators of AB5.

These can be viewed as braids with m strands lying on an annulus. More precisely ABm =
π1(Am r ∆/Sm), where A is the annulus. The Ti corresponds to strand i crossing over strand
i + 1, while Xi is the braid where the ith strand curls itself once counterclockwise around the
annulus, passing under strands 1, . . . , i− 1 and over strands i+ 1, . . . ,m (from this description
it is clear why XiXj = XjXi).

Another common description of ABm is using generators T0, T1, . . . , Tm−1 and R where the
Ti satisfy the same relations as above while R satisfies RTi = Ti−1R (modulo m). Here R is the
braid where each strand moves to the counterclockwise one position (see Figure 1). From this
description it is clear that Rm = X1 . . . Xm while an easy exercise shows that R = Tm−1 · · ·T1X1.

Given any set S, we can form the groupoid of annular braids labelled by S, ABm(S). This
is a groupoid whose set of objects is Sm with generators

Ti : (s1, . . . , sm)→ (s1, . . . , si+1, si, . . . , sm), Xi : (s1, . . . , sm)→ (s1, . . . , sm)

for all s1, . . . , sm ∈ S. These generators satisfy the same relations as in ABm. In other words,
ABm(S) is the fundamental groupoid of the space (A× S)m\∆/Sm (where ∆ is the pullback of
the usual fat diagonal in Am).

We can also consider the usual braid group Bm (the subgroup generated by the elements Ti)
and the groupoid Bm(S).

2.5.2 Action on Oq(GG)-mod. Since Repq(G) is a braided monoidal category, then we have
a functor Bm(Repq(G))→ Repq(G) where the elements Ti act by the usual braiding of adjacent
tensor factors. This can be extended to the annular braid groupoid as follows.

Now, suppose that we have representations V1, . . . , Vm of Uqg. Then we can form Oq(G) ⊗
V1⊗· · ·⊗Vm. We can braid the representations V1, . . . , Vm using the braiding in Repq(G) which
gives us isomorphisms T1, . . . , Tm−1 satisfying the braid relations.

We define the automorphism Xj by placing the automorphism X (from § 2.3.3) in the jth
position using the monoidal structure defined in § 2.4.2. In other words, Xj is given by the
composition

Oq(G)⊗ V1 ⊗ · · · ⊗ Vm
I⊗βV1⊗···⊗Vj−1,Vj

⊗I
−−−−−−−−−−−−−→ Oq(G)⊗ Vj ⊗ V1 · · ·Vm

X⊗I−−−→ Oq(G)⊗ Vj ⊗ V1 · · ·Vm
I⊗βVj,V1⊗···⊗Vj−1

⊗I
−−−−−−−−−−−−−→ Oq(G)⊗ V1 ⊗ · · · ⊗ Vm.

Because they come from the monoidal structure, X1, . . . , Xm commute. The following result is
due to Lyubashenko and Majid [LM94]. The proof is straightforward.

Proposition 2.8. The above Ti, Xj satisfy the annular braid group relations and thus define a
functor AB(Repq(G))→ Oq(GG)-mod.
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An object of Oq(GG)-mod of the form Oq(G) ⊗ V1 ⊗ · · · ⊗ Vm will be called an object of

length m. As a special case of Proposition 2.8, we see that Zm acts on objects of length m in

Oq(GG)-mod.

2.6 Kostant slice functor

In [BF08], an important role is played by the Kostant slice functor. In their setting of O( g
G)-mod,

they considered the Kostant slice t/W ↪→ g. Pulling back along the Kostant slice gives rise to

a fully faithful functor S : O( g
G)-mod → Zg-mod where Zg is the group scheme of regular

centralizers regarded as a group scheme over t/W .

In our situation, we have a Steinberg slice T/W ↪→ G. As in the Lie algebra case, the image of

this Steinberg slice meets every regular G-orbit once. Moreover, the set Greg of regular elements

of G is dense and its complement has codimension 2. Thus we see that the resulting functor

S : O(GG)-mod→ ZG-mod given by M 7→M ⊗O(G) O(T/W ) is an equivalence, where ZG is the

group scheme of group regular centralizers regarded as a group scheme over T/W . This functor

(as in the work of [BF08]) can and will be used to give a more algebraic description of the

category O(GG)-mod.

Unfortunately, in the quantum group situation we do not seem to have an analogous map

Oq(G)→ E(q) (nor an analog of the group scheme of regular centralizers). However, it should be

possible to construct a version of the Kostant slice functor by relating Oq(GG)-mod to a category

of Harish-Chandra modules and using the work of Sevostyanov [Sev00].

2.7 Minuscule versions

A non-trivial irreducible representation V of G is called minuscule, if all weights of V lie in single

Weyl orbit. Equivalently V (λ) is minuscule if and only if λ is a non-zero minimal element of Λ+

(with respect to the usual partial order on Λ+).

We consider the full subcategory Repmin
q (G) of Repq(G) consisting of tensor products

of minuscule representations. Similarly, we consider Omin
q (GG)-mod to be the subcategory of

Oq(GG)-mod consisting of objects of the form Oq(G)⊗ V for V ∈ Repmin
q (G).

When G = SLn, the minuscule representations coincide with the fundamental representations∧k Cn for k = 1, . . . , n−1. In this case, the idempotent completion of Repmin
q (SLn) is Repq(SLn).

From Propositions 2.6 and 2.7, we deduce the following.

Corollary 2.9. There is an equivalence Repmin
q (SLn)(S1) ∼= Omin

q (SLn
SLn

)-mod.

3. Geometry of affine Grassmannians

3.1 The affine Grassmannian

Let K = C((t)),O = C[[t]] and let Gr = G∨(K)/G∨(O) denote the affine Grassmannian of the

Langlands dual group. See Zhu [Zhu16] for a thorough discussion about affine Grassmannians.

For every weight λ ∈ Λ, there is a point tλ ∈ Gr. For each λ ∈ Λ+, let Grλ = G∨(O)tλ. We

have dimGrλ = 2ρ∨(λ). We have the stratification Gr =
⋃
λ∈Λ+

Grλ. Moreover, given any two

points L1, L2 ∈ Gr, there exists g ∈ G∨(K) such that (gL1, gL2) = (t0, tλ) for a unique dominant

weight λ ∈ Λ+. In this case, we say that L2 is distance λ from L1 and we write d(L1, L2) = λ.

With this definition, Grλ is the set of points of distance λ from t0.

The following well-known result explains the geometric significance of minuscule weights.
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Lemma 3.1. The following are equivalent:

(i) Grλ is projective;

(ii) Grλ is smooth;

(iii) λ is minuscule.

Given a sequence λ = (λ1, . . . , λm) of minuscule dominant weights, we can consider the
variety

Grλ := {(t0 = L0, L1, . . . , Lm) ∈ Grm : d(Li−1, Li) = λi}

which comes with a morphism pλ : Grλ→ Gr given by (L1, . . . , Lm) 7→ Lm. Note that Grλ is an

iterated bundle of Grλi ; there is a obvious map Grλ→ Gr(λ1,...,λm−1) which is a Grλm-bundle.
There is an action of G∨ on Gr by left multiplication. Also there is an action of C× on Gr

by ‘loop rotation’; this comes from the action of C× on O given by s · p(t) = p(st).

3.2 Line bundles on the affine Grassmannian
Recall that the connected components of Gr are labelled by the finite set Λ/Z∆, where ∆ is the
set of roots of G. Each connected component has Picard group Z and we define a line bundle L
on Gr to be the positive generator of the Picard group on each connected component (see for
example [Zhu16, § 2.4]).

Unfortunately, the line bundle L is not always G∨-equivariant. It is however G̃∨-equivariant

(since each connected component is isomorphic to the quotient of
̂̃
G∨ (the affine Kac–Moody

group) by a hyperspecial parahoric subgroup). In fact L carries a G̃∨×C×-equivariant structure

where the action of T̃∨ on the fibre over tµ is given by the weight ι(µ) and the action of C× on
the same fibre over tµ is given by the pairing (µ, µ).

3.3 The equivariant Satake category
Consider the Satake category P (Gr) of perverse sheaves on Gr constructible with respect to the
stratification by G∨(O) orbits.

We will need an equivariant version of this category. Note that we have an action of G∨

on Gr which preserves the G∨(O)-orbits. Using the W -invariant bilinear form, we may identify
HG∨(pt) = O(t∨)W ∼= O(t)W .

Let DG∨(Gr) denote the equivariant derived category of Gr for this action. We consider
DG∨(Gr) with morphisms given by total Ext. Thus the category DG∨(Gr) is enriched over
graded O(t)W -modules.

We have a global section functor

DG∨(Gr)→ H∗G∨(Gr)-mod.

By a theorem of Ginzburg (see [BF08, Lemma 13]), this functor is fully faithful.
Since Grλ is smooth and pλ is semismall, we can consider the perverse sheaf pλ∗CGrλ [2ρ∨

(
∑

k λk)] ∈ P (Gr). It is the tensor product of the objects CGrλk [2ρ∨(λk)] with respect to the
usual monoidal structure on P (Gr). We let Dmin

G∨ (Gr) denote the full subcategory of DG∨(Gr)
consisting of these objects.

3.4 Homology convolution categories
Recall convolution in homology following Chriss and Ginzburg [CG97]. Let I be an index set
and let {Yi}i∈I be a collection of smooth varieties along with proper maps pi : Yi → Y to some
fixed variety Y . Form the fibre products Zij = Yi ×Y Yj .
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We can use this data to define a category hConv(Y ) (this category depends on more than

just Y , but we suppress the rest of the data in the notation). The objects in hConv(Y ) consist

of the elements of the set I. The morphisms are defined as

HomhConv(Y )(i, j) = H∗(Zij)

where H∗(Zij) denotes the total Borel–Moore homology of Zij (with coefficients in C). The

composition operation in hConv(Y ) is defined by the convolution product

H∗(Zij)⊗H∗(Zjk)→ H∗(Zik)

which is given by the formula

c1 ∗ c2 = (π13)∗(π
∗
12(c1) ∩ π∗23(c2)),

where ‘∩’ denotes the intersection product (with support), relative to the ambient manifold

Yi × Yj × Yk and π12 : Yi × Yj × Yk → Yi × Yj , etc. For more details about this construction

see [CG97, § 2.7].

The following result of Chriss and Ginzburg shows the importance of these categories.

Consider the derived category of constructible sheaves on Y , Dc(Y ), which we regard as a

category enriched over graded vector spaces by taking total Ext.

Theorem 3.2 [CG97, Theorem 8.6.7]. The category hConv(Y ) is equivalent to the full

subcategory of Dc(Y ) whose objects are pi∗CYi .

If the varieties Yi, Y all carry compatible actions of some group H, we may consider the

corresponding equivariant category hConvH(Y ) where the morphisms are defined by equivariant

homology.

We now apply this framework to obtain the category hConv(Gr) where the base variety is

Gr and the mapping varieties are given by pλ : Grλ → Gr, where λ ranges over all sequence of

minuscule dominant weights. The category hConv(Gr) was first considered by the second author

with Fontaine and Kuperberg in [FKK13]. The fibre products Z(λ, µ) appearing in hConv(Gr)

are the ‘Steinberg-like’ varieties

Z(λ, µ) = {(L1, . . . , Lm), (L′1, . . . , L
′
m′) ∈ Grλ ×Grµ : Lm = L′m′}.

Using the action of G∨ we may also define hConvG
∨
(Gr). Applying Theorem 3.2 we deduce the

following.

Theorem 3.3. We have an equivalence

Dmin
G∨ (Gr) ∼= hConvG

∨
(Gr).

In other words, we can model Dmin
G∨ (Gr) using this homology convolution category. This

motivates us to introduce a K-theory convolution category.
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3.5 The category KConv(Gr)
The convolution formalism in homology from § 3.4 can be repeated in K-theory. More precisely,
given a collection Yi→ Y as above, the objects in KConv(Y ) are still indexed by the set I but
the morphisms are now defined as

HomKConv(Y )(i, j) = K(Zij)

where K(Zij) denotes the complexified Grothendieck group of coherent sheaves on Zij . The
composition operation in KConv(Y ) is defined by a similar formula, namely

K(Zij)⊗K(Zjk)→ K(Zik)

[F1]⊗ [F2] 7→ [π13∗(π
∗
12(F1)⊗ π∗23(F2))].

For more details about this construction see [CG97, § 5.2]. As before, given a compatible action
of a group H we can work with equivariant K-theory KH(·) to define the category KConvH(Y ).

Applying this construction to the collection Grλ → Gr, we obtain the categories

KConvG̃
∨
(Gr) and KConvG̃

∨×C×(Gr) where G̃∨ acts as before and C× acts by loop rotation.

(Here we are using G̃∨ rather than G∨, since our line bundles are only G̃∨-equivariant.) In these
categories, the objects are sequences (λ1, . . . , λm) (we will say that this object has length m).

On the variety Grλ we have m line bundles L1, . . . ,Lm, where Lk is defined as p∗kL⊗p∗k−1L∨,

where pk : Grλ→ Gr is given by pk(L1, . . . , Lm) = Lk. For i = 1, . . . ,m we define

Xi ∈ End
KConvG̃

∨×C× (λ) = KG̃∨×C×(Z(λ, λ))

as Xi := ∆∗[Li] where ∆ : Grλ→ Z(λ, λ) is the diagonal inclusion. These Xi are invertible and
so they define a map Zm→ End

KConvG̃
∨×C× (λ). Thus, we see that Zm acts on objects of length

m in KConvG̃
∨
(Gr) and KConvG̃

∨×C×(Gr).

3.6 Main conjecture
Motivated by Theorem 3.3 and the discussion in the introduction, we now formulate the following
main conjecture.

Conjecture 3.4. We have equivalences

Omin(GG)-mod⊗EE∨ ∼= KConvG̃
∨
(Gr), (4)

Omin
q (GG)-mod⊗EE∨ ∼= KConvG̃

∨×C×(Gr)⊗C[q±] C(q) (5)

of E∨-mod and E∨(q)-mod enriched categories respectively.
Moreover, these equivalences should be compatible with the actions of Zm on objects of

length m on each side of the equivalence.

By an equivalence of E∨-mod enriched categories, we mean that the map on Hom spaces
should be an E∨-module morphism map. On the left-hand side the E∨-module structure comes
from tensoring (and the E-module structure was explained in § 2.6), while on the right-hand side

it comes from KG̃∨(pt) = E∨.
The compatibility between the actions of Zm should be viewed as a partial substitute for the

commutative diagram appearing in [BF08] which involves the Kostant slice functor. The action
of Zm on the left-hand side is defined in § 2.5 and the action of Zm on the right-hand side is
defined in § 3.5.

Remark 3.5. The base change from E to E∨ on the left-hand side seems to be necessary to get
the endomorphisms of the trivial objects to match. Note that in the simply laced case, we have
an isomorphism E ∼= E∨, so the base change is unnecessary.
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4. Spiders and annular spiders

4.1 Some SLn notation
The remainder of the paper will be devoted to the proof of Conjecture 3.4 for the case G = SLn.

The weight lattice of SLn is Λ = Zn/Z(1, . . . , 1) and Λ+ is the subset consisting of those
λ = (a1, . . . , an) such that a1 > · · · > an. The minuscule dominant weights are ωk = (1, . . . , 1, 0,
. . . , 0), for k = 1, . . . , n− 1. The corresponding representation of Uqsln is V (ωk) =

∧k
qCnq .

A sequence of minuscule dominant weights λ = (λ1, . . . , λm) will be encoded by a sequence

k = (k1, . . . , km), where λj = ωkj . Note that G∨ = PGLn and G̃∨ = SLn. We write

E = (C[t±1 , . . . , t
±
n ]/(t1 . . . tn − 1))Sn = C[e1, . . . , en−1],

where ek is the usual kth elementary symmetric function.

4.2 The spider
Our main tool for proving the conjecture in the SLn case will be a combinatorially defined
category called the annular spider.

We begin by recalling the definition of the spider category Spn[q±] from [CKM14]. Spn[q±]
has as objects sequences k in {1±, . . . , (n − 1)±}, and as morphisms C[q±]-linear combinations
of oriented planar graphs by the following four types of vertices:

with all labels drawn from the set {1, . . . , n − 1}. The third and fourth graphs depict bivalent
vertices, called ‘tags’, which are not rotationally symmetric, meaning that the tag provides
a distinguished side. The bottom boundary of any planar graph in Hom(k, l) is k with the
strand oriented up for each positive entry, and the strand oriented down for each negative entry.
Similarly, the top boundary is determined by l in the same way.

On these diagrams, we impose the following relations, together with the mirror reflections
and the arrow reversals of these.

(6)

(7)

(8)
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(9)

(10)

(11)

(12)

(13)

Remark 4.1. In the relations above we allow strands to be labelled by 0 and n. This means that

0-strands should be deleted and n-strands replaced by tags. On the other hand, any diagram

containing a strand whose label is less than 0 or greater than n should be interpreted as the 0

morphism.

The category Spn[q±] is a monoidal category with tensor product given on objects by

concatenation of sequences and on morphisms by concatenation in the vertical direction. It also

has a natural pivotal structure by the usual graphical calculus. We will denote by Spn(q) the

same category but over C(q) rather than C[q±]. We also denote by Spn the category specialized

to q = 1.
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Figure 2. An example of an annular web with source (3, 2, 5,−4) and target (1, 2, 3,−4, 3, 1).

It will be useful for us to add crossings to the spider. As in [CKM14], we define a crossing of
a strand labelled k with a strand labelled l to be a sum of webs.

(14)

This defines a functor Bm({1, . . . , n})→ Spn which we can regard as giving a braiding on the
category Spn.

4.3 The annular spider
We now define the annular spider ASpn[q±]. The objects are the same as in Spn[q±]. For the
morphisms, we consider webs with the same kinds of vertices, except that the webs are now
embedded in an annulus A = S1 × [0, 1]. We consider the same local generating relations as in
Spn[q±]. The inner boundary of the annulus is regarded as the source of the morphism and the
outer boundary is the target. Let ∗ ∈ S1 denote the bottom of the circle. We do not allow strands
to start or end at ∗. Given a web w, its source (respectively target) is found by reading the inner
(respectively outer) circle clockwise starting at the ∗ (see Figure 2 for an example).

As before, we denote by ASpn(q) the same category but with the space of morphisms defined
over C(q) rather than C[q±]. We can also consider the q = 1 version of ASpn[q±], which we
denote ASpn.

4.4 The functor Γ
We begin by defining a functor

Γ : Spn(q)→ Repmin
q (SLn)

following [CKM14] (this functor was called Γn in [CKM14]). At the level of objects we take

(kε11 , . . . , k
εm
m ) 7→

( k1∧
q

Cnq
)ε1
⊗ · · · ⊗

(km∧
q

Cnq
)εm

(where εi ∈ {+,−}).
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The morphisms are mapped as

(15)

where Mk,l :
∧k
q (Cnq )⊗

∧l
q(Cnq )→

∧k+l
q (Cnq ) is defined by

Mk,l(xS ⊗ xT ) = xS ∧q xT =

{
(−q)`(S,T )xS∪T if S ∩ T = ∅,

0 otherwise,

while M ′k,l :
∧k+l
q (Cnq )→

∧k
q (Cnq )⊗

∧l
q(Cnq ) is defined by

M ′k,l(xS) = (−1)kl
∑
T⊂S

(−q)−`(SrT,T )xT ⊗ xSrT .

Here, if S = {k1, . . . , ka} ⊂ {1, . . . , n}, with k1 > · · ·> ka, we write xS = xk1∧q · · ·∧qxka ∈
∧a
q(Cnq )

and likewise for xT . Moreover, if S, T are disjoint subsets of {1, . . . , n} we define

`(S, T ) = |{(i, j) : i ∈ S, j ∈ T and i < j}|.

The maps in (15) then force upon us the definition for tags. The main result from [CKM14] can
be stated as follows.

Theorem 4.2. The functor Γ : Spn(q) → Repmin
q (SLn) is an equivalence of braided monoidal

categories.

Remark 4.3. The argument in [CKM14] implies that the functor Γ is also an equivalence when
q = 1.

4.5 Horizontal trace and the annular spider category
We will now identify the annular spider category as the horizontal trace of the usual spider
category. We define a functor Spn(q)(S1)→ ASpn(q) as follows. On objects it is the identity.

For morphisms, let k, l be two objects in Spn(q). Suppose that we have a morphism [r, φ] in
Spn(q)(S1), where φ is a web with bottom boundary k t r and top boundary r t l. From (r, φ)
we can get a morphism (r, φ) in ASpn(q) by sending r around the circle as follows.

Proposition 4.4. For any two objects k, l, this gives an isomorphism

HomSpn(q)(S1)(k, l)
∼−→ HomASpn(q)(k, l).

This implies ASpn(q) ∼= Spn(q)(S1).
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Figure 3. An annular web ψ and its unfolding ψ′. In this example k = (3, 2, 5, 4−), l = (1, 2, 3,
4−, 3, 1) and r = (3, 1).

Proof. First we check that the map is well defined. Suppose that we have a morphism α : r→ r′

and a morphism ψ : k t r′→ r t l. Then we need to know that (r, ψ ◦ I t α) and (r′, α t I ◦ ψ)
give rise to the same annular web. This follows since the following two annular webs are isotopic.

Let k, l be objects of ASpn(q). Suppose that we have an annular web ψ which gives a
morphism between k and l in ASpn(q). Draw a cut line from the inner boundary to the outer
boundary (connecting the bottoms) and let r be the labels on the strands cutting this line. Then
unfold ψ to give a web ψ′ with bottom boundary k t r and top boundary r t l (see Figure 3). It
is easy to see that this map ψ 7→ ψ′ provides an inverse to the above construction and thus the
map

HomSpn(q)(S1)(k, l)→ HomASpn(q)(k, l)

is an isomorphism. 2

Because Spn(q) is a braided monoidal category, Spn(q)(S1) carries a monoidal structure
and thus ASpn(q) acquires a monoidal structure. Diagrammatically, the tensor product of two
morphisms φ1 and φ2 is given by placing the source and target of φ1 to the left of those of φ2

and having the strands of φ1 cross over those of φ2.

Corollary 4.5. The functor Γ induces an equivalence

AΓ : ASpn(q)→ Omin
q (SLn

SLn
)-mod.
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Figure 4. X1 and its unfolded version.

Proof. By Proposition 4.4 and Theorem 4.2, we have

ASpn(q) ∼= Spn(q)(S1) ∼= Repmin
q (SLn)(S1).

On the other hand, Corollary 2.9 gives an equivalence between Repmin
q (SLn)(S1) and

Omin
q (SLn

SLn
)-mod. 2

Remark 4.6. Just as Theorem 4.2 holds at q = 1, so does Corollary 4.5.

4.6 Action of annular braids and loops
Suppose we have an annular braid with strands labelled from 1, . . . , n−1. Since we have crossings
in ASpn(q), we can interpret this annular braid as a morphism in ASpn(q). Thus we get a functor

ABm({1, . . . , n− 1})→ ASpn(q).

Proposition 4.7. The functor ABm({1, . . . , n− 1})→ Omin
q (SLn

SLn
)-mod defined in § 2.5 factors

as
ABm({1, . . . , n− 1})→ ASpn(q)

AΓ−−→ Omin
q (SLn

SLn
)-mod

up to a factor of q as in Remark 4.8.

Proof. Since annular braids are generated by the Ti and X1, it suffices to check the result on
these generators. For Ti the result is proved in [CKM14, Corollary 6.2.3].

Remark 4.8. Unfortunately this is not entirely correct as the two images of Ti actually differ by
a factor of q. More precisely, the two Ti acting on ∧k(Cn)⊗∧l(Cn) differ by a factor of qkl/n. This
is because of the usual conventions for defining the braiding in Repq(G). We chose to overlook
this small discrepancy rather than adding this factor to the definition in (14) which would also
mean having to work over C(q1/n) throughout.

For X1, we consider some object k = (k1, . . . , km) and then we use the construction from the
proof of Proposition 4.4 to unfold X1 (see Figure 4) and produce a morphism kt{k1}→ {k1}tk.

Applying Γ we get the map

V ⊗W ⊗ V
I⊗β−1

W,V−−−−−→ V ⊗ V ⊗W,

where V =
∧k1
q (Cnq ) and W =

∧k2
q (Cnq )⊗ · · · ⊗

∧km
q (Cnq ).
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If we apply the identification between Repq(SLn) and Omin
q (SLn

SLn
)-mod given by

Proposition 2.6, we see that this map corresponds to the map in Omin
q (SLn

SLn
)-mod given by

Oq(SLn)⊗ V ⊗W→ Oq(SLn)⊗ V ⊗W ⊗ V ⊗ V ∗

β−1
V,W−−−→ Oq(SLn)⊗ V ⊗ V ⊗W ⊗ V ∗

β−1
V ∗,V⊗W−−−−−−→ Oq(SLn)⊗ V ⊗ V ∗ ⊗ V ⊗W → Oq(SLn)⊗ V ⊗W

which is the same as the map X1 defined in § 2.5, because the composition

C(q)→ V ⊗ V ∗
β−1
V ∗,V−−−−→ V ∗ ⊗ V

agrees with the composition

C(q)→ V ∗ ⊗ V I⊗θV−−−→ V ∗ ⊗ V. 2

4.7 The action of E
One can define a map E[q±]→ EndASpn[q±](k) by taking ek to a counterclockwise loop labelled
k passing over all the strands.

Such maps commute with all morphisms in ASpn[q±] and hence give a map E[q±] →
EndASpn[q±](id) to the endomorphisms of the identity functor.

On the other hand, by the construction in § 2.3.2, we have a map

E(q)→ End
Omin
q (

SLn
SLn

)-mod
(id).

By a similar argument as in the proof of Proposition 4.7, we deduce the following.

Proposition 4.9. The composition

E(q)→ EndASpn(q)(id)
AΓ−−→ End

Omin
q (

SLn
SLn

)-mod
(id)

equals the map defined in § 2.3.2. In other words if we have a counterclockwise loop labelled k,
then we get the morphism Oq(SLn)⊗ V → Oq(SLn)⊗ V given by left multiplication by ek.
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5. Quantum loop algebras and annular spiders

It turns out that ASpn[q±] is closely related to quantum loop algebras of glm for varying m

(a similar relationship between Spn[q±] and usual quantum glm was studied in [CKM14]).

5.1 The quantum loop algebra

We first recall the integral, idempotent form U̇[q±]Lglm of the quantum loop algebra of glm. This

is a category whose objects are indexed by k = (k1, . . . , km) ∈ Zm. For i = 1, . . . ,m−1 we denote

αi = (0, . . . , 1,−1, . . . , 0) where the 1 is in position i. Moreover, we denote α0 = (−1, 0, . . . , 0, 1).

As usual, we will write 1k for the identity morphism of k. The morphisms in U̇[q±]Lglm are

further generated over C[q±] by E
(s)
i , F

(s)
i , for i = 0, . . . ,m − 1, s ∈ N and by R. These satisfy

the following relations:

(i) 1k+sαiE
(s)
i = 1k+sαiE

(s)
i 1k = E

(s)
i 1k and 1kF

(s)
i = 1kF

(s)
i 1k+sαi = F

(s)
i 1k+sαi ;

(ii) R1k = 1r·kR where r · (k1, . . . , km) = (km, k1, . . . , km−1) is ‘rotation’ of the weights;

(iii) [E
(s)
i , F

(t)
i ]1k =

∑
j>0

[
〈k,αi〉−t+s

j

]
F

(t−j)
i E

(s−j)
i 1k where 〈·, ·〉 is the standard inner product

(here by convention F (r) = E(r) = 0 if r < 0, so this is actually a finite sum);

(iv) [E
(s)
i , F

(t)
j ] = 0 if i 6= j;

(v) if |i−j| = 1 (modulo m) then EiEjEi = E
(2)
i Ej+EjE

(2)
i and similarly where the generators

Ei are replaced by the generators Fi;

(vi) if |i− j| > 1 (modulo m) then [E
(r)
i , E

(s)
j ] = 0 = [F

(r)
i , F

(s)
j ];

(vii) RE
(s)
i = E

(s)
i+1R (modulo m) and similarly RF

(s)
i = F

(s)
i+1R (modulo m).

Remark 5.1. The above definition of U̇[q±]Lglm is the integral, idempotent form of [Gre99,

Definition 3.1.1]. Sometimes a slightly smaller algebra is defined without using the R generator.

For a comparison of the two definitions, see [DG07, § 1.4].

We will denote by (U̇[q±]Lglm)n the quotient of U̇[q±]Lglm obtained by killing any object

not of the form (k1, . . . , km) with 0 6 ki 6 n. We will also denote by U̇[q±]glm the subcategory

generated by Ei and Fi for i = 1, . . . ,m− 1 and by (U̇[q±]glm)n the corresponding quotient.

The category (U̇[q±]Lglm)n (or more precisely the direct sum of all Hom spaces in this

category) is a special case of an affine generalized q-Schur algebra (or Beilinson–Lusztig–

MacPherson (BLM) algebra), as defined in [McG07, § 6.1]. As explained by McGerty [McG07,

Proposition 6.4], the following result is a consequence of the work of Beck and Nakajima [BN04].

Lemma 5.2. All Hom sets in (U̇[q±]Lglm)n are free over C[q±].

5.2 The braiding functor

Like the braiding structure (14) in Spn we can define a functor Bm({0, . . . , n})→ (U̇[q±]glm)n as

follows (following [Lus93, 5.2.1]). On objects it takes k 7→ k. On morphisms it takes

Ti1k 7→ (−1)kiki+1(−q)ki
∑
a,b>0

b−a=ki−ki+1

(−q)−bE(a)
i F

(b)
i 1k. (16)

298

https://doi.org/10.1112/S0010437X17007564 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007564


Quantum K-theoretic geometric Satake: the SLn case

Remark 5.3. If ki = ki+1 = 1, the formula for the braiding simplifies to give

Ti1k 7→ q1k − EiFi1k.

Lemma 5.4. For i, j ∈ {1, . . . ,m− 1} we have, inside (U̇[q±]glm)n, TjE
(s)
i = E

(s)
i Tj if |i− j| > 1

and TiTjE
(s)
i = E

(s)
j TiTj if |i− j| = 1, where the definition of the elements Ti are given by (16).

Proof. This follows from [Lus93, § 39.2.4] (see also [CKM14, Lemma 6.1.3]). 2

5.3 Representations of (U̇[q±]Lglm)n

The description above gives U̇[q±]Lglm in its Kac–Moody form rather than its more common
loop form. In the latter form, one also considers generators Ei ⊗ tr, Fi ⊗ tr, for r ∈ Z, but no E0

or F0.
The advantage of the Kac–Moody presentation of U̇[q±]Lglm is that it is more closely

related to the annular spider category ASpn. However, we will need to define representations of
(U̇[q±]Lglm)n which are more naturally defined in the loop presentation. The following technical
lemma tells us how to deal with this issue. It shows that it suffices to define the functor on
(U̇[q±]glm)n together with a compatible functor from the annular braid groupoid.

Lemma 5.5. Let C be any C-linear category.
Suppose you have a C-linear functor φ : (U̇[q±]glm)n→ C and a functor β :ABm({0, . . . , n})

→ C satisfying the following:

(i) β(Ti) = φ(Ti) for all i = 1, . . . ,m−1 where in the case of φ(Ti) we regard Ti as a morphism
in (U̇[q±]glm)n via (16);

(ii) β(X1) commutes with φ(E
(s)
i ) and φ(F

(s)
i ) for i = 2, . . . ,m− 1;

(iii) β(X1 . . . Xm) commutes with everything in the image of φ.

Then φ and β extend to a C-linear functor Φ : (U̇[q±]Lglm)n→ C.

Proof. Since φ already tells us where to map E
(s)
i , F

(s)
i , for i = 1, . . . ,m − 1 and all s ∈ N, we

only need to say where E
(s)
0 , F

(s)
0 and R are mapped. We define

Φ(R1k) := β(X1T1 · · ·Tm−11k)

and then Φ(E
(s)
0 ) := Φ(R)Φ(E

(s)
m−1)Φ(R−1) and similarly for F

(s)
0 .

Now we need to show that Φ(R)Φ(E
(s)
i ) = Φ(E

(s)
i+1)Φ(R) holds (the analogous results for the

generators Fi follow similarly). For i = 1, . . . ,m− 2, we have

Φ(R)Φ(E
(s)
i ) = β(X1)Φ(T1 · · ·Tm−1E

(s)
i )

= β(X1)Φ(E
(s)
i+1T1 · · ·Tm−1)

= Φ(E
(s)
i+1)β(X1)β(T1 · · ·Tm−1)

= Φ(E
(s)
i+1)Φ(R), (17)

where the second equality follows using Lemma 5.4 repeatedly, while the third follows by
condition (i).

Now, we check the cases m = 0,m − 1. The case i = m − 1 holds by definition. For the

case i = 0, we must show that Φ(R)Φ(E
(s)
0 ) = Φ(E

(s)
1 )Φ(R). This follows by writing Φ(E

(s)
0 ) =

Φ(R)Φ(E
(s)
m−1)Φ(R−1) and then using (17) repeatedly, together with the fact that Φ(R)m =

Φ(Rm) = β(X1 . . . Xm) commutes with everything (condition (iii)). This completes the proof. 2
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5.4 Embeddings

Observe that we have 2(m+1) faithful functors (U̇[q±]Lglm)n→ (U̇[q±]Lglm+1)n, given by adding
either a 0 or an n in some slot. For concreteness let us describe the functor of adding a 0 at the
end. On objects it is given by (k1, . . . , km) 7→ (k1, . . . , km, 0). On morphisms it is given by

R 7→ R,

E
(s)
i 7→ E

(s)
i and F

(s)
i 7→ F

(s)
i if i 6= 0,

E
(s)
0 7→ E(s)

m E
(s)
0 and F

(s)
0 7→ F

(s)
0 F (s)

m .

Proposition 5.6. The functor (U̇[q±]Lglm)n→ (U̇[q±]Lglm+1)n is faithful.

Proof. For the purposes of this proof, we will use (U[q±]Lglm)n to denote the ‘algebra version’

of the category (U̇[q±]Lglm)n (i.e. the algebra obtained as the direct sum of all Hom spaces
in the category). Then we must prove that the (non-unital) map of algebras (U[q±]Lglm)n →
(U[q±]Lglm+1)n is injective.

For any λ = (λ1, . . . , λm) with λ1 > · · · > λm, let V (λ) denote the extremal weight module
for U[q±]Lglm. Let Pn,m = {(λ1, . . . , λm) : n > λ1 · · · > λm > 0}. By Proposition 6.4 of [McG07],
we know that (U[q±]Lglm)n is the image of U[q±]Lglm inside

⊕
λ∈Pn,m EndV (λ).

If λ ∈ Pn,m, then we can add a 0 to this sequence to produce (λ, 0) ∈ Pn,m+1. By the lemma
below, the restriction of V (λ, 0) to U[q±]Lglm contains V (λ). Thus the composite map

(U[q±]Lglm)n→ (U[q±]Lglm+1)n→
⊕

λ∈Pn,m

End(V (λ, 0))

is injective. Thus, (U[q±]Lglm)n→ (U[q±]Lglm+1)n is injective as desired. 2

Lemma 5.7. Let λ ∈ Pn,m and let vλ,0 be the generating vector of V (λ, 0). Then vλ,0 generates

V (λ) as a U̇[q±]Lglm-module.

Proof. Let us write λ =
∑m

i=1wiωi where ωi = (1, . . . , 1, 0, . . . , 0) has length m. By [BN04,
Corollary 4.15], we know that there is an injective map V (λ, 0)→

⊗
i∈I V (ωi, 0)⊗wi taking vλ,0

to the tensor products ⊗v⊗wiωi,0
of the generating vectors.

We also know that V (ωi, 0) is isomorphic to
∧i
qCm+1 ⊗ C[t, t−1]. Thus, upon restriction to

U̇[q±]Lglm it is easy to see that the highest weight vector of V (ωi, 0) generates a copy of V (ωi).

Thus, we see that as a U̇[q±]Lglm-module, vλ,0 generates the same module as does ⊗v⊗wiωi
inside ⊗V (ωi)

⊗wi and hence the lemma follows. 2

5.5 From quantum loop algebras to annular spiders

In [CKM14] we studied the spider category Spn[q±] by defining a functor Ψm : (U̇[q±]glm)n →
Spn[q±] for each m. In exactly the same way one can define a functor

AΨm : (U̇[q±]Lglm)n→ ASpn[q±].

More precisely, on objects it takes k to k where k is the sequence obtained from k by deleting
all 0, n. On morphisms we define AΨm by forming ‘ladder-like’ webs, as in [CKM14], the only

difference being that E
(s)
0 , F

(s)
0 are sent to webs which ‘wrap-around’ the annulus crossing the
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cut line, as illustrated in (18) with E
(s)
0 . Note that this functor was also defined in [Que15, § 2.3].

(18)

Theorem 5.8. The functor AΨm : (U̇[q±]Lglm)n→ ASpn[q±] is faithful.
Moreover, suppose that k, k′ are two sequences drawn from {1, . . . , n−1}. Given a morphism

w ∈ HomASpn[q±](k, k
′), there exists some m and a way to add 0s and ns to k, k′ to form l, l′ of

length m such that w lies in the image of

AΨm : Hom(U̇[q±]Lglm)n(l, l′)→ HomASpn[q±](k, k
′).

Proof. We begin with the surjectivity part of the statement. Note that is suffices to prove this
for the case when w is an annular web (rather than a linear combination). If we have any annular
web w between two objects k, k′, then we can turn w into a ladder-like web as follows.

We will call the radial coordinate on the annulus, time. Let t1, . . . , tp−1 be the times at which
w crosses the cut line. Then we can write w as the composition w = wpR

± · · ·R±w2R
±w1 where

wi denotes the part of w between times ti−1 and ti (we write t0 for the inside and tp for the
outside). In this composition, we see R if the cut line is cut with a right-pointing strand and
R−1 if the cut line is cut with a left-pointing strand. Each web wi is a web which does not cross
the cut line and thus is a planar web.

In order to apply [CKM14, Theorem 5.3.1] we need each web wi to have their starting and
ending strands pointing outwards (up in the terminology of [CKM14]). To achieve this, we can
insert pairs of cancelling tags everywhere we have downward pointing strands at some time ti.
Abusing notation slightly, we continue to use w1, . . . , wp to denote the webs obtained by this
procedure.

Now, for each i we can apply [CKM14, Theorem 5.3.1] to find mi and an element ai such
that Ψmi(ai) = wi. Moreover, note that

Hom((k1, . . . , km), (k2, . . . , km, k1)) 3 R = AΨm+1(E
(k1)
0 ),

where E
(k1)
0 ∈ Hom((k1, . . . , km, 0), (0, k2, . . . , km, k1)) and similarly for R−1. Combining all this

together (by inserting as many 0s and ns as necessary) we get the desired statement.
It remains to show that AΨm is faithful. For this, let us note that both categories (U̇[q±]Lglm)n

and ASpn[q±] are defined by generators and relations. Let l, l′ be two objects in (U̇[q±]Lglm)n

and let k, k′ denote the result of removing all 0, n from them.
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Let F(U̇[q±]Lglm)n(l, l′) denote the space of morphisms between these two objects in the free

category with the same generators as (U̇[q±]Lglm)n and let R(U̇[q±]Lglm)n(l, l′) denote the relations,

so that

Hom(U̇[q±]Lglm)n(l, l′) = F(U̇[q±]Lglm)n(l, l′)/R(U̇[q±]Lglm)n(l, l′).

Similarly, we can define FASpn[q±](k, k
′) and RASpn[q±](k, k

′) and we have

HomASpn[q±](k, k
′) = FASpn[q±](k, k

′)/RASpn[q±](k, k
′).

Now, suppose that a ∈ Hom(U̇[q±]Lglm)n(l, l′) and AΨm(a) = 0 in HomASpn[q±](k, k
′). This

means that we have an element a ∈ F(U̇[q±]Lglm)n(l, l′) and that AΨm(a) ∈ RASpn[q±](k, k
′). This

means that a can be written as a linear combination of compositions of a generating relation in
ASpn[q±] with elements of ASpn[q±].

However, by inspection, we see that each generating relation (given in § 4.2) in ASpn[q±]
comes from a relation in some U̇[q±]Lglp. This observation, combined with the surjectivity
proven above, shows that there exists M and sequences L,L′ obtained by adding 0, n to k, k′,
and b ∈ R(U̇[q±]LglM )n(L,L′) such that AΨM (b) = AΨm(a). This means that a becomes 0 in

Hom(U̇[q±]LglM )n(L,L′). However, by Proposition 5.6, the functor (U̇[q±]Lglm)n → (U̇[q±]LglM )n

is faithful, which means that a = 0 in Hom(U̇[q±]Lglm)n(l, l′) as desired. 2

Remark 5.9. Theorem 5.8 explains that one should think of the category ASpn[q±] as the
directed limit as m→∞

(U̇[q±]Lgl∞)n := lim−→(U̇[q±]Lglm)n

via the functors discussed in § 5.4. One could make this precise but we do not actually require
this stronger result.

6. From the annular spider to KConv

In this section we define a functor

Φm : (U̇[q±]Lglm)n→ KConvSLn×C×(Gr)

which follows our earlier constructions from [CKL10, Cau05, CK17] but descended from derived
categories to K-theory. This in turn induces a functor

Φ : ASpn[q±]→ KConvSLn×C×(Gr)

which we will prove is an equivalence after tensoring with C(q).

6.1 The varieties
We work with the lattice description of Gr = GrP GLn. This means that we identify Gr with
the space of O-lattices in the vector space Kn (where O = C[[z]] and K = C((z))) modulo the
equivalence relation of homothety, i.e. L1 ∼ L2 if and only if zkL1 = L2 for some k ∈ Z.

Note that under this identification, if λ ∈ Λ+ ⊂ Zn/Z(1, . . . , 1), then we have

Grλ = {L ∈ Gr : On = L0 ⊂ L and z|L/L0
has Jordan type λ},
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where we regard z|L/L0
as a nilpotent linear operator on a finite-dimensional vector space and

consider its Jordan type to be the length of blocks in its Jordan form. (Note that λ is only
defined up to shift by a constant sequence; this matches the fact that L is only defined up to
homothety.)

As before, we encode of sequence of minuscule dominant weights λ by a sequence k = (k1,
. . . , km) with 1 6 ki 6 n− 1. Let us introduce the notation Y (k) := Grλ. The varieties Y (k) can
be described explicitly as sequences of lattices (not considered up to homothety).

Lemma 6.1. We have

Y (k) = {(L1, . . . , Lm) : Li ⊂ Kn, On = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lm,
dim(Li/Li−1) = ki and zLi ⊂ Li−1 } .

Moreover, the projection map Y (k)→ Gr is given by sending (L1, . . . , Lm) to [Lm].

For convenience of notation, we also allow sequences k containing 0, n. We have a canonical
identification Y (k) = Y (k) where k is defined by removing all 0, n.

Assume that k = (k1, . . . , km) and k′ = (k′1, . . . , k
′
m′) are two sequences with the same sum,

k1 + · · ·+ km = k′1 + · · ·+ k′m′ . From the lemma, we reach a simple description of the varieties

Z(k, k′) := {(L1, . . . , Lm), (L′1, . . . , L
′
m′) ∈ Y (k)× Y (k′) : Lm = L′m′}.

We consider the action of SLn×C× on Kn = Cn ⊗K where SLn acts on Cn and C× acts on
K by s · zk = skzk. This gives us an action of SLn×C× on Gr and on each Y (k).

Remark 6.2. Given a sheaf F we denote by F{1} the same sheaf but shifted equivariantly with
respect to the C× action. At the level of K-theory we use the convention that {1} is multiplication
by −q−1. This matches our previous conventions from [CKL10, Cau05].

6.2 The action of (U̇[q±]glm)n

We first define a functor

φm : (U̇[q±]glm)n→ KConvSLn×C×(Gr).

On objects φm takes k to k where k is obtained from k by removing all 0, n. To define it on
morphisms, we must define maps

φm : Hom(U̇[q±]glm)n(k, k′)→ KSLn×C×(Z(k, k′))

for every k, k′. Since (U̇[q±]glm)n is defined by generators and relations, we will define φm on the

generators E
(s)
i and F

(s)
i for i = 1, . . . ,m− 1. To do this we use the varieties

W s
i (k) = {(L•, L′•) ∈ Y (k)× Y (k − sαi) : Lj = L′j if j 6= i, L′i ⊂ Li}.

Note that these varieties are actually supported on Z(k, k − sαi). Then we define

φm(1kE
(s)
i ) = (−q)−ski+1 [OW s

i (k) ⊗ det(L′i/Li)
ki+1−ki+s], (19)

φm(F
(s)
i 1k) = (−q)−s(ki−s)[OW s

i (k) ⊗ det(Li+1/L
′
i)
−s ⊗ det(Li/Li−1)s], (20)

where the prime denotes the corresponding bundle pulled back from the second factor. (These
kernels live in KSLn×C×(Z(k − sαi, k)) and KSLn×C×(Z(k, k − sαi)) respectively.) It follows
from the calculations in [CKL10, Cau05] that these satisfy the relations of U̇[q±]glm (see for
instance [Cau05, Theorem 8.2]).
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Remark 6.3. These definitions differ from those in [CKL10, Cau05, CK17] in two ways. First we
have reversed the roles of Ei, Fi and negated weights (this procedure actually defines an involution
of (U̇[q±]glm)n). We do this in order to use the standard definition of αi = (0, . . . , 1,−1, . . . , 0) and
thereby match the previous sections of this paper. Second, the choice of line bundles matches that
in [CKL10] but not [Cau05, CK17]. The difference is just conjugation by a line bundle (denoted
by ρ in [CK17]). The reason for choosing the line bundles from [CKL10] rather than [Cau05,
CK17] is that they make the diagrams in § 9 commute on the nose without having to conjugate
by line bundles.

6.3 Extending to an action of (U̇[q±]Lglm)n

To extend the action above we first define an action of the annular braid group on
KConvSLn×C×(Gr) and then use Lemma 5.5.

Proposition 6.4. There exists a functor

β : ABm({0, . . . , n})→ KConvSLn×C×(Gr),

where β(Ti1k) is defined using (16) and β(Xi1k) := ∆∗ det(Li/Li−1)∨ where ∆ is the diagonal
embedding Y (k)→ Z(k, k).

Proof. We need to show the last three relations of ABm. The relations TiXj = XjTi and XiXj =
XjXi are easy. The final relation TiXiTi = Xi+1 follows from [CK17, Corollary A.14]. 2

In order to apply Lemma 5.5 we need to check the following two conditions:

(i) β(X1) commutes with φm(E
(s)
i ) and φm(F

(s)
i ) for i = 2, . . . ,m− 1;

(ii) β(X1 . . . Xm) commutes with everything in the image of φm.

The first condition follows since β(X1) only involves the line bundle det(L1/L0) while φm(E
(s)
i )

only involves changing the flag Li. The second condition follows since β(X1 . . . Xm) is given

by ∆∗ det(Lm/L0)∨ which clearly commutes with the image of every E
(s)
i and F

(s)
i . Thus, by

Lemma 5.5, φm extends to a functor

Φm : (U̇[q±]Lglm)n→ KConvSLn×C×(Gr).

Remark 6.5. It is easy to see that the functors Φm are compatible with the functors
(U̇[q±]Lglm)n→ (U̇[q±]Lglm+1)n discussed in the proof of Theorem 5.8.

6.4 The functor Φ
Proposition 6.6. There exists a unique functor

Φ : ASpn[q±]→ KConvSLn×C×(Gr)

such that for each m we have Φm = Φ ◦AΨm.

Proof. Consider the full subcategory of ASpn[q±] consisting of objects (k1, . . . , km) with ki ∈ {1,
. . . , n−1} (in other words, we are considering webs where the strands point away from the inner
circle and into the outer circle). Because of the tags, every object in ASpn[q±] is equivalent to
an object in this subcategory. Thus, it suffices to define Φ on this subcategory.

On objects, we define Φ to take k to k. Now consider objects k, k′ in ASpn[q±] (with all
ki, k

′
i > 0) and let a ∈ HomASpn[q±](k, k

′). We wish to define Φ(a). By Theorem 5.8, we know
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that there exists m and l, l′ (such that l, l′ are obtained by adding to 0s and ns to k, k′) and
b ∈ HomU̇qLglm

(l, l′) with AΨm(b) = a. Then we define Φ(a) := Φm(b).

Finally, we must check that this is well defined. Suppose we have two choices of m1, l1, l
′
1, b1

and m2, l2, l
′
2, b2 as above. Since both l1 (respectively l′1) and l2 (respectively l′2) are obtained by

adding 0, n to k (respectively k′), we can find a third l3 (respectively l′3) which is obtained by
adding 0, n to both l1 and l2 (respectively l′1, l

′
2).

Using the functors (U̇[q±]Lglm)n → (U̇[q±]Lglm+1)n defined in the proof of Theorem 5.8,
we can regard b1, b2 inside Hom(U̇[q±]Lglm3 )n(l3, l

′
3). We have AΨm3(b1) = AΨm3(b2) = a and

thus b1 = b2 by Theorem 5.8. Since the functors Φm are compatible with the inclusion functors
(U̇[q±]Lglm)n→ (U̇[q±]Lglm+1)n, this completes the proof of existence and uniqueness is clear by
construction. 2

The remainder of the paper will be devoted to proving the following result which combined
with Corollary 4.5 completes the proof of Conjecture 3.4 in the case G = SLn.

Theorem 6.7. The functor Φ induces equivalences

ASpn
∼−→ KConvSLn(Gr),

ASpn(q)
∼−→ KConvSLn×C×(Gr)⊗C[q±] C(q).

Proof. Since the objects on either side are the same, it suffices to show that the functor Φ is fully
faithful. By Lemma 6.10 this reduces to showing fully-faithfulness for the weight 1m = (1, . . . , 1).
This in turn is proven in Theorem 9.2. 2

6.5 Compatibility with E-action
Recall that inside ASpn[q±] we have the elements ej corresponding to counterclockwise loops.
This was used to define a E[q±]-module structure to the Hom spaces in ASpn[q±]. The following
result determines the image of ej under Φ.

Lemma 6.8. For any k, the image of ej ∈ EndASpn[q±](k) inside KSLn×C×(Z(k, k)) is ∆∗ ∧n−j
(Cn) where ∆ is the embedding of Y (k) as the diagonal and ∧n−j(Cn) is the natural SLn-
equivariant vector bundle on Y (k).

Proof. To simplify notation we prove the case k = ∅ (the general case is no different). Consider
the composition

∅
cup−−→ (j, n− j) X1−→ (j, n− j) cap−−→ ∅ (21)

inside ASpn[q±] where the first map is a j-cup and the last map is a j-cap. This composition
recovers ej up to a positive twist involving the j-strand. Since such a positive twist can be
undone at the cost of a factor of (−q)−j(n−j), the composition in (21) is equal to the image of
(−q)j(n−j)ej .

On the other hand, the composition in (21) is equivalent to the composition

(0, n)
E

(j)
1−−→ (j, n− j) X1−→ (j, n− j)

F
(j)
1−−→ (0, n). (22)

Let us first consider what happens to this composition without the middle map X1. We will need
the natural projection and inclusion maps

Y (0, n)
π
←− X(j, n− j) i−→ Y (j, n− j),
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where

X(j, n− j) := {L0 ⊂ L1 ⊂ L2 = z−1(L0) : dim(L1/L0) = j,dim(L2/L1) = n− j}

can be identified with the Grassmannian G(j, n). Then F
(j)
1 E

(j)
1 is given by the composition

(−q)−j(n−j)π∗(i∗i∗π∗(·) · [det(L1/L0)]n−j · [det(L2/L1)]−j).

Notice that ΩX(j,n−j) ∼= (L2/L1)∨ ⊗ (L1/L0) which means that

ωX(j,n−j) ∼= det(L1/L0)n−j ⊗ det(L2/L1)−j .

So the composition above is just

(−q)−dπ∗(i∗i∗π∗(·) · [ωX(j,n−j)]) (23)

where d = j(n− j) = dimX(j, n− j). Now, to compute i∗i∗ notice that X(j, n− j) ⊂ Y (j, n− j)
is carved out as the zero section of

z : L2/L1→ L1/L0{2}, (24)

where the {2} shift is because of the C× action on z. This means that we have a Koszul resolution

· · ·→
2∧
V → V → OY (j,n−j)→ OX(j,n−j),

where V = (L2/L1)⊗ (L1/L0)∨{−2}. But V restricted to X(j, n− j) is just Ω∨X(j,n−j){−2} and

i∧
(Ω∨X(j,n−j){−2})⊗ ωX(j,n−j) ∼= Ωd−i

X(n−j){−2i}.

Hence the composition in (23) simplifies to give

(−q)−d
∑
i>0

π∗((·) · (−1)iq2i[Ωd−i
X(j,n−j)]) =

∑
i>0

(−1)d+iqd−2iπ∗[Ω
i
X(j,n−j)] · (·).

Since X(j, n−j) ∼= G(j, n), it is a standard fact that this evaluates to multiplication by (−1)d [ nj ].
We now need to reintroduce X1. Since X1 is tensoring with det(L1/L0)∨, the composition in

(22) simplifies to give ∑
i>0

(−1)d+iqd−2iπ∗([Ω
i
X(j,n−j)] · [det(L1/L0)∨]) · (·).

Since OX(j,n−j)⊗det(L1/L0)∨ ∼= OG(j,n)(1), all these terms vanish except the lowest degree term
i = 0 which gives

(−q)dπ∗([OX(j,n−j)] · [det(L1/L0)∨]) · (·).

