GENERALIZATION OF LEVI-OKA'S THEOREM CONCERNING MEROMORPHIC FUNCTIONS

JOJI KAJIWARA and EIICHI SAKAI

Dedicated to Professor K. NOSHIRO on his sixtieth birthday

Introduction

As Fuks [3] stated, every domain of holomorphy or meromorphy over C^n is analytically convex in the sense of Hartogs. Oka [6] proved that every domain over C^n analytically convex in the sense of Hartogs is a domain of holomorphy. Therefore a domain of meromorphy over C^n coincides with a domain of holomorphy over C^n .

In the present paper we shall prove that the envelope of meromorphy of a domain (D, φ) over a Stein manifold S with respect to a family of meromorphic functions on D is p_7 -convex in the sense of Docquier-Grauert [2] and, therefore, is a Stein manifold. Especially a domain of meromorphy over S coincides with a domain of holomorphy over S.

A complex manifold M is called of *weak* (or *strong*) *Poincaré type* if for any meromorphic function f on M there exist holomorphic functions g and hon M such that f = g/h on M (and that g and h are coprime at each point of M). From Siegel [8] any complex manifold of Cousin II type is of strong Poincaré type and from Hitotumatu-Kôta [4] any Stein manifold is of weak Poincaré type.

Let (D, φ) be a domain over a Stein manifold and f be a meromorphic function on D. There exists a meromorphic function \tilde{f} on the domain $(\tilde{\lambda}_f, \tilde{D}_f, \tilde{\varphi}_f)$ of meromorphy of f such that $f = \tilde{f} \circ \tilde{\lambda}_f$. As \tilde{D}_f is a Stein manifold which is of weak Poincaré type, there exist holomorphic functions \tilde{g} and \tilde{h} on \tilde{D}_f such that $\tilde{f} = \tilde{g}/\tilde{h}$ on \tilde{D}_f . Then holomorphic functions $g = \tilde{g} \circ \tilde{\lambda}_f$ and $h = \tilde{h} \circ \tilde{\lambda}_f$ on Dsatisfies f = g/h on D. This means that any domain over a Stein manifold is of weak Poincaré type.

Received March 19, 1966.

Revised April 11, 1966.

§1. Theorem of continuity

LEMMA 1. The following three assertions are valid for $n \ge 2$.

1) If f is meromorphic in a neighbourhood of $\bigcap_{p=1}^{\infty} \{z = (z_1, z_2, \ldots, z_n); z_1 = a_1^p, z_2 = a_2^p, \ldots, z_{n-1} = a_{n-1}^p, |z_n| \le 1\} \cup \{z; z_1 = a_1^0, z_2 = a_2^0, \ldots, z_{n-1} = a_{n-1}^0, |z_n| = 1\},$ f can be meromorphically continued in a neighbourhood of $\{z; z_1 = a_1^0, z_2 = a_2^0, \ldots, z_{n-1} = a_{n-1}^0, z_2 = a_2^0, \ldots, z_{n-1} = a_{n-1}^0, |z_n| \le 1\}$ where $a_j^p \to a_j^0$ as $p \to \infty$ for $j = 1, 2, \ldots, n-1$.

2) If f is meromorphic in a neighbourhood of $\{z ; |z_1| = 1, z_2 = 0, ..., z_{n-1} = 0, 0 \le z_n \le 1\} \cup \{z ; |z_1| \le 1, z_2 = 0, ..., z_{n-1} = 0, z_n = 0\}$, f can be meromorphically continued in a neighbourhood of $\{z ; |z_1| \le 1, z_2 = 0, ..., z_{n-1} = 0, 0 \le z_n \le 1\}$.

3) If f is meromorphic in a neighbourhood of $\{z ; |z_1| = 1, z_2 = 0, ..., z_{n-1} = 0, |z_n| \le 1\} \cup \{z ; |z_1| \le 1, z_2 = 0, ..., z_{n-1} = 0, z_n = 0\}$, f can be meromorphically continued in a neighbourhood of $\{z ; |z_1| \le 1, z_2 = 0, ..., z_{n-1} = 0, |z_n| \le 1\}$.

Proof. At first we shall prove the equivalence of 1), 2) and 3).

1) \rightarrow 2). Let r be the supremum of $\delta > 0$ such that f can be meromorphically continued in a neighbourhood of

$$C_{\delta} = \{z ; |z_1| \leq 1, z_2 = 0, \ldots, z_{n-1} = 0, 0 \leq z_n \leq \delta\}.$$

Suppose that $\gamma \leq 1$. Let $\{\delta^{p}; p = 1, 2, 3, ...\}$ be a sequence of positive numbers $\delta^{p} < \gamma$ such that $\delta^{p} \rightarrow \gamma$ as $p \rightarrow \infty$. Since f is meromorphic in a neighbourhood of

$$\bigcup_{p=1}^{\infty} \langle z ; |z_1| \leq 1, z_2 = 0, \ldots, z_{n-1} = 0, z_n = \delta^p \rangle \cup \langle z ; |z_1| = 1, z_2 = 0, \ldots, z_{n-1} = 0, z_n = \tau \rangle.$$

f can be meromorphically continued in a neighbourhood of C_7 from 1). Therefore we have $\gamma \ge 1$. Hence f can be meromorphically continued in a neighbourhood of C_1 .

2) \rightarrow 3). Let θ be any real number. Since $f(z_1, z_2, \ldots, z_{n-1}, z_n \exp(\sqrt{-1}\theta))$ is meromorphic in a neighbourhood of

$$\{z ; |z_1| = 1, z_2 = 0, \ldots, z_{n-1} = 0, 0 \le z_n \le 1\} \cup \{z ; |z_1| \le 1, z_2 = 0, \ldots, z_n = 0\},\$$

 $f(z_1, z_2, \ldots, z_{n-1}, z_n \exp(\sqrt{-1}\theta))$ can be meromorphically continued in a neighbourhood of

 $\{z ; |z_1| \leq 1, z_2 = 0, \ldots, z_{n-1} = 0, 0 \leq z_n \leq 1\}$

from 2). Thus we have proved that $f(z_1, z_2, \ldots, z_n)$ can be meromorphically

continued in a neighbourhood of

$$\bigcup_{\substack{0 \leq 0 \leq 2 \\ n \leq 0 \leq 2 \\ n \leq n}} \{z \; ; \; |z_1| \leq 1, \; z_2 = 0, \; \dots \; , \; z_{n-1} = 0, \; 0 \leq z_n \; \exp \left(-\sqrt{-1 \; \theta} \right) \leq 1 \}$$

= $\{z \; ; \; |z_1| \leq 1, \; z_2 = 0, \; \dots \; , \; z_{n-1} = 0, \; |z_n| \leq 1 \}.$

3) \rightarrow 1). There exists $\delta > 0$ such that f is meromorphic in a neighbourhood of

$$\{z ; |z_1 - a_1^{\circ}| < 2 \delta, |z_2 - a_2^{\circ}| < 2 \delta, \ldots, |z_{n-1} - a_{n-1}^{\circ}| < 2 \delta, |z_n| = 1\}.$$

There exists q > 0 such that $|a_j^p - a_j^n| < \delta$ (j = 1, 2, ..., n-1) for $p \ge q$. Since f is meromorphic in a neighