GENERALIZED $L(f)$ SPACES

D. HUSSEIN, M. A. NATSHEH AND I. QUMSIYEH

1. Introduction. Given any set Γ, let \mathscr{P} be the family of all finite subsets of Γ. Let $f:[0, \infty) \rightarrow \mathbf{R}$ satisfying: (1) $f(x)=0$ if and only if $x=0$, (2) f is increasing, (3) $f(x+\mathrm{y}) \leqq f(x)+f(y)$ for all $x, y \geqq 0$, and (4) f is continuous at zero from the right. Such an f is called a modules. Let C be the set of all moduli, and $F=\left\{f_{v} \in C: v \in \Gamma\right\} . Q(\Gamma)$ will denote the set of all such F, s. For each $F \in Q(\Gamma)$ let

$$
L_{\Gamma}(F)=\left\{x \in R^{\Gamma}: \sum f_{v}(|x(v)|)<\infty\right\}
$$

the summation is taken over Γ, and set

$$
|x|_{F}=\sum f_{v}(|x(v)|) \text { for all } x \in L_{\Gamma}(F)
$$

If Γ is countable $Q(\Gamma)$ will be denoted by Q and $L_{\Gamma}(F)$ by $L(F)$. Let

$$
\begin{aligned}
& L_{\Gamma}^{1}=\left\{x \in R^{\Gamma}: \sum|x(v)|<\infty\right\} \text { and } \\
& L_{\Gamma}^{\infty}=\left\{x \in R^{\Gamma}: \sup |x(v)|\right\}<\infty
\end{aligned}
$$

Note that

$$
L_{\Gamma}^{1}=l^{1}(\Gamma)=l_{d}^{1} \quad \text { and } \quad L_{\Gamma}^{\infty}=L^{\infty}(\Gamma)
$$

see [4, 5 and 6].
Definition 1.1. Let $F \in Q(\Gamma) . F$ is called a suborder if there exists $r>0$, with

$$
\inf \left\{f_{v}(r): v \in \Gamma\right\}>0
$$

such that for any $A \in \mathscr{P}$, there is $v_{0} \in A$ such that for all $v \in A$ and every $x \in[0, r]$,

$$
f_{v_{0}}(x) \leqq f_{v}(x)
$$

The set of all suborders in $Q(\Gamma)$ is denoted by $Q(\Gamma)^{*}$.
Definition 1.2. Two elements F and G in $Q(\Gamma)$ are said to be in order if and only if there is an $r>0$ which puts F and G in order, i.e., there is $B \leqq \Gamma$ such that for all $x \in[0, r]$, if $v \in B$, then $f_{v}(x) \leqq g_{v}(x)$. If $B=\Gamma$, then we write $F \leqq G$.

[^0]Several authors studied special cases of $L_{\Gamma}(F)$ spaces. When Γ is countable and $f_{v}=f \in C$ for all $v \in \Gamma$, then $L_{\Gamma}(F)$ is just the $L(f)$ space which was introduced by Ruckle [7] and was investigated by Deeb and Hussein [1,2 and 3]. When Γ is countable and $f_{v}(x)=x^{p_{v}}, 0<p_{v} \leqq 1$, then $L_{\Gamma}(F)$ is the space $l\left(p_{v}\right)$ investigated by Simons [8]. If the cardinality of Γ is d and $f_{v}(x)=x^{p}, 0<p \leqq 1$, for all $v \in \Gamma$, then $L_{\Gamma}(F)$ is the space $l^{p}(\Gamma)=l_{d}^{p}$ see $[4,5]$ and $[6]$.

In Section 2 of this paper we show that $L_{\mathrm{T}}(F)$ is a complete metrizable topological vector space. We investigate some of the topological properties of $L_{\Gamma}(F)$ space. In Section 3, we characterize those elements of $Q(\Gamma)$ of which the dual of $L_{\Gamma}(F)$ is L_{Γ}^{∞}. In Section 4 we investigate local completeness of $L_{\mathrm{T}}(F)$. We give a sufficient condition for $L(F)$ to contain l^{p}, $0<p \leqq 1$. Separability of $L_{\mathrm{C}}(F)$ is also investigated and we prove that $L_{\Gamma}(F)$ is separable for a countable Γ and nonseparable when Γ is uncountable.
For the terminology of this paper see [4]. The authors would like to thank the referee for his many useful comments and productive suggestions.
2. Topological properties of $L_{\mathrm{T}}(F)$ spaces. In this section we show that $L_{\Gamma}(F)$ with the topology induced by $\|_{F}$ is an F-space and investigate some of its properties. The proofs of the following, Lemma 2.1, Theorem 2.2 and Lemma 2.3, 2.4 are standard.
Lemma 2.1. If $x \in L_{\Gamma}(F)$, then for every $r>0$ there is a natural number N such that $\left|\frac{x}{N}\right|_{F}<r$.

Theorem 2.2. (1) $L_{\Gamma}(F)$ is a vector space.
(2) $d(x, y)=|x-y|_{F}$ is a metric on $L_{\Gamma}(F)$.
(3) If $u(F)$ is the topology induced on $L_{\Gamma}(F)$ by the above metric then $\left(L_{\mathrm{r}}(F), u(F)\right)$ is a topological vector space (TVS).
(4) For every $v \in \Gamma$, the evaluation map $E_{v}: L_{\Gamma}(F) \rightarrow \mathbf{R}$ defined by

$$
E_{v}(x)=x(v)
$$

is continuous.
(5) $\left(L_{\mathrm{T}}(F), u(F)\right)$ is a complete space.

Lemma 2.3. If $L_{\Gamma}(G) \subseteq L_{\Gamma}(F)$, then $L_{\Gamma}(G)$ is dense in $L_{\Gamma}(F)$.
Lemma 2.4. Assume $F, G \in Q(\Gamma)$ such that for every $v \in \Gamma$ and all $x \geqq 0$,

$$
f_{v}(x) \leqq g_{v}(x),
$$

then $L_{\Gamma}(G) \subseteq L_{\Gamma}(F)$.

Lemma 2.5. Assume $F \leqq G$ and r is the real number which puts F and G in order. Moreover let

$$
\inf \left\{g_{v}(r): v \in \Gamma\right\}=r^{\prime}>0
$$

Then $L_{\Gamma}(G) \subseteq L_{\Gamma}(F)$ and the inclusion map is continuous.
Proof. Let $x \in L_{\Gamma}(G)$, then there exists $A \in P$ such that

$$
\sum_{v \in \Gamma-A} g_{v}(|x(v)|)<r^{\prime},
$$

hence

$$
g_{v}(|x(v)|)<r^{\prime} \leqq g_{v}(r) \text { for all } v \in \Gamma-A
$$

Therefore $|x(v)|<r$ for all $v \in \Gamma-A$. Now

$$
\sum f_{v}(|x(v)|) \leqq \sum_{v \in A} f_{v}(|x(v)|)+\sum_{v \in \Gamma-A} g_{v}(|x(v)|)<\infty,
$$

hence $x \in L_{\Gamma}(F)$.
To show that inclusion is continuous: Let $\epsilon>0$ be given, and take

$$
\partial=\min \left\{r^{\prime}, \epsilon\right\} .
$$

Hence $|x|_{G}<\partial$ implies that

$$
\begin{aligned}
& \sum g_{v}(|x(v)|)<r^{\prime} \quad \text { and } \\
& g_{v}(|x(v)|)<g_{v}(r) \quad \text { for all } v \in \Gamma .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& |x(v)|<r \text { and } \\
& \sum f_{v}(|x(v)|) \leqq \sum g_{v}(|x(v)|)<\partial \leqq \epsilon .
\end{aligned}
$$

Corollary. If $F \in Q(\Gamma)$ and there exists $r>0$ such that for every $v \in \Gamma$ and all $x \in[0, r], f_{v}(x) \geqq x$, then $L_{\Gamma}(F) \subseteq L_{\Gamma}^{1}$.