This is equivalent to multiplication by (−q)d[∧n−j(Cn)]. It follows that ej ∈ EndASpn[q±](∅) is

mapped to multiplication by [∧n−j(Cn)]. The result follows. 2

Corollary 6.9. The functor Φ is a E[q±]-linear functor where the following hold:

– ej ∈ ASpn[q±] acts as a counterclockwise loop labelled j;

– ej ∈ KConvSLn×C×(Gr) acts by tensoring with the vector bundle ∧n−j(Cn).
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Figure 5. The two equal forks (1, 1, 1)→ 3.

6.6 Reduction to 1m

Lemma 6.10. To show that Φ is an equivalence it suffices to check that for each m, Φ induces
an isomorphism

EndASpn(q)(1
m)

∼−→ End
KConvSLn ×C× (Gr)

(1m)⊗C[q±] C(q).

Proof. By a ‘fork’ we mean a map 1k → k (or its mirror k → 1k) depicted in Figure 5 when
k = 3.

By attaching forks to the bottom and top of a morphism we get maps

u : EndASpn(q)(1
m)→ HomASpn(q)(k, l),

v : HomASpn(q)(k, l)→ EndASpn(q)(1
m),

where m =
∑

i ki =
∑

i li. Note that we have

uv =
∏
i

[ki]![li]! · id (25)

since the composition (prong to prong) of two forks with k prongs is [k]! times the identity. We
also get similar maps for KConv instead of ASpn.

To simplify notation we write

HomKConv(q)(k, l) := Hom
KConvSLn ×C× (Gr)

(k, l)⊗C[q±] C(q).

Now consider the following commutative diagram.

EndASpn(q)(1
m)

u //

Φ′

��

HomASpn(q)(k, l)
v //

Φ

��

EndASpn(q)(1
m)

Φ′

��
EndKConv(q)(1

m)
u // HomKConv(q)(k, l)

v // EndKConv(q)(1
m)

(26)

We assume that the left and right vertical maps Φ′ (which are the same) are isomorphisms. Now
consider α ∈ HomASpn(q)(k, l) and suppose Φ(α) = 0. Then Φ′ ◦ v(α) = v ◦Φ(α) = 0. Since Φ′ is
injective, this means v(α) = 0. It follows from (25) that α = 0. Thus the middle Φ is injective.
(Note that we are using here that we are over C(q) so the product of the corresponding quantum
integers is invertible.)

On the other hand, consider β ∈ HomKConv(q)(k, l). From (25) we know that u is surjective so
choose β′ so that u(β′) = β. Since Φ′ is surjective, take β′′ so that Φ′(β′′) = β′. Then Φ◦u(β′′) =
u ◦ Φ′(β′′) = u(β′) = β which means that Φ is also surjective. This completes the proof. 2
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7. Algebraic study

In order to prove that the map

EndASpn(q)(1
m)→ End

KConvSLn ×C× (Gr)
(1m)⊗C[q±] C(q)

is an isomorphism, we will need to undertake a more detailed study of each side. We begin with
EndASpn(q)(1

m) and in particular EndASpn(1m) which we study using Corollary 4.5 which tells
us that

EndASpn(1m) ∼= End
O(

SLn
SLn

)-mod
(O(SLn)⊗ (Cn)⊗m). (27)

7.1 Endomorphisms in equivariant coherent sheaves
Note that the right-hand side of (27) is the space of SLn-equivariant endomorphisms of the trivial
bundle with fibre (Cn)⊗m. Thus we can identify

End
O(

SLn
SLn

)-mod
(O(SLn)⊗ (Cn)⊗m) = MapsSLn(SLn,End((Cn)⊗m))

where the right side is the space of SLn-equivariant maps of algebraic varieties from SLn to
End(Cn)⊗m.

From Proposition 2.8 at q = 1, we have an action of the affine symmetric group ASm =
Zm o Sm on O(SLn)⊗ (Cn)⊗m and thus a map

E[ASm]→ MapsSLn(SLn,End((Cn)⊗m)).

We will temporarily study a slight variant of this construction, involving

MapsGLn(gln,End((Cn)⊗m)).

Let E = C[e1, . . . , en] = O(gln)GLn , where ek(A) is the kth elementary symmetric function
in the eigenvalues of A. We have a surjection E → E sending en 7→ 1; this corresponds to the
inclusion SLn → gln. Let AS+

m be the monoid Nm o Sm. We write the generators of AS+
m as

Xi, Ti, where Xi = (0, . . . , 1, . . . 0) ∈ Nm and Ti is the usual generator of Sm.
We define a map

E[AS+
m]→ MapsGLn(gln,End((Cn)⊗m)) = End

O(
gln

GLn
)-mod

(O(gln)⊗ (Cn)⊗m)

by sending:

– ek ∈ E to the map which takes X ∈ gln to multiplication by ek(X);

– Xi ∈ AS+
m to the map which takes A to I ⊗ · · · ⊗ A ⊗ · · · ⊗ I (where A occurs on the ith

tensor factor);

– Ti to the constant map giving the endomorphism switching the i and i+ 1 tensor factors.

This is very similar to the construction from Proposition 2.8, except that Xi are not acting
invertibly, so the domain of this map involves the monoid AS+

m.
Because this construction matches the one from Proposition 2.8, the inclusion SLn → gln

gives rise to the following commutative diagram.

E[AS+
m] //

��

MapsGLn(gln,End((Cn)⊗m))

��
E[ASm] //MapsSLn(SLn,End((Cn)⊗m))

The following result (essentially due to Kraft and Procesi [KP79]) will be quite helpful for us.
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Theorem 7.1. In the above commutative diagram all the arrows are surjective.

Proof. The surjectivity E[AS+
m]→ E[AS+

m] is obvious.
The surjectivity of

MapsGLn(gln,End((Cn)⊗m))→ MapsSLn(SLn,End((Cn)⊗m))

is a special case of [KP79, Lemma 6.2]. (Note that the actions of GLn,SLn factor through P GLn,
so on both sides we can consider GLn-equivariant maps.)

The surjectivity
E[AS+

m]→ MapsGLn(gln,End((Cn)⊗m))

is [KP79, Proposition 6.5].
Finally, the other three surjectivities imply that

E[ASm]→ MapsSLn(SLn,End((Cn)⊗m))

is surjective. 2

7.2 An algebraic model
Define the ring

R
m
n := E[x1, . . . , xm]/(xni − e1x

n−1
i + · · · ± en−1xi ∓ en)

and let Rmn = R
m
n ⊗E E. In other words, Rmn is obtained from R

m
n by setting en = 1. In the next

section, we will see that Rmn
∼= KSLn((Pn−1)m), the equivariant cohomology of the product of m

copies of Pn−1.
Let Sym(x) ⊂ EndE(R

m
n ) denote the E-subalgebra generated by multiplication by symmetric

functions in x1, . . . , xm.

Theorem 7.2. We have an isomorphism

MapsGLn(End(Cn),End((Cn)⊗m))
∼−→ EndSym(x)(R

m
n ).

Proof. Consider the inclusion s : Spec(E)→ End(Cn) given by

s(e1, . . . , en) =


0 0 0 . . . 0 (−1)n−1en
1 0 0 . . . 0 (−1)n−2en−1

0 1 0 . . . 0 (−1)n−3en−2

. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 −e2

0 0 0 . . . 1 e1

 .

This is a variant of the Kostant section and gives us an isomorphism

End
O(

gln
GLn

)-mod
(O(gln)⊗ (Cn)⊗m)→ EndZ(E ⊗O(gln) O(gln)⊗ (Cn)⊗m)

where Z is the group scheme over Spec(E) whose fibre at a point e is the centralizer in GLn of
s(e).

If e ∈ Spec(E), then for any k, s(e)k lies in the centralizer in gln of s(e). It is easy to
see that I, s(e), . . . , s(e)n−1 gives a basis for this centralizer. Thus for each k, we define a map
Pk : Spec(E) → Lie(Z) taking e to s(e)k, where Lie(Z) denotes the total space bundle of Lie
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algebras over Spec(E) coming from the group scheme Z. Thus P0, . . . , Pn−1 give a basis for Lie(Z)
as a Lie algebra over E. Hence considering endomorphisms of E ⊗O(gln) O(gln) ⊗ (Cn)⊗m over

Z is the same as considering endomorphisms of this E-module over the action of P0, . . . , Pn−1.
For each k, the action of Pk on E ⊗O(gln) O(gln) ⊗ (Cn)⊗m is given by

∑m
i=1X

k
i , where

Xi is the endomorphism coming from Xi ∈ AS+
m by the construction in the previous section.

Thus, EndZ(E⊗O(gln)O(gln)⊗ (Cn)⊗m) is the same thing as endomorphisms over the E-algebra
generated by symmetric functions in the X1, . . . , Xm.

We now identify E ⊗O(gln) O(gln)⊗ (Cn)⊗m with R
m
n (both are free E-modules of rank nm)

via the map
1⊗ 1⊗ vk1 ⊗ · · · ⊗ vkm 7→ xk1−1

1 · · ·xkm−1
m ,

where v1, . . . , vn denotes the standard basis for Cn.
We claim that under this identification, Xi corresponds to multiplication by xi. To see this,

let us assume for simplicity that m = 1. Then X as an element of End
O(

gln
GLn

)-mod
(O(gln)⊗Cn)

is given by
1⊗ vk 7→ φk,

where φk is the Cn valued function on gln given by φk(g) = g(vk). Now, if g = s(e1, . . . , en), then
we have

g(vk) =

{
vk+1 if k 6= n,

(−1)n−1env1 + (−1)n−2en−1v2 + · · ·+ e1vn if k = n.

Thus under the above identification E ⊗O(gln)O(gln)⊗Cn→ Rn, we see that the image of X is
given by

xk−1 7→

{
xk if k 6= n,

(−1)n−1en + (−1)n−2en−1x+ · · ·+ e1x
n−1 if k = n,

which matches multiplication by x acting on Rn.
Combining all this, we see that we have an isomorphism

End
O(

gln
GLn

)-mod
(O(gln)⊗ (Cn)⊗m) ∼= EndSym(x)(R

m
n )

as desired. 2

As a consequence of Theorems 7.1 and 7.2 we deduce the following.

Corollary 7.3. There is a surjective E-algebra map

χ : E[ASm]→ EndSym(x)(R
m
n )

such that χ(Xi) is multiplication by xi and χ(Ti) permutes the variables xi and xi+1.

7.3 A q-deformation

We now introduce a q-deformation of the ring R
m
n .

We define

R
m
n,[q±] := E[q±][x1, . . . , xm]/(xni − e

(i)
1 xn−1

i + e
(i)
2 xn−2

i − · · ·+ (−1)ne(i)
n ),

where the elements e
(i)
j are defined recursively by e

(1)
j = ej and

e
(i)
j := e

(i−1)
j + (q2 − 1)[xi−1e

(i−1)
j−1 − x

2
i−1e

(i−1)
j−2 + x3

i−1e
(i−1)
j−3 − · · ·].
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This definition is motivated by computations in KConvSLn×C×(Gr) as we will explain in the
next section. Again, we consider the E subalgebra Sym(x) of R

m
n,[q±] generated by multiplication

by symmetric functions in the xi. Similarly, we can define R
m
n,(q) by tensoring with C(q), and we

define Rmn,[q±] and Rmn,(q) by setting en = 1.

Remark 7.4. It will follow from our later results that there is an isomorphism

End
Oq( SLn

SLn
)-mod

(Oq(SLn)⊗ (Cnq )⊗m) ∼= EndSym(x)(R
m
n,(q))

but we do not know how to prove this directly. We also suspect that

End
Oq(

gln
GLn

)
(Oq(gln)⊗ (Cnq )⊗m) ∼= EndSym(x)(R

m
n,(q)),

where Oq(gln) is the quantum matrix algebra as defined in, for example, [BZ08, Appendix A].

Let AB+
m be the submonoid of ABm generated by Xi, i = 1, . . . ,m and Ti, T

−1
i for i = 1, . . . ,

m − 1. This is useful for us since it allows us to consider ‘representations’ of the annular braid
group such that the Xi do not act invertibly.

We define the E[q±]-linear map

χ : E[q±][AB+
m]→ EndSym(x)(R

m
n,[q±]) (28)

by taking Xi to multiplication by xi and Ti to the unique map which:

(i) is linear over E[q±][x1, . . . , xn]si where si acts by exchanging xi and xi+1;

(ii) satisfies Ti(1) = q and Ti(xi) = q−1xi+1.

Remark 7.5. At q = 1, the map χ from (28) specializes to χ from Corollary 7.3.

Proposition 7.6. The map χ from (28) is well defined.

Proof. Although not trivial, one can check this directly by hand. Alternatively the result
follows from Lemmas 8.14 and 9.3. More precisely, in Lemma 8.14 we identify Rmn,[q±]

with KSLn×C×(Y (1m)) while Lemma 9.3 shows that there is an action of E[q±][ABm] on
KSLn×C×(Y (1m)) which satisfies properties (i) and (ii) from above. It then follows that this
action induces an action of E[q±][AB+

m] on R
m
n,[q±] satisfying these same properties. 2

7.4 Surjectivity

The reason for introducing E and R
m
n (rather than working with E and Rmn ) is because they

carry an N-grading. This means that they can be used to extend surjectivity from q = 1 to
generic q. This grading is defined by setting deg(ej) = j,deg(q) = 0,deg(xi) = 1.

Proposition 7.7. The map χ : E(q)[AB+
m]→ EndSym(x)(R

m
n,(q)) is surjective. This means that

the induced map χ : E(q)[ABm]→ EndSym(x)(R
m
n,(q)) is surjective.

