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GENERALIZED L(f) SPACES 

D. HUSSEIN, M. A. NATSHEH AND I. QUMSIYEH 

1. Introduction. Given any set T, let & be the family of all finite subsets 
of T. Let/:[0, oo) -* R satisfying: (\)f(x) = 0 if and only if x = 0, (2) / i s 
increasing, (3) f(x 4- y) â f(x) + f(y) for all x, y = 0, and (4) f is 
continuous at zero from the right. Such an fis called a modules. Let C be 
the set of all moduli, and F = {fv e C:v e V). Q(T) will denote the set of 
all such F, s. For each F e Q(T) let 

L r(F) = {x G flr: 2 / v ( | x ( v ) | ) < o o } , 

the summation is taken over T, and set 

W f = 2 / v ( U ( v ) | ) for a l l * G L r(F). 

If T is countable Q(T) will be denoted by Q and Lr(F) by L(F). Let 

L[ = [x G flr: 2 |JC(V) | < oo} and 

Lf = {x e /? r : supU(v) | } < oo. 

Note that 

Lf = / ' ( r ) = l\ and L?? = L°°(T), 

see [4, 5 and 6]. 

Definition 1.1. Let F e £?(0- F i s called a suborder if there exists r > 0, 
with 

inf{/v(r):v e T} > 0, 

such that for any A e ^ , there is v0 e ^ such that for all v e ,4 and every 
* e [0, r], 

/ V o (ac )S / v ( x ) . 

The set of all suborders in Q(T) is denoted by Q(T)*. 

Definition 1.2. Two elements F and G in (?(T) are said to be in order 
if and only if there is an r > 0 which puts F and G in order, i.e., there is 
B ^ r such that for all x e [0, r], if v G £, then/v(x) â gv(;c). If 5 = I\ 
then we write F ^ G. 
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Several authors studied special cases of LT(F) spaces. When T is 
countable and/v = / e C for all v e T, then LT(F) is just the L(f) space 
which was introduced by Ruckle [7] and was investigated by Deeb and 
Hussein [1, 2 and 3]. When T is countable mdfv(x) = xp\ 0 < pv ^ 1, 
then LT(F) is the space l(pv) investigated by Simons [8]. If the cardinality 
of T is d and/v(x) = xp, 0 < p S 1, for all v £ T, then LV(F) is the space 
IP(T) = 1% see [4, 5] and [6], 

In Section 2 of this paper we show that LT(F) is a complete metrizable 
topological vector space. We investigate some of the topological properties 
of LT(F) space. In Section 3, we characterize those elements of Q(T) of 
which the dual of LT(F) is L™. In Section 4 we investigate local com
pleteness of Lr(F). We give a sufficient condition for L(F) to contain lp, 
0 < p ^ 1. Separability of LT(F) is also investigated and we prove that 
Lr(F) is separable for a countable T and nonseparable when T is 
uncountable. 

For the terminology of this paper see [4]. The authors would like to 
thank the referee for his many useful comments and productive 
suggestions. 

2. Topological properties of LT(F) spaces. In this section we show that 
L r(F) with the topology induced by HF is an F-space and investigate some 
of its properties. The proofs of the following, Lemma 2.1, Theorem 2.2 and 
Lemma 2.3, 2.4 are standard. 

LEMMA 2.1. Ifx G LY(F), then for every r > 0 there is a natural number 
x 

N such that 
N F < r -

THEOREM 2.2. (1) Lr(F) is a vector space. 
(2) d(x, y) = \x — y\F is a metric on Lr(F). 
(3) If u(F) is the topology induced on LY(F) by the above metric then 

(Lr(F), u(F) ) is a topological vector space (TVS). 
(4) For every v e T, the evaluation map Ev:Lr(F) —» R defined by 

Ev(x) = x(v) 

is continuous. 
(5) (L r(F), u(F) ) is a complete space. 

LEMMA 2.3. If LT(G) Q LT(F), then LT(G) is dense in LT(F). 

x 

LEMMA 2.4. Assume F, G e Q(T) such that for every v G T and all 
§ 0, 

fv(x) ^ gv(x), 

then LT(G) Q LT(F). 
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LEMMA 2.5. Assume F = G and r is the real number which puts F and G in 
order. Moreover let 

inf{gv(r):v G T) = r' > 0. 

Then Ly(G) Q Ly(F) and the inclusion map is continuous. 

Proof. Let x e LT(G), then there exists A e P such that 

2 gv(l*(v)|)<r\ 
vGT-A 

hence 

gv( \x(v) I ) < / â gv(r) for all v G T - A. 

Therefore \x(v) | < r for all v G T — .4. Now 

2 / v ( | x ( v ) | ) ^ 2 / v ( W v ) l ) + 2 g v ( W v ) l ) < o o , 

hence ;t G LT(F). 

To show that inclusion is continuous: Let c > 0 be given, and take 

9 = min{r', e}. 

Hence \x\G < 3 implies that 

2 gv( l*(v) | ) < r' and 

gv( \x(v) I ) < gv(r) for all v G T. 

Therefore 

|x(v) | < r and 

2 / v ( | x ( v ) | ) ^ 2 g v ( l * ( v ) | ) < 8 ë c . 

COROLLARY. If F G Q(T) and there exists r > 0 SMC/I //iaf /or eve/y 
v G r and all x G [0, /•],/„(*) ^ x, Men Lr(F) Q L.\. 

LEMMA 2.6. If F e g ( D * , /Aen L r (F ) £ L [ . 

/Voo/. Let F G <2(r)*, then there exists r > 0 with 

inf{/v(r):v G T} > 0 

and for any ^ E ^ , there exists v0 Œ A such that for all v G 4̂ and every 
x e [0, r], 

fVQ(x) ^fM)-
Assume x e LT(F) and x & Lf. Then for any € > 0, there is A e P 

such that 

2 fv( U(v) l ) < c 
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Let A' be a finite subset ofT — A such that 

2 U(v) | > r and |JC(V) | < r, for all v e ,4'. 

This is possible because if there is an infinite subset D ^ T such that 
\x(v) I ^ /* for all v e Z>, then x £ LT(F). Now there is v0 e ,4' such that 

/ v (x) ^ / v (x) for all v e ^4' and every x e [0, r]. Hence 

/ v „ ( / - ) ^ / v 0 ( 2 1*00 l ) ^ 2 / v 0 ( l * ( v ) l ) 

^ 2 / V ( U ( V ) | ) S 2 /V(|AC(V)|)<£. 
VG/1' v G r - / | 

Since € was arbitrary fv (r) = 0 which is a contradiction. Consequently 

L r(F) ç L{, 

Let F, G G (?(T) be in order. For each v e T set 

K(x) = max{/v(x), gv(x) } and 

/rv(x) = min{/v(x), gv(x) }. 

Let 

/ / = [hv:v e T} and A: = {kv:v e T}, 

then H, K e g ( r ) . 

LEMMA 2.7. Le/ i% G e g(T) 6e /« tfnfer, a«d H, K be as defined above. 

if 

inf{/v(r):v e T} > 0 and inf{gv(r):v G T) > .0 , 

where r is the real number which puts F and G in order. Then 

(1) LT(H) = Lp(F) n L r(G), am/ 

(2) Lr(K) = M, 

where M is the subspace of R generated by T r (F) and Ly{G). 

Proof. (1) is obvious by Lemma 2.5. To prove (2), by Lemma 2.5 we 
have 

L r(F) U Lr(G) c Lr(K). 

Let x G L r ( /Q. Define 

^ = (v e r|/v(jc) â gv(x) } and 

Bx = {v e r | / v (x) â gv(x) }. 
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Let y, z G R be defined by^(v) = x(v) if v G Bx and zero otherwise, and 
z(v) = x(v) if v G ^ and is zero otherwise. Then 

2/v(b(v)|) = 2 MW»)I)<°° 

and _y G Lr(F). Similarly z G Lr(G). Hence x = y + z G M and 
Lr(A

r) ^ M. Hence the result. 

If Lr(G) Q LT(F), then we can consider two topologies on L r(G), u(G) 
and the subspace topology of u(F). In the following theorem we 
investigate when these two topologies coincide. 

THEOREM 2.8. Assume that F, G G <2(T), F îè G, and r is the positive real 

number which puts F and G in order. Moreover let 

inf{gv(r):v G T) = r' > 0. 

Then the following are equivalent 

(1) u(G) is the subspace topology ofu(F). 

(2) LT(G) is closed in LT(F). 

(3) LY(G) = LT(F). 

Proof. To show (1) implies (2). Let u(G) be the topology induced on 
LT(G) as a subspace of LT(F), hence u(G) and w(F) give the same 
definition of Cauchy sequences in L r(G). But (LY(G), U(G) ) is complete, 
hence LT(G) is closed in (Lr(F), u(F) ). 

(2) implies (3) trivially, (by Lemma 2.3), and (3) implies (1) trivially. 
3. On the dual of LT(F). 
It is well known that the dual of lp(0 < p ^ 1) is /°°, and the dual of 

L(f) spaces with some conditions o n / i s /°° [3]. The dual of l(pn) spaces, 
0 < pn ^k 1 and 'mi{pn\n = 1, 2 , . . . } ^ 0 is /°° [8]. In this section we 
characterize those elements of Q(T) for which the dual of LT(F) is L™. 

THEOREM 3.1. Let F G Q(T) and suppose that there is r > 0 with 

inf{/v(r):v G T} = r' > 0, 

such that for all v G Y and every x G [0, r],fv(x) i? x. Moreover assume 
that for every f > 0, there is a real number t > 0 such thatfv(f) < efor all 
v G T. Then there is a bijection between L r(F) r and L^. 

Proof For y e L^3, define >>*:Lr(F) —» R as follows. For any 
x e LrCF), let 

D = { v „ v 2 , . . . } Ç r 

such that x(v) = 0 for all v G T — D. Then 

oo 

.V*(*) = 2 -xCv/Mv,) and 
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|y* ( * ) | ^ l̂ loo- |JC|, < o o . 

To show that y* G LY(F)\ let x, z G LT(F), t, s G R, then there is 
Z) = {V], V j , . . . } Q r such that 

JC(V) = z(v) = 0 for all v G T - Z). 

oo 

;>*(/* + 5z) = 2 (tx(vt) + ^ ( v , ) ) ^ , ) = <y*(*) + sy*(z). 
1 = 1 

For continuity of j>*. The inclusion i:LT(F) Q Lp is continuous (Lemma 
2.5). Hence for any e > 0, there is z > 0 such that \x\F < z implies 
|x| j < F. Hence 

\y*(x)\ ^ b L H , <c, 

and y* is continuous at zero, being linear it is continuous. 
Now define h\Lf -* L r (F) ' by h(y) = y*. For each v G T let 

Z?v G Lr(,F) be defined by Bv(u) = 1 if w = v and zero otherwise. If 
yv y2 G L™ such that h(yx) = h(y2)J then 

y*(Bv) = y%Bv) for all v G T 

hence jj(v) = y2(v) and yx = yv Therefore h is injective. 
To show h is onto let T G LT(F)' and let T(5V) = bv for all v G I\ Since 

T is continuous, then it is bounded, in the sense that it maps bounded sets 
into bounded sets. Let 

H = {Bv:v G T} 

and let 

U = {x G LT(F) : |*|F < €}. 

Now there is / > 0 such that /v( / ) < c for all v G T. Hence for every 
v G T, tBv G U and hence 

H ç _ u. 
t 

Therefore T(H) is bounded and hence norm bounded, i.e., there is an 
M > 0 such that \T(Bv) \ < M for all v G T, so 

sup \T(BV)\ = sup|Z>v| =g Af. 

Hence if we define >>(v) = bv for all v G T, then y G Lf?. Now since for 
any x G L r(F) and D = {vv v2,. . . } G r such that x(v) = 0 for all 
v G T — Z), by the continuity of T, 

(
OO \ OO 

2 x(v,)i?v,) = 2 *(v,>, 
i = l 7 / = 1 

and T = y*. 
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THEOREM 3.2. Let F have the same properties as in the last theorem. 
Moreover assume fv(\) = 1 for all v G. T. Then LY(F)' is isometrically 
isomorphic to L™. 

To show \y\cc = \\y*\\ for any y e L™. Let x e LT(F). If \X\F ^ 1, 
then 

\y*(x)\ tk \y\oo.\x\F^ I J / I ^ 

hence ||>>*|| ^ 1 ^ . 
On the other hand since y*(Bv) = y(v) for all v e T, then 

\y(v)\ = \y*(Bv)\ â | | /" | | . \BV\F = \\y*\\. 

Therefore lyl^ ^ ||j>*||, and the result follows. 

4. Local boundedness and separability of L r( / r) . In this section we give a 
sufficient condition for the space L(F) to be locally bounded, and a 
sufficient condition for L(F) to contain lp, 0 < p ^ 1. We also study the 
separability of LT(F). 

THEOREM 4.1. Suppose F e Q satisfies the following properties: 
(\)fn(xy) ^ f„(x)fn(y)for all n = 1, 2 , . . . a/iJ/or all x, y ^ 0, 
(2) //ze/*£ w # natural number k and a real number r > 0 SWC/Î that 

fn(x) ^ fk(x)for all n and for all x <E [0, r]. 
Then a subset B ^ L(F) is norm bounded if and only if it is topologically 

bounded. 

Proof Let B be a norm bounded subset of L{F). Then there exists M 
such that \b\F ^ M for all b G B. Let 

£/ = {JC G L(F) :W F < €} 

be a neighborhood of zero. By continuity of fk, there is s > 0 such that 
|JC| < s implies 

M w ) < £. 

Let TV be a natural number such that 1/iV < min{s, A*}, then 

Now if JC e B then 
|,/.(^)*|,/.(i)/.<U(.)l) - , ' " V JV / n-x"\N 

i/i^k(w«)D<c 
„ = i VAT/ 
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i.e., x/N G U or x e NU and 2? ^ Nf/. The other way is well known. 

COROLLARY 1. / / F G g satisfies the hypothesis of Theorem 4.1, //*£« 
L(T) /5 locally bounded. In particular, iff e C satisfies 

f(xy)^f(x)f(y) for all x, y ê 0, 

//zei7 L ( / ) w locally bounded. 

COROLLARY 2. If F = {fn:fn(x) = xPn} where 0 < pn t=k 1 a^d 
inf /?w > 0, then L(F) = l(pn) is locally bounded. This result was proved in 
[8]. 

THEOREM 4.2. Let F e Q satisfy the following conditions: 

(i)fn(xy) = fn(x)fn(y)f°r al! n and every x> y = °-
(2) There is an r > 0 such that for all n and every x e [0, r]fn(x) = x. 
Then if L(F) is absolutely p-convex then lp Q L(F). 

Proof There is a basic neighborhood U of zero, which is absolutely 
/7-convex and contained in the unit ball. For this U there is an s > 0 such 
that 

{x: \x\F<s} ^ U ^ {x:\x\F < 1}. 

Let r' = min{r, s). Now since fn(r) ^ r for all «, then there is a real 
number tn > 0 such that fn(tn) = r'. Let x^ = Z ^ . Now 

l**lf =/*( '*) = ^ S r 

which implies that xk e [/. If flp A2» • • • » fl
w

 a r e r ea^ numbers such that 

2 \akr s i, 

then 

A: = l 

Now 

£ = 1 ^ A : = l 

^ 2 /*( MJ ) ^ ^ WF si 7 
^ A: — 1 / / 

Let y <= lp and 
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S = 2 \y(n)\r. 

Choose M i^ max{£, c}. Then 

oo 

2 \y(n)f ^ M 

implies 

and 

â ( ^ ) ' s i ^ »=>•>• 
Hence 

1 

k = \ 

and 

if(\^-\) ., • . for « = 1, 2, 

so 

* = i r' 

or 

M17'7 

2 A ( l # ) l ) 

and hence / ^ L(F). 

COROLLARY. Let F satisfy the hypothesis of Theorem 4.2. If L(F) is 
locally convex, then L(F) = l]. 

THEOREM 4.3. The space LT(F) is separable for any countable T and 
nonseparable for a noncountable T. 

Proof The first part is obvious. To prove the second part let T be 
uncountable. Suppose E = {xv x2,. . . } is a countable dense subset of 
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Lr(F). For every i, let D{ be a countable subset of T such that x,(v) = 0 for 
all v e T - />,, Let 

OO 

D = U D, 
/ = i ' 

Let u G r — Z), and define JC G ^ r (^ ) a s follows. x(w) = 1 and x(v) = 0 
for all v ^ w. Then 

U — xt\ ^ 1 for all /'. 

Hence if U = {y:\a — y\F < 1} then U Pi E = 0 and this contradicts the 
density of £. 
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