Lemma 2.6. If $F \in Q(\Gamma)^{*}$, then $L_{\Gamma}(F) \subseteq L_{\Gamma}^{1}$.
Proof. Let $F \in Q(\Gamma)^{*}$, then there exists $r>0$ with

$$
\inf \left\{f_{v}(r): v \in \Gamma\right\}>0
$$

and for any $A \in \mathscr{P}$, there exists $v_{0} \in A$ such that for all $v \in A$ and every $x \in[0, r]$,

$$
f_{v_{0}}(x) \leqq f_{v}(x) .
$$

Assume $x \in L_{\Gamma}(F)$ and $x \notin L_{\Gamma}^{1}$. Then for any $\epsilon>0$, there is $A \in P$ such that

$$
\sum_{v \in \Gamma-A} f_{v}(|x(v)|)<\epsilon .
$$

Let A^{\prime} be a finite subset of $\Gamma-A$ such that

$$
\sum_{v \in A}|x(v)|>r \text { and }|x(v)|<r, \quad \text { for all } v \in A^{\prime}
$$

This is possible because if there is an infinite subset $D \leqq \Gamma$ such that $|x(v)| \geqq r$ for all $v \in D$, then $x \notin L_{\Gamma}(F)$. Now there is $v_{0} \in A^{\prime}$ such that $f_{v_{0}}(x) \leqq f_{v}(x)$ for all $v \in A^{\prime}$ and every $x \in[0, r]$. Hence

$$
\begin{aligned}
f_{v_{0}}(r) & \leqq f_{v_{0}}\left(\sum_{v \in A^{\prime}}|x(v)|\right) \leqq \sum_{v \in A^{\prime}} f_{v_{0}}(|x(v)|) \\
& \leqq \sum_{v \in A^{\prime}} f_{v}(|x(v)|) \leqq \sum_{v \in \Gamma-A} f_{v}(|x(v)|)<\epsilon .
\end{aligned}
$$

Since ϵ was arbitrary $f_{v_{0}}(r)=0$ which is a contradiction. Consequently

$$
L_{\Gamma}(F) \subseteq L_{\Gamma}^{1} .
$$

Let $F, G \in Q(\Gamma)$ be in order. For each $v \in \Gamma$ set

$$
\begin{aligned}
& h_{v}(x)=\max \left\{f_{v}(x), g_{v}(x)\right\} \quad \text { and } \\
& k_{v}(x)=\min \left\{f_{v}(x), g_{v}(x)\right\} .
\end{aligned}
$$

Let

$$
H=\left\{h_{v}: v \in \Gamma\right\} \text { and } K=\left\{k_{v}: v \in \Gamma\right\},
$$

then $H, K \in Q(\Gamma)$.
Lemma 2.7. Let $F, G \in Q(\Gamma)$ be in order, and H, K be as defined above. If

$$
\inf \left\{f_{v}(r): v \in \Gamma\right\}>0 \text { and } \inf \left\{g_{v}(r): v \in \Gamma\right\}>0
$$

where r is the real number which puts F and G in order. Then
(1) $L_{\Gamma}(H)=L_{\Gamma}(F) \cap L_{\Gamma}(G)$, and
(2) $L_{\Gamma}(K)=M$,
where M is the subspace of R^{Γ} generated by $\Gamma_{\Gamma}(F)$ and $L_{\Gamma}(G)$.
Proof. (1) is obvious by Lemma 2.5. To prove (2), by Lemma 2.5 we have

$$
L_{\Gamma}(F) \cup L_{\Gamma}(G) \subseteq L_{\Gamma}(K)
$$

Let $x \in L_{\Gamma}(K)$. Define

$$
\begin{aligned}
& A_{x}=\left\{v \in \Gamma \mid f_{v}(x) \geqq g_{v}(x)\right\} \quad \text { and } \\
& B_{x}=\left\{v \in \Gamma \mid f_{v}(x) \leqq g_{v}(x)\right\} .
\end{aligned}
$$

Let $y, z \in R^{\Gamma}$ be defined by $y(v)=x(v)$ if $v \in B_{x}$ and zero otherwise, and $z(v)=x(v)$ if $v \in A_{x}$ and is zero otherwise. Then

$$
\sum f_{v}(|y(v)|)=\sum_{v \in B_{x}} k_{v}(|x(v)|)<\infty
$$

and $y \in L_{\Gamma}(F)$. Similarly $z \in L_{\Gamma}(G)$. Hence $x=y+z \in M$ and $L_{\Gamma}(K) \leqq M$. Hence the result.

If $L_{\Gamma}(G) \subseteq L_{\Gamma}(F)$, then we can consider two topologies on $L_{\Gamma}(G), u(G)$ and the subspace topology of $u(F)$. In the following theorem we investigate when these two topologies coincide.

Theorem 2.8. Assume that $F, G \in Q(\Gamma), F \leqq G$, and r is the positive real number which puts F and G in order. Moreover let

$$
\inf \left\{g_{v}(r): v \in \Gamma\right\}=r^{\prime}>0
$$

Then the following are equivalent
(1) $u(G)$ is the subspace topology of $u(F)$.
(2) $L_{\Gamma}(G)$ is closed in $L_{\Gamma}(F)$.
(3) $L_{\Gamma}(G)=L_{\Gamma}(F)$.

Proof. To show (1) implies (2). Let $u(G)$ be the topology induced on $L_{\Gamma}(G)$ as a subspace of $L_{\Gamma}(F)$, hence $u(G)$ and $u(F)$ give the same definition of Cauchy sequences in $L_{\Gamma}(G)$. But $\left(L_{\Gamma}(G), u(G)\right)$ is complete, hence $L_{\Gamma}(G)$ is closed in $\left(L_{\Gamma}(F), u(F)\right)$.
(2) implies (3) trivially, (by Lemma 2.3), and (3) implies (1) trivially.
3. On the dual of $L_{\Gamma}(F)$.

It is well known that the dual of $l^{p}(0<p \leqq 1)$ is l^{∞}, and the dual of $L(f)$ spaces with some conditions on f is $l^{\infty}[3]$. The dual of $l\left(p_{n}\right)$ spaces, $0<p_{n} \leqq 1$ and $\inf \left\{p_{n}: n=1,2, \ldots\right\} \neq 0$ is $l^{\infty}[8]$. In this section we characterize those elements of $Q(\Gamma)$ for which the dual of $L_{\Gamma}(F)$ is L_{Γ}^{∞}.

Theorem 3.1. Let $F \in Q(\Gamma)$ and suppose that there is $r>0$ with

$$
\inf \left\{f_{v}(r): v \in \Gamma\right\}=r^{\prime}>0
$$

such that for all $v \in \Gamma$ and every $x \in[0, r], f_{v}(x) \geqq x$. Moreover assume that for every $f>0$, there is a real number $t>0$ such that $f_{v}(f)<\epsilon$ for all $v \in \Gamma$. Then there is a bijection between $L_{\Gamma}(F)^{\prime}$ and L_{Γ}^{∞}.

Proof. For $y \in L_{\Gamma}^{\infty}$, define $y^{*}: L_{\Gamma}(F) \rightarrow R$ as follows. For any $x \in L_{\Gamma}(F)$, let

$$
D=\left\{v_{1}, v_{2}, \ldots\right\} \subseteq \Gamma
$$

such that $x(v)=0$ for all $v \in \Gamma-D$. Then

$$
y^{*}(x)=\sum_{i=1}^{\infty} x\left(v_{i}\right) y\left(v_{i}\right) \quad \text { and }
$$

$$
\left|y^{*}(x)\right| \leqq|y|_{\infty} .|x|_{1}<\infty
$$

To show that $y^{*} \in L_{\Gamma}(F)^{\prime}$, let $x, z \in L_{\Gamma}(F), t, s \in R$, then there is $D=\left\{v_{1}, v_{1}, \ldots\right\} \subseteq \Gamma$ such that

$$
\begin{aligned}
& x(v)=z(v)=0 \quad \text { for all } v \in \Gamma-D . \\
& y^{*}(t x+s z)=\sum_{i=1}^{\infty}\left(t x\left(v_{i}\right)+s z\left(v_{i}\right)\right) y\left(v_{i}\right)=t y^{*}(x)+s y^{*}(z) .
\end{aligned}
$$