Proof. Note that EndSym(x)(R
m
n,[q±]) is a finitely generated graded E[q±]-module. Define an N-

grading on E[AB+
m] with deg(Xi) = 1 and deg(Ti) = 0. Then using Corollary 7.3, the map χ :

E[q±][AB+
m]→ EndSym(x)(R

m
n,[q±]) fits into the framework of Lemma 7.8. The result follows. 2
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Lemma 7.8. Suppose f : A → B is a map of graded E[q±]-modules, and that B is finitely
generated over E[q±]. If f |q=1 is surjective then the induced map

f ⊗C[q±] C(q) : A⊗C[q±] C(q)→ B ⊗C[q±] C(q)

is surjective.

Proof. Consider the cokernel C := coker(f). Since f |q=1 is surjective, this means C⊗C[q±]C1 = 0.

On the other hand, C is a finitely generated, graded E[q±]-module so we can consider its support

supp(C) ⊂ Spec(C[q±])× Proj(E)
π−→ Spec(C[q±]).

Since π is proper, this means that π(supp(C)) ⊂ Spec(C[q±]) is a closed subvariety. On the other
hand, since C ⊗C[q±] C1 = 0 this means that π(supp(C)) does not contain the point q = 1. Thus
π(supp(C)) must be the union of a finite number of points and thus C ⊗C[q±] C(q) = 0. This
implies that f ⊗C[q±] C(q) is surjective. 2

8. Geometric study

We now study the right-hand side of the isomorphism

EndASpn(q)(1
m)→ End

KConvSLn ×C× (Gr)
(1m)⊗C[q±] C(q)

which means investigating the K-theory of the variety Z(1m, 1m).

8.1 Property TA

The first step is to prove that KSLn×C×(Z(1m, 1m)) is a free E[q±]-module (Corollary 8.11). To
do this we will prove that this space satisfies a certain property, called property TA, as discussed
below.

Let A be an algebraic group and let RA = KA(pt) be the representation ring of A. Suppose
that X is an algebraic variety equipped with an action of A. We write KA

i,top(X) for the (higher)
A-equivariant topological K-theory of X. Following [Nak01, § 7] we say that X has property TA
if the following hold:

(i) KA
1,top(X) = 0 and KA

top(X) = KA
0,top(X) is a free RA-module;

(ii) the map KA(X)→ KA
top(X) is an isomorphism;

(iii) for any closed algebraic subgroup A′ ⊂ A the A′-equivariant K-theories satisfy the two
properties above and moreover the map KA(X)⊗RA RA′ → KA′(X) is an isomorphism.

Now consider a finite collection of A-invariant, locally closed subvarieties {Xi}i∈I of X.
Suppose

⋃
i∈I Xi = X and that I is equipped with a partial order 6 so that for each i ∈ I the

union
⋃
j6iXj is closed in X. Then we say {Xi}i∈I forms an α-partition of X.

Lemma 8.1 [Nak01, Lemma 7.1.3]. If X has an α-partition X1, . . . , Xk where each Xi satisfies
property TA then X satisfies property TA.

Remark 8.2. The actual definition of an α-partition from [Nak01] assumes that 6 is a total
ordering of I. However, the lemma above holds because we can always refine a partial order to a
total ordering. We use the definition above because in our case a particular partial order shows
up and it does not seem natural to refine it arbitrarily.
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Lemma 8.3. Suppose that V,W are two A-equivariant vector bundles over X equipped with an
equivariant vector bundle inclusion V →W . If X has property TA, then so does P(W ) r P(V ).

Remark 8.4. Our stratification of Z(1m, 1m) has pieces of the form P(W ) r P(V ) which is why
we need this lemma. Unfortunately this result does not appear in [Nak01] so we include a proof
based on [CG97].

Proof. Let us denote the inclusion i : P(V ) → P(W ) and the projections π1 : P(V ) → X and
π2 : P(W ) → X. First we show that the map i∗ : KA

0 (P(V )) → KA
0 (P(W )) is injective. By

Theorem 8.5 a general element b ∈ KA
0 (P(V )) is of the form

b =

rk(V )−1∑
j=0

[π∗1(aj)] · [OP(V )(−j)]

for some aj ∈ KA
0 (X). Now suppose i∗(b) = 0. Then by the projection formula together with the

fact that π∗1(aj) = i∗π∗2(aj) we get

rk(V )−1∑
j=0

[π∗2(aj)] · [i∗OP(V )(−j)] = 0.

On the other hand, we have the Koszul resolution

· · ·→ OP(W )(−2)⊗ π∗2∧2Q→ OP(W )(−1)⊗ π∗2Q→ OP(W )→ OP(V ), (29)

where Q = (W/V )∨. Substituting this into the relation above we get

rk(V )−1∑
j=0

[π∗2(aj)] ·
(rk(W )−rk(V )∑

k=0

(−1)k[OP(W )(−j − k)] · [π∗2∧kQ]

)
= 0

or equivalently
rk(W )−1∑
l=0

[OP(W )(−l)] ·
( ∑
j+k=l

(−1)k[π∗2(aj ⊗ ∧kQ)]

)
= 0.

Since [OP(W )(−l)] are linearly independent for l = 0, . . . , rk(W ) − 1, we see that
∑

j+k=l(−1)k

[π∗2(aj⊗∧kQ)] = 0 for all l. From this one can show inductively that π∗2(aj) = 0 for all j (starting
with j = 0). Hence b = 0 which shows that i∗ is injective.

The same argument shows that i∗ is also injective on topological K-theory. Now, by
Corollary 8.7 we know that KA

1,top(P(V )) = KA
1,top(P(W )) = 0. It follows from the long exact

sequence

KA
1,top(P(W ))→ KA

1,top(P(W ) r P(V ))→ KA
0,top(P(V ))

i∗−→ KA
0,top(P(W ))

that KA
1,top(P(W ) r P(V )) = 0.

Next, consider the following commutative diagram.

KA
0 (P(V ))

i∗ //

��

KA
0 (P(W )) //

��

KA
0 (P(W ) r P(V )) //

��

0

KA
0,top(P(V ))

i∗ // KA
0,top(P(W )) // KA

0,top(P(W ) r P(V )) // 0
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The first two vertical maps are isomorphisms by Corollary 8.7. It follows that the rightmost
vertical map is also an isomorphism.

Finally, it remains to show that KA
0,top(P(W )rP(V )) is a free RA-module. Consider the short

exact sequence

0→ KA
0,top(P(V ))

i∗−→ KA
0,top(P(W ))→ KA

0,top(P(W ) r P(V ))→ 0.

The image of i∗ are elements of the form b · [i∗OP(V )] for b ∈ KA
0,top(P(W )). Using the Koszul

resolution (29) for OP(V ) it is not hard to see that this means KA
0,top(P(W )) is generated, as a

KA
0,top(X)-module, by the image of i∗ and by OP(W )(−k) for k = rk(V ), . . . , rk(W ) − 1. Since

KA
0,top(P(V )) andKA

0,top(P(W )) are freeKA
0,top(X)-modules of rank rk(V ) and rk(W ) respectively,

this means that KA
0,top(P(W ) r P(V )) is freely generated over KA

0,top(X) by OP(W )(−k) for
k = rk(V ), . . . , rk(W )− 1. This completes the proof. 2

Theorem 8.5 [CG97, Theorem 5.2.31]. Consider an A-equivariant vector bundle E → X and
let π : P(E) → X be the associated vector bundle. Then for j > 0 the groups KA

j (P(E)) are

freely generated over KA
j (X) by the classes [OP(E)(−k)], k = 0, 1, . . . , rk(E)− 1.

Remark 8.6. The actual statement in [CG97] uses [OP(E)(k)] but one could equally well use
[OP(E)(−k)].

The argument in [CG97] can also be used to prove the same result for topological K-theory.
The following is then immediate.

Corollary 8.7. Suppose E→X is an A-equivariant vector bundle on X. If X satisfies property
TA then P(E) satisfies property TA.

8.2 Property TA for Z(1m, 1m)
Our current goal is to establish the following result.

Theorem 8.8. The varieties Y (1m) and Z(1m, 1m) satisfy property TSLn×C× .

For Y (1m) this is immediate from Lemma 8.3, since it is an iterated bundle of projective
spaces. For Z(1m, 1m) the proof is more involved and will occupy the rest of this section.

The main idea is to partition the variety Z = Z(1m, 1m) into pieces and then apply
Lemma 8.3. This partition is a special case of the one considered in [FKK13, § 4.1] which in
turn was inspired by the proof of Theorem 3.1 from [Hai06].

Let T be a standard Young tableau with m boxes and at most n rows. Then we write
λ(i)(T ) = T |1,...,i for the shape made by using only the boxes filled with 1, . . . , i. We regard
λ(i)(T ) as an element of Λ+.

Let P be the set of pairs (T, T ′) of standard Young tableaux (SYT) of the same shape, each
with m boxes and at most n rows. We define a partial order on P by

(U,U ′) 6 (T, T ′) if, for all i, λ(i)(U) 6 λ(i)(T ) and λ(i)(U ′) 6 λ(i)(T ′).

With this partial order, the pair (T0, T0) where T0 is the unique SYT with one row and m boxes
is the maximal element. We define

Z(T, T ′) = {(L•, L′•) ∈ Z : Li ∈ Grλ
(i)(T ), L′i ∈ Grλ

(i)(T ′), for i = 1, . . . ,m},

where we recall (from § 6.1) that for λ = (λ1, . . . , λn) ∈ Λ+, Grλ consists of those lattices such
that z|L/L0

has Jordan type λ.
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Proposition 8.9. The closures {Z(T, T ′)}(T,T ′)∈P are the irreducible components of Z.
Moreover, the collection {Z(T, T ′)}(T,T ′)∈P forms an α-partition of Z.

Proof. The first claim is a special case of [FKK13, Theorem 4.1]. To see the second claim it is
clear that each Z(T, T ′) is SLn×C×-invariant and that they give a partition of Z. From the
closure relation among the strata of the affine Grassmannian, we see that, for each (T, T ′), we
have

Z(T, T ′) ⊂
⋃

(U,U ′)6(T,T ′)

Z(U,U ′).

This implies the necessary closedness property for having an α-partition. 2

Theorem 8.8 now follows from the Proposition above and the following result.

Lemma 8.10. For each (T, T ′) ∈ P, Z(T, T ′) satisfies property TSLn×C× .

Proof. For each k = 1, . . . , 2m− 1, we define varieties Z(T, T ′)k which contain only part of the
data of Z(T, T ′). Increasing k remembers more data about the flags (L•, L

′
•). Roughly speaking,

we remember the lattices Li one by one starting with L1 and working up until Lm (k = m). We
then remember the L′i starting with L′m−1 and working back down to L′1.

More precisely, for k = 1, . . . ,m we define

Z(T, T ′)k = {(L1, . . . , Lk) : L0 ⊂ L1 ⊂ · · · ⊂ Lk, zLi ⊂ Li−1, Li ∈ Grλ
(i)(T ) for i}.

On the other hand, for k = m, . . . , 2m− 1, we define Z(T, T ′)k as

{(L1, . . . , Lm), (L′2m−k, . . . , L
′
m) : Lm = L′m and

Li−1 ⊂ Li, dimLi/Li−1 = 1, zLi ⊂ Li−1, Li ∈ Grλ
(i)(T ) for i = 1, . . . ,m,

L′i−1 ⊂ L′i, dimL′i/L
′
i−1 = 1, zL′i ⊂ L′i−1, L

′
i ∈ Grλ

(i)(T ′) for i = 2m− k + 1, . . . ,m}.

Notice that Z(T, T ′) = Z(T, T ′)2m−1.
We will now prove the lemma by induction on k. Let us suppose the conclusions of the lemma

are true for Z(T, T ′)k−1. We have a map πk : Z(T, T ′)k → Z(T, T ′)k−1 given by forgetting the
last piece of data. We claim that this map satisfies the hypotheses of Lemma 8.3.

To see this, we examine the fibres of πk. If k 6 m the fibre over of point L• ∈ Z(T, T ′)k−1 is

π−1
k (L•) = {Lk−1 ⊂ Lk ⊂ z−1Lk−1, z|Li/L0

has Jordan type λ(k)(T )}.

Now the condition on the Jordan type of z|Li/L0
is equivalent to a condition on the intersections

of Lk with the subspaces z−jL0 for various j. More precisely, if the box labelled k is on the jth
column of T , then the condition on the Jordan type is equivalent to the condition that

dim(Lk ∩ z−jL0) = dim(Lk−1 ∩ z−jL0) + 1 and Lk ∩ z−(j−1)L0 = Lk−1 ∩ z−(j−1)L0.

Thus we can identify the fibre with the space

P((z−1Lk−1 ∩ z−jL0)/(Lk−1 ∩ z−jL0)) r P((z−1Lk−1 ∩ z−(j−1)L0)/(Lk−1 ∩ z−(j−1)L0))

and thus the hypotheses of Lemma 8.3 are satisfied. The case k > m is similar. This proves that
Z(T, T ′)k satisfies property TSLn×C× . 2

Corollary 8.11. KSLn×C×(Z(1m, 1m)) is a free E[q±]-module.
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8.3 Localization

Suppose T is an abelian reductive group and Y an algebraic variety equipped with an action of

T . As before, we write RT = KT (pt) and denote by FT the fraction field of RT . For t ∈ T we

denote by Y t the fixed point locus of t.

It was proved by Thomason [Tho83, Tho86] that the inclusion it : Y t
→ Y induces an

isomorphism

it∗ : KT (Y t)⊗RT FT
∼−→ KT (Y )⊗RT FT .