For continuity of y^{*}. The inclusion $i: L_{\Gamma}(F) \subseteq L_{\Gamma}^{1}$ is continuous (Lemma 2.5). Hence for any $\epsilon>0$, there is $z>0$ such that $|x|_{F}<z$ implies $|x|_{1}<F$. Hence

$$
\left|y^{*}(x)\right| \leqq|y|_{\infty}|x|_{1}<\epsilon_{1}
$$

and y^{*} is continuous at zero, being linear it is continuous.
Now define $h: L_{\Gamma}^{\infty} \rightarrow L_{\Gamma}(F)^{\prime}$ by $h(y)=y^{*}$. For each $v \in \Gamma$ let $B_{v} \in L_{\Gamma}(F)$ be defined by $B_{v}(u)=1$ if $u=v$ and zero otherwise. If $y_{1}, y_{2} \in L_{\Gamma}^{\infty}$ such that $h\left(y_{1}\right)=h\left(y_{2}\right)$, then

$$
y_{1}^{*}\left(B_{v}\right)=y_{2}^{*}\left(B_{v}\right) \quad \text { for all } v \in \Gamma
$$

hence $y_{1}(v)=y_{2}(v)$ and $y_{1}=y_{2}$. Therefore h is injective.
To show h is onto let $T \in L_{\Gamma}(F)^{\prime}$ and let $T\left(B_{v}\right)=b_{v}$ for all $v \in \Gamma$. Since T is continuous, then it is bounded, in the sense that it maps bounded sets into bounded sets. Let

$$
H=\left\{B_{v}: v \in \Gamma\right\}
$$

and let

$$
U=\left\{x \in L_{\Gamma}(F):|x|_{F}<\epsilon\right\}
$$

Now there is $t>0$ such that $f_{v}(t)<\epsilon$ for all $v \in \Gamma$. Hence for every $v \in \Gamma, t B_{v} \in U$ and hence

$$
H \subseteq \frac{1}{t} U
$$

Therefore $T(H)$ is bounded and hence norm bounded, i.e., there is an $M>0$ such that $\left|T\left(B_{v}\right)\right|<M$ for all $v \in \Gamma$, so

$$
\sup _{v \in \Gamma}\left|T\left(B_{v}\right)\right|=\sup _{v \in \Gamma}\left|b_{v}\right| \leqq M
$$

Hence if we define $y(v)=b_{v}$ for all $v \in \Gamma$, then $y \in L_{\Gamma}^{\infty}$. Now since for any $x \in L_{\Gamma}(F)$ and $D=\left\{v_{1}, v_{2}, \ldots\right\} \subseteq \Gamma$ such that $x(v)=0$ for all $v \in \Gamma-D$, by the continuity of T,

$$
T(x)=T\left(\sum_{i=1}^{\infty} x\left(v_{i}\right) B v_{i}\right)=\sum_{i=1}^{\infty} x\left(v_{i}\right) b_{i}
$$

and $T=y^{*}$.

Theorem 3.2. Let F have the same properties as in the last theorem. Moreover assume $f_{v}(1)=1$ for all $v \in \Gamma$. Then $L_{\Gamma}(F)^{\prime}$ is isometrically isomorphic to L_{Γ}^{∞}.

To show $|y|_{\infty}=\left\|y^{*}\right\|$ for any $y \in L_{\Gamma}^{\infty}$. Let $x \in L_{\Gamma}(F)$. If $|X|_{F} \leqq 1$, then

$$
\left|y^{*}(x)\right| \leqq|y|_{\infty} .|x|_{F} \leqq|y|_{\infty}
$$

hence $\left\|y^{*}\right\| \leqq|y|_{\infty}$.
On the other hand since $y^{*}\left(B_{v}\right)=y(v)$ for all $v \in \Gamma$, then

$$
|y(v)|=\left|y^{*}\left(B_{v}\right)\right| \leqq\left\|y^{*}\right\| \cdot\left|B_{v}\right|_{F}=\left\|y^{*}\right\| .
$$

Therefore $|y|_{\infty} \leqq\left\|y^{*}\right\|$, and the result follows.
4. Local boundedness and separability of $L_{\Gamma}(F)$. In this section we give a sufficient condition for the space $L(F)$ to be locally bounded, and a sufficient condition for $L(F)$ to contain $l^{p}, 0<p \leqq 1$. We also study the separability of $L_{\Gamma}(F)$.

Theorem 4.1. Suppose $F \in Q$ satisfies the following properties:
(1) $f_{n}(x y) \leqq f_{n}(x) f_{n}(y)$ for all $n=1,2, \ldots$ and for all $x, y \geqq 0$,
(2) there is a natural number k and a real number $r>0$ such that $f_{n}(x) \leqq f_{k}(x)$ for all n and for all $x \in[0, r]$.

Then a subset $B \leqq L(F)$ is norm bounded if and only if it is topologically bounded.

Proof. Let B be a norm bounded subset of $L(F)$. Then there exists M such that $|b|_{F} \leqq M$ for all $b \in B$. Let

$$
U=\left\{x \in L(F):|x|_{F}<\epsilon\right\}
$$

be a neighborhood of zero. By continuity of f_{k}, there is $s>0$ such that $|x|<s$ implies

$$
f_{k}(|x|)<\frac{\epsilon}{M}
$$

Let N be a natural number such that $1 / N<\min \{s, r\}$, then

$$
f_{k}\left(\frac{1}{N}\right)<\frac{\epsilon}{M}
$$

Now if $x \in B$ then

$$
\begin{aligned}
\sum_{n=1}^{\infty} f_{n}\left(\frac{|x(n)|}{N}\right) & \leqq \sum_{n=1}^{\infty} f_{n}\left(\frac{1}{N}\right) f_{n}(|x(n)|) \\
& \leqq \sum_{n=1}^{\infty} f_{k}\left(\frac{1}{N}\right) f_{n}(|x(n)|)<\epsilon
\end{aligned}
$$

i.e., $x / N \in U$ or $x \in N U$ and $B \leqq N U$. The other way is well known.

Corollary 1. If $F \in Q$ satisfies the hypothesis of Theorem 4.1, then $L(F)$ is locally bounded. In particular, if $f \in C$ satisfies

$$
f(x y) \leqq f(x) f(y) \quad \text { for all } x, y \geqq 0
$$

then $L(f)$ is locally bounded.
Corollary 2. If $F=\left\{f_{n}: f_{n}(x)=x^{p_{n}}\right\}$ where $0<p_{n} \leqq 1$ and $\inf p_{n}>0$, then $L(F)=l\left(p_{n}\right)$ is locally bounded. This result was proved in [8].

Theorem 4.2. Let $F \in Q$ satisfy the following conditions:
(1) $f_{n}(x y) \geqq f_{n}(x) f_{n}(y)$ for all n and every $x, y \geqq 0$.
(2) There is an $r>0$ such that for all n and every $x \in[0, r] f_{n}(x) \geqq x$.

Then if $L(F)$ is absolutely p-convex then $l^{p} \subseteq L(F)$.
Proof. There is a basic neighborhood U of zero, which is absolutely p-convex and contained in the unit ball. For this U there is an $s>0$ such that

$$
\left\{x:|x|_{F}<s\right\} \leqq U \leqq\left\{x:|x|_{F}<1\right\}
$$

Let $r^{\prime}=\min \{r, s\}$. Now since $f_{n}(r) \geqq r$ for all n, then there is a real number $t_{n}>0$ such that $f_{n}\left(t_{n}\right)=r^{\prime}$. Let $x_{k}=t_{k} e_{k}$. Now

$$
\left|x_{k}\right|_{F}=f_{k}\left(t_{k}\right)=r^{\prime} \leqq r
$$

which implies that $x_{k} \in U$. If $a_{1}, a_{2}, \ldots, a_{n}$ are real numbers such that

$$
\sum_{k=1}^{n}\left|a_{k}\right|^{p} \leqq 1
$$

then

$$
x=\sum_{k=1}^{n} a_{k} x_{k} \in U
$$

Now

$$
\begin{aligned}
\sum_{k=1}^{n} f_{k}\left(\left|a_{k}\right|\right) & =\frac{1}{r^{\prime}} \sum_{k=1}^{n} f_{k}\left(t_{k}\right) \cdot f_{k}\left(\left|a_{k}\right|\right) \\
& \leqq \frac{1}{r^{\prime}} \sum_{k=1}^{n} f_{k}\left(\left|t_{k} a_{k}\right|\right) \leqq \frac{1}{r^{\prime}}|x|_{F} \leqq \frac{1}{r^{\prime}}
\end{aligned}
$$

Let $y \in l^{p}$ and

$$
S=\sum_{n=1}^{\infty}|y(n)|^{p} .
$$

Choose $M \geqq \max \{S, \epsilon\}$. Then

$$
\sum_{n=1}^{\infty}|y(n)|^{p} \leqq M
$$

implies

$$
\sum_{n=1}^{\infty}\left(\frac{g(n)}{M^{1 / p}}\right)^{p} \leqq 1
$$

and

$$
\sum_{k=1}^{n}\left(\frac{y(k)}{M^{1 / p}}\right)^{p} \leqq 1 \quad \text { for all } n=1,2, \ldots
$$

Hence

$$
\sum_{k=1}^{n} f_{k}\left(\left|\frac{y(k)}{M^{1 / p}}\right|\right) \leqq \frac{1}{r^{\prime}} \quad \text { for } n=1,2, \ldots
$$

and

$$
\sum_{k=1}^{n} f_{k}(|y(k)|) \cdot f_{k}\left(M^{-1 / p}\right) \leqq \frac{1}{r}
$$

so

$$
\sum_{k=1}^{n} M^{-1 / p} f_{k}(|y(k)|) \leqq \frac{1}{r^{\prime}}
$$

or

$$
\sum_{k=1}^{n} f_{k}(|y(k)|) \leqq \frac{M^{1 / p}}{r^{\prime}}
$$

and hence $l \leqq L(F)$.
Corollary. Let F satisfy the hypothesis of Theorem 4.2. If $L(F)$ is locally convex, then $L(F)=l^{1}$.

Theorem 4.3. The space $L_{\Gamma}(F)$ is separable for any countable Γ and nonseparable for a noncountable Γ.

Proof. The first part is obvious. To prove the second part let Γ be uncountable. Suppose $E=\left\{x_{1}, x_{2}, \ldots\right\}$ is a countable dense subset of
$L_{\Gamma}(F)$. For every i, let D_{i} be a countable subset of Γ such that $x_{i}(v)=0$ for all $v \in \Gamma-D_{i}$. Let

$$
D=\bigcup_{i=1}^{\infty} D_{i} .
$$

Let $u \in \Gamma-D$, and define $x \in L_{\Gamma}(F)$ as follows. $x(u)=1$ and $x(v)=0$ for all $v \neq u$. Then

$$
\left|x-x_{i}\right| \geqq 1 \quad \text { for all } i .
$$

Hence if $U=\left\{y:|a-y|_{F}<1\right\}$ then $U \cap E=\emptyset$ and this contradicts the density of E.

References

1. W. Deeb, Necessary and sufficient conditions for the equality of $L(f)$ and l^{\prime}, Can. J. Math. 34 (1982), 406-410.
2. W. Deeb and D. Hussein, Results on $L(f)$ spaces, The Arabian J. of Science and Engineering 5 (1980), 113-116.
3. D. Hussein and W. Deeb, On the dual spaces of $L(f)$, Dirasat, the Science Section, J. of the University of Jordan 6 (1979), 71-84.
4. G. Köthe, Topological vector spaces I (Springer Verlag, Berlin, 1969).
5. -Hebbare lokalkonvexe Raume, Math. Annalen 165 (1966), 181-195.
6. A. Ortynski, On complemented subspaces of $L^{p}(\Gamma)$ for $0<p \leqq 1$, Bull Acad. Polon. Sci 26 (1978), 31-34.
7. W. H. Ruckle, FK spaces in which sequence of coordinate vectors is bounded..Can. J. Math. 25 (1973), 973-978.
8. S. Simons, The sequence spaces $l\left(p_{v}\right), m\left(p_{v}\right)$, Proc. London Math. Soc. 15 (1965), 422-436.

University of Jordan,
Amman, Jordan

[^0]: Received March 8, 1983 and in revised form May 3, 1984.