Lemma 8.12. If i : Z(1m, 1m)→ Y (1m)× Y (1m) is the natural inclusion, then

i∗ : KSLn×C×(Z(1m, 1m))→ KSLn×C×(Y (1m)× Y (1m))

is injective.

Proof. We write Y × Y for Y (1m)× Y (1m) and Z for Z(1m, 1m). Choose T ⊂ A := SLn×C× to

be the maximal torus in SLn cross C× and t a generic element in T . This means that (Y × Y )t

consists of a finite number of isolated points.

Next, consider the commutative diagram

KT (Zt)⊗RT FT

��

it∗ // KT ((Y × Y )t)⊗RT FT

��
KT (Z)⊗RT FT

i∗ // KT (Y × Y )⊗RT FT

where the vertical maps are the natural inclusions. The vertical maps are isomorphisms by

Thomason’s result while it∗ is induced by an inclusion of isolated fixed points and thus injective.

This means that the map

i∗ : KT (Z)⊗RT FT → KT (Y × Y )⊗RT FT (30)

is injective.

On the other hand, since Z and Y × Y have property TA both KT (Z) and KT (Y × Y ) are

free RT -modules. Thus we have the commutative diagram

KT (Z) //

��

KT (Y × Y )

��
KT (Z)⊗RT FT // KT (Y × Y )⊗RT FT

where the vertical maps are injective since RT embeds into FT and the bottom horizontal map

is injective by (30). This means that the map

i∗ : KT (Z)→ KT (Y × Y ) (31)

is injective. But KT (Z) ∼= KA(Z) ⊗RA RT and likewise for KT (Y × Y ). Since RT is a free RA
module, this implies that i∗ : KA(Z)→KA(Y ×Y ) is injective as a consequence of the injectivity

of (31). 2
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8.4 K-theory of Y (1m)

Recall that KSLn×C×(pt) ∼= E[q±] where ej ∈ E denotes ∧n−j(Cn) and −q−1 keeps track of
the shift {1} (cf. Remark 6.2). Note that en = 1. Since Y (1m) is an iterated Pn−1-bundle,
KSLn×C×(Y (1m)) is generated, over E[q±], by x1, . . . , xm where xi is the line bundle [(Li/Li−1)∨].

We will also write e
(i)
j := [

∧j(z−1Li−1/Li−1)∨]. Note that e
(1)
j = ej and, by convention, e

(i)
0 = 1

and e
(i)
j = 0 if j < 0.

Lemma 8.13. The e
(i)
j are related to each other via the relations

e
(i+1)
j = e

(i)
j + (q2 − 1)[xie

(i)
j−1 − x

2
i e

(i)
j−2 + x3

i e
(i)
j−3 − · · ·], (32)

e
(i+1)
j + xie

(i+1)
j−1 = e

(i)
j + q2xie

(i)
j−1. (33)

Proof. We will prove this by induction on j. The base case j = 0 is obvious.
Now, let us write Vi = (z−1Li−1/Li−1)∨. From the following two standard exact sequences

0→ Li/Li−1→ z−1Li−1/Li−1→ z−1Li−1/Li→ 0,

0→ z−1Li−1/Li→ z−1Li/Li→ z−1Li/z
−1Li−1→ 0

we get that
[Vi] = xi + [Vi+1]− [(z−1Li/z

−1Li−1)∨].

On the other hand, we have the isomorphism

z−1Li/z
−1Li−1

∼−→ Li/Li−1{2}

induced by multiplication by z (the {2} shift is for the same reason as in (24)). This implies that
[(z−1Li/z

−1Li−1)∨] = q2xi and so we get

[Vi+1] + xi = [Vi] + q2xi.

Applying
∧j we get[ j∧

Vi+1

]
+ xi

[j−1∧
Vi+1

]
=

[ j∧
Vi

]
+ q2xi

[j−1∧
Vi

]
which is relation (33).

Now, we can rewrite (32) as

e
(i+1)
j = e

(i)
j + (q2 − 1)xie

(i)
j−1 − xi(q

2 − 1)(xie
(i)
j−2 − x

2
i e

(i−1)
j−3 + · · ·).

Assuming (32) is true for j − 1 then we know

(q2 − 1)(xie
(i)
j−2 − x

2
i e

(i−1)
j−3 + · · ·) = e

(i+1)
j−1 − e

(i)
j−1.

So it remains to show that

e
(i+1)
j = e

(i)
j + (q2 − 1)xie

(i)
j−1 − xi(e

(i+1)
j−1 − e

(i)
j−1).

This easily simplifies to (33), which we proved above. 2

Recall the definition of the E[q±]-algebra Rmn,[q±] from § 7.3.
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Lemma 8.14. We have KSLn×C×(Y (1m)) ∼= Rmn,[q±] as E[q±]-modules.

Proof. Inside KSLn×C×(Y (1m)) we have the standard exact sequence

0→ Li/Li−1→ z−1Li−1/Li−1→ z−1Li−1/Li→ 0

which implies that
∧n[(z−1Li−1/Li−1)∨ − (Li/Li−1)∨] = 0. The defining relation of Rmn,[q±] now

follows using that e
(i)
j = [

∧j(z−1Li−1/Li−1)∨], xi = [det(Li/Li−1)∨] and the general identity

r∧
(A−B) =

r∧
(A)−

r−1∧
(A) ·B +

r−2∧
(A) · Sym2(B)−

r−3∧
(A) · Sym3(B) + · · ·

in K-theory. There are no further relations since Y (1m) is an iterated Pn−1-bundle and

KSLn×C×(Y (1)) = KSLn×C×(Pn−1) ∼= E[q±][x]/(xn − e1x
n−1 + e2x

n−2 − · · ·+ (−1)n)

where x = OPn−1(1). 2

Recall the E[q±]-algebra Sym(x) consisting of symmetric functions in the xi which acts on
Rmn,[q±] as discussed in § 7.3.

Corollary 8.15. The natural inclusion i : Z(1m, 1m)→ Y (1m) × Y (1m) induces an injective
map

S : KSLn×C×(Z(1m, 1m))→ EndSym(x)(R
m
n,[q±]).

Proof. Since Y (1m) × Y (1m) is an iterated projective bundle, it has property TA where A =
SLn×C×. It follows that

KSLn×C×(Y (1m)× Y (1m)) ∼= KSLn×C×
0,top (Y (1m)× Y (1m))

∼= End
KSLn ×C×

0,top (pt)
(KSLn×C×

0,top (Y (1m)))

∼= End
KSLn ×C× (pt)

(KSLn×C×(Y (1m))).

Subsequently, by Lemma 8.12, we have an inclusion

KSLn×C×(Z(1m, 1m))→ End(KSLn×C×(Y (1m)))

while, by the previous lemma, KSLn×C×(Y (1m)) ∼= Rmn,[q±].

On the other hand, since xi = [det(Li/Li−1)∨], we see that the symmetric functions in the xi
are generated by ∧j(Lm/L0)∨. These clearly commute with any kernel supported on Z(1m, 1m)
since Z(1m, 1m) is defined by the condition Lm = L′m. The result follows. 2

9. Isomorphism for 1m

We are now in a position to prove the isomorphism for 1m.

Theorem 9.1. The functor Φ gives an isomorphism

EndASpn(1m)
∼−→ KSLn(Z(1m, 1m)) (34)
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making the following diagram of isomorphisms commute

EndASpn(1m)
Φ //

AΓ

��

KSLn(Z(1m, 1m))

S

��
End

O(
SLn
SLn

)-mod
(O(SLn)⊗ (Cn)⊗m)

γ // EndSym(x)(R
m
n )

(35)

where γ comes from setting en = 1 in Theorem 7.2.

Theorem 9.2. The functor Φ also gives an isomophism

EndASpn(q)(1
m)

∼−→ KSLn×C×(Z(1m, 1m))⊗C[q±] C(q).

9.1 The big diagram
The proof relies on the following diagram of E[q±]-algebras

E[q±][ABm]
β //

χ

��

EndASpn[q±](1
m)

Φ
��

EndSym(x)(R
m
n,[q±]) KSLn×C×(Z(1m, 1m))

Soo

(36)

where χ is obtained (by setting en = 1) from χ which was defined in § 7.3.

Lemma 9.3. This diagram commutes.

Proof. It suffices to check this on the generators Xi, Ti of ABm.
By definition Φ(β(Xi)) = [∆∗ det(Li/Li−1)∨] and, following the isomorphism from

Lemma 8.14, S(∆∗ det(Li/Li−1)∨) acts on Rmn,[q±] as multiplication by xi. On the other hand,

χ(Xi) is by definition multiplication by xi.
Now consider the correspondence

Y (1i−1, 2, 1m−i−1)
π
←−W = {L0 ⊂ · · · ⊂ Lm : zLi+1 ⊂ Li−1}

i−→ Y (1m),

where π is the projection which forgets Li and i is an inclusion. Recall that (Φ ◦ β)(Ti) =
q · id−EiFi (cf. Remark 5.3) where Ei and Fi act on KSLn×C×(Y (1m)) ∼= Rmn,[q±] as follows:

Ei(·) = −q−1[i∗π
∗(·)⊗ det(Li/Li−1)],

Fi(·) = π∗i
∗((·)⊗ det(Li+1/Li)

−1).

From this description it is clear that for any y ∈ Rmn,[q±] we have

(Φ ◦ β)(Ti)(yxj) = xj(Φ ◦ β)(Ti)(y) if j 6= i, i+ 1,

(Φ ◦ β)(Ti)((xi + xi+1)y) = (xi + xi+1)(Φ ◦ β)(Ti)(y),

(Φ ◦ β)(Ti)(xixi+1y) = xixi+1(Φ ◦ β)(Ti)(y).

Since the same is true for χ in place of (Φ ◦ β), it suffices to show that the actions of (Φ ◦ β)(Ti)
and χ(Ti) agree on 1 and xi.

Now Fi(1) = 0 which means that (Φ ◦ β)(Ti)(1) = q = χ(Ti)(1).
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On the other hand, EiFi(xi) = −q−1xi+1[OW ] so we need to determine the class of OW inside
KSLn×C×(Y (1m)). To do this consider the map of bundles on Y (1m)

z : Li+1/Li→ Li/Li−1{2},

where the shift by {2} is because of the C× action on z (cf. the map in (24)). This map vanishes
exactly along W and hence [OW ] = 1− q2xix

−1
i+1. Putting this together we find that

(Φ ◦ β)(Ti)(xi) = qxi − EiFi(xi)
= qxi + q−1xi+1(1− q2xix

−1
i+1)

= q−1xi+1 = χ(Ti)(xi).

This concludes the proof. 2

9.2 The proofs
Proof of Theorem 9.1. We take the diagram (36) and tensor over C[q±] with C (at q = 1) to
obtain the following.

E[ABm]
β //

χ

��

EndASpn(1m)

Φ
��

EndSym(x)(R
m
n ) KSLn(Z(1m, 1m))

S
oo

Now by Theorems 7.2 and 4.5, we obtain isomorphisms

EndASpn(1m)
AΓ−−→ End

O(
SLn
SLn

)-mod
(O(SLn)⊗ (Cn)⊗m)

∼−→ EndSym(x)(R
m
n )

so that our diagram becomes the following.

E[ABm]
β //

χ

��

EndASpn(1m)

Φ
��AΓuu

EndSym(x)(R
m
n ) KSLn(Z(1m, 1m))

S
oo

(37)

Now the top left triangle commutes by Remark 7.5. Then the commutativity of the bottom right
triangle follows from the commutativity of the whole square and the surjectivity of β. Note that
the bottom right triangle is rewritten as a square in the statement of the theorem.

Since AΓ is an isomorphism and S is injective, we see that Φ is an isomorphism. 2

Proof of Theorem 9.2. We take the diagram (36) and tensor over C[q±] with C(q) to obtain the
following.

E(q)[ABm]
β //

χ

��

EndASpn(q)(1
m)

Φ
��

EndSym(x)(R
m
n,(q)) KSLn×C×(Z(1m, 1m))⊗C[q±] C(q)

S
oo

From Proposition 7.7 we see that χ is surjective. On the other hand, from Corollary 8.15 we
see that S is injective. Thus Φ is surjective.
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Now we will prove that Φ is injective. Let l, l′ be two sequences of length m′ which are each
obtained from 1m by adding some 0s and ns. Consider the map

Φm′ : Hom(U̇[q±]Lglm′ )
n(l, l′)→ KSLn×C×(Z(1m, 1m)) (38)

and recall that this map factors as

Hom(U̇[q±]Lglm′ )
n(l, l′)

Ψm′−−→ EndASpn[q±](1
m)

Φ−→ KSLn×C×(Z(1m, 1m)),

where the first map is injective by Theorem 5.8.
Now Φ is injective at q = 1 by Theorem 9.1 and hence Φm′ is injective at q = 1. Since both

sides of (38) are free C[q±]-modules (the left-hand side by Lemma 5.2 and the right-hand side
by Corollary 8.11), Lemma 9.4 implies that Φm′ is injective.

Since, by Theorem 5.8, every element of EndASpn[q±](1
m) is in the image of Ψm′ for some

m′, l, l′, this implies that Φ is injective. 2

Lemma 9.4. Let f : M → N be a map between free C[q±]-modules such that f |q=1 is injective.
Then f is injective.

Proof. Since the submodule of a free C[q±]-module is free, we can assume that f is surjective
(by replacing N with the image of f). Thus we have a short exact sequence

0→ K →M
f−→ N → 0,

where K is the kernel of f . Applying ⊗C[q±]C1, we obtain the long exact sequence

Tor
C[q±]
1 (N,C1)→ K ⊗C[q±] C1→M ⊗C[q±] C1

f |q=1−−−→ N⊗C[q±]→ 0.

Since N is free, Tor
C[q±]
1 (N,C1) = 0.

On the other hand, since f |q=1 is injective, the map Tor
C[q±]
1 (N,C1) → K ⊗C[q±] C1 is

surjective. Thus K ⊗C[q±] C1 = 0. Since K is a submodule of a free module, it is free, and
thus K = 0. 2

10. The structure of EndASpn[q±](1
m) and cyclotomic Hecke algebras

This section stands somewhat separate from the main results in the paper but may be of
independent interest. As we noted earlier, the weight 1m plays an important role in the categories
we have studied. We will now discuss in a little more detail the structure of the E[q±]-algebra
EndASpn[q±](1

m).

10.1 Affine Hecke algebras
The annular braid group ABm has a natural quotient which is the affine Hecke algebra. We
will consider a slight variant, denoted by Ĥm[q±], which is the quotient of E[q±][ABm] by the
relation

T 2
i = (q − q−1)Ti + 1 for i = 1, . . . ,m− 1.

As usual, we denote by Ĥm(q) the same algebra over C(q) and by Ĥm the specialization to q = 1.
Note that Ĥm ∼= E[ASm] where ASm is the affine symmetric group.
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Remark 10.1. The usual generators of the affine Hecke algebra use qTi instead of Ti which
means that the Hecke relation becomes the more familiar T 2

i = (q2− 1)Ti + q2 while the relation
TiXiTi = Xi+1 becomes TiXiTi = q2Xi+1.

Now consider the composition

Ĥm[q±]→ EndASpn[q±](1
m)→ EndSym(x)(R

m
n,[q±]).

By Proposition 7.7 this composition, denoted by χ, is surjective if we tensor over C(q). Moreover,
the second map is an isomorphism over C(q). We conjecture that both these results also hold
over C[q±]. So to understand EndASpn[q±](1

m) we need some description of the kernel of χ.

10.2 When q = 1
Conjecture 10.2. The kernel of χ : E[ASm]→ EndSym(x)(R

m
n ) is generated by

esgn(T1, . . . , Tk)(hn−k − e1hn−k−1 + e2hn−k−2 − · · ·+ (−1)n−ken−k) (39)

for k = 0, . . . ,min(n,m − 1). Here esgn(T1, . . . , Tk) ∈ C[Sk] ⊂ C[Sm] is the sign idempotent and
hj = hj(X1, . . . , Xk+1) denotes the homogeneous symmetric function of degree j.

This conjecture interpolates between the Cayley–Hamilton theorem and Schur–Weyl duality.
This is because when k = 0 the relation in (39) becomes

Xn
1 − e1X

n−1
1 + · · · ± en−1X1 ∓ 1 = 0.

However, under the isomorphism

Rmn
∼= MapsSLn(SLn,End((Cn)⊗m))

the image of χ(Xn
1 − e1X

n−1
1 + · · ·± en−1X1∓ 1) is the map g 7→ p(g)⊗ I⊗· · ·⊗ I, where p(y) is

the characteristic polynomial of g. Thus, this relation holds by the Cayley–Hamilton theorem.
On the other hand, when k = n (assuming m > n), then the relation in (39) becomes just

esgn(T1, . . . , Tn) which, by Schur–Weyl duality, generates the kernel of C[Sm] → End((Cn)⊗m)
and thus also holds in MapsSLn(SLn,End((Cn)⊗m)).

10.3 Over C(q)

Define e
(i)
j ∈ Ĥm[q±] recursively using

e
(i)
j := e

(i−1)
j + (q2 − 1)[Xi−1e

(i−1)
j−1 −X

2
i−1e

(i−1)
j−2 +X3

i−1e
(i−1)
j−3 − · · ·]. (40)

This follows the definition of e
(i)
j ∈ Rmn,[q±] from § 7.3.

Conjecture 10.3. The kernel of χ : Ĥm(q)→ EndSym(x)(R
m
n,(q)) is generated by

Xn
i − e

(i)
1 Xn−1

i + e
(i)
2 Xn−2

i − · · ·+ (−1)ne(i)
n = 0 (41)

for i = 1, . . . ,m.

Some remarks are in order. If one conjugates, for instance, the relation in (41) when i = 1
by T1 then one obtains the relation in (41) when i = 2 plus an extra term. This extra term
contains a factor of q − 1 but after dividing by q − 1 gives us another relation. One can repeat
this argument to get new relations, such as the ones in (39), but it seems only as long as q is not
a root of unity.

Thus, Conjecture 10.3 is not true over C[q±] and, in particular, when q = 1. Moreover,
although it might be tempting to only impose relation (41) when i = 1 (like for the usual
cyclotomic affine Hecke algebras), this is also incorrect.
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10.4 Over C[q±]

Conjecture 10.4. The kernel of χ : Ĥm[q±]→ EndSym(x)(R
m
n,[q±]) is generated by

[k + 1]! · esgn(Ti, . . . , Ti+k−1)(hn−k − e
(i)
1 hn−k−1 + · · ·+ (−1)n−ke

(i)
n−k) (42)

for k = 0, . . . ,min(n,m− 1) and i = 1, . . . ,m− k.

Remark 10.5. Here [k+1]! ·esgn(Ti, . . . , Ti+k−1) ∈ Hm[q±] is the sign quasi-idempotent inside the
finite Hecke algebra where the sign representation corresponds to Ti acting by −q−1. Moreover,
hj = hj(Xi, . . . , Xi+k) is the homogeneous symmetric function of degree j.

Let us explain why the term in (42) belongs to the kernel of

χ : Ĥm[q±]→ EndSym(x)(R
m
n,[q±]).

The map χ can be factored as

Ĥm[q±]
δ−→ KSLn×C×(Z(1m, 1m))

S−→ EndSym(x)(R
m
n,[q±]).

Thus it is enough to show that the image of (42) under δ is zero.
In [CKL10, Cau05] we constructed a categorical slm action on

⊕
k Y (k) where k =

(k1, . . . , km) with
∑

i ki = m. Consider the composition

E
(k)
i+k−1 . . . E

(2)
i+1Ei : KSLn×C×(Y (1m))→ KSLn×C×(Y (1i−1, k + 1, 1m−k)). (43)

On the one hand, it is fairly straightforward to compute this composition. More precisely, consider
the subvariety Xk

i (1m) ⊂ Y (1m) given by the locus where zLi+k ⊂ Li−1 and the associated
diagram.

Xk
i (1m)

i //

q

��

Y (1m)

Y (1i−1, k + 1, 1m−k)

(44)

Here i is inclusion and q the projection which forgets Li, Li+1, . . . , Li+k−1. Thus we can consider
Xk
i (1m) ⊂ Y (1m) × Y (1i−1, k + 1, 1m−k) via the embedding i × q. Then the functor in (43) is

induced by the kernel

[P] := [OXk
i (1m) ⊗ L] ∈ KSLn×C×(Y (1m)× Y (1i−1, k + 1, 1m−k)),

where L is some line bundle (this line bundle can be explicitly identified but we do not need to
know it precisely).

On the other hand, we have

KSLn×C×(Y (1m)) ∼= (Cn)⊗(i−1) ⊗ (Cn)⊗k ⊗ (Cn)⊗(m−k),

KSLn×C×(Y (1i−1, k + 1, 1m−k)) ∼= (Cn)⊗(i−1) ⊗
k∧

(Cn)⊗ (Cn)⊗(m−k),

and the main result of [CKM14] implies that the composition in (43) is induced by the (quasi-)
projection (Cn)⊗k →

∧k(Cn) corresponding to the sign representation. It then follows that (up
to a power of q)

[PL] ∗ [P] ∼= δ([k + 1]! · esgn(Ti, . . . , Ti+k−1)) ∈ KSLn×C×(Y (1m)× Y (1m))

where PL denotes the left adjoint of P.
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This gives a geometric interpretation of δ([k+ 1]! · esgn). Thus relation (42) follows if we can
show that

i∗δ(hn−k − e
(i)
1 hn−k−1 + · · ·+ (−1)n−ke

(i)
n−k) = 0 (45)

inside KSLn×C×(Xk
i (1m)). Using the exact sequence

0→ Li+k/Li−1→ z−1Li−1/Li−1→ z−1Li−1/Li+k → 0

we see that [(z−1Li−1/Li+k)
∨] = e

(i)
1 − [(Li+k/Li−1)∨]. On the other hand,

n−k∧
(z−1Li−1/Li+k)

∨ = 0,

since dim(z−1Li−1/Li+k) = n − k − 1. Moreover, [(Li+k/Li−1)∨] = Xi + · · · + Xi+k. Then (45)
follows from the general fact that

r∧
(A−B) =

r∧
(A)−

r−1∧
(A) ·B +

r−2∧
(A) · Sym2(B)−

r−3∧
(A) · Sym3(B) + · · ·

and that Symj(Xi + · · ·+Xi+k) = hj .

11. Comparison with the Steinberg variety

Denote by B the full flag variety of SLn and Z the associated Steinberg variety. Since the
Steinberg variety is the fibre product of T ∗B with itself over its affinization, its equivariant
K-theory KSLn×C×(Z) is equipped with a convolution product. The following result is due to
Ginzburg [CG97, Theorem 7.2.5] and Kazhdan and Lusztig [KL87].

Proposition 11.1. There exists an isomorphism of algebras betweenKSLn×C×(Z) and the affine
Hecke algebra Ĥn[q±].

In the result above, Ĥn[q±] denotes the affine Hecke algebra generated over C[q±] by the Ti
generators and Xi generators with the usual relations but without the ei generators. In other
words, Ĥn[q±] = Ĥn[q±]⊗EC. We would like to explain now the relation between Proposition 11.1
and our results.

We will need to consider only the special case m = n. In this case we have varieties Y (1n)
and Z(1n, 1n).

Lemma 11.2. We have natural SLn×C×-equivariant open embeddings i : T ∗B → Y (1n) and
j : Z → Z(1n, 1n).

Proof. Let Cn = z−1L0/L0 and consider the space Cn2
= Cn ⊗ span{z−1, . . . , z−n}. Then

Y (1n) = {L0 ⊂ · · · ⊂ Ln ⊂ Cn
2

: dim(Li/Li−1) = 1, zLi ⊂ Li−1}.

Now denote by P : Cn2
→ Cn the projection which takes Cn ⊗ z−i to zero if i > 1 and onto Cn

if i = 1. Consider inside Y (1n) the open locus U consisting of L• such that P (Ln) = Cn.
On U we have an isomorphism P : Ln

∼−→ Cn. Using this isomorphism we can transfer the
map z to a nilpotent endomorphism of Cn and we can transfer L1, . . . , Ln−1 to a flag in Cn.
Thus we get a map U → T ∗B. One can check that this map is actually an isomorphism. This
idea is originally due to Ngo [Ngo99] and it is also a special case of [MV03, Theorem 3.2].

Under this isomorphism the map Y (1m) → Gr which takes L• to Ln corresponds to the
affinization map of T ∗B→ N to the nilpotent cone. It follows that Z = T ∗B ×N T ∗B naturally
embeds into Z(1n, 1n) = Y (1n)×Gr Y (1n). 2
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Thus we have the following maps:

Ĥn[q±]→ KSLn×C×(Z(1n, 1n)) = EndASpn[q±](1
n)

j∗−→ KSLn×C×(Z) ∼= Ĥn[q±],

where j∗ denotes the restriction on K-theory using j.

Proposition 11.3. The composition map Ĥn[q±]→ Ĥn[q±] sends Ti 7→ Ti, Xi 7→ Xi and

e
(j)
i 7→ ei(q

2X1, q
2X2, . . . , q

2Xj−1, Xj , . . . , Xn)

where the latter are elementary symmetric functions in the variables indicated.

Proof. Suppose B = {0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn}. Then it is clear Li/Li−1 is mapped to the
natural bundle Vi/Vi−1 on T ∗B which explains why Xi 7→ Xi.

Next, notice that Ti can be identified on the one hand with the structure sheaf of the fibre
product T ∗B×(T ∗B)i T

∗B where (T ∗B)i is obtained from T ∗B by forgetting Vi. On the other hand
the image of Ti in K(Z(1n, 1n)) is identified with the structure sheaf of Y (1n)×Y (1n)iY (1n) where
Y (1n)i is obtained from Y (1n) by forgetting Li. It is then easy to check that

j−1((1n)×Y (1n)i Y (1n)) = T ∗B ×(T ∗B)i T
∗B.

This explains why Ti 7→ Ti.
Finally, on T ∗B we have

∑
iXi = [Cn]∨ and more generally ei(X1, . . . , Xn) = [

∧i(Cn)∨]. This

shows that ei 7→ ei(X1, . . . , Xn). The general expression for the image of e
(j)
i is then a non-trivial

but elementary calculation using the recursive relations

e
(i+1)
j +Xie

(i+1)
j−1 = e

(i)
j + q2Xie

(i)
j−1

which follow from (40) (cf. relations (32) and (33)). 2

It is worth noting what happens to all the conjectured relations (42). They are all mapped
to zero since

hn−k − e
(i)
1 hn−k−1 + e

(i)
2 hn−k−2 − · · ·+ (−1)n−ke

(i)
n−k = 0 (46)

by the standard relations between homogeneous and elementary symmetric functions. Thus
Conjecture 10.4 recovers Proposition 11.1.

Remark 11.4. Note that in relation (46) the ei are functions of X1, . . . , Xn while the hi are
homogeneous symmetric functions inXi, . . . , Xk+i.
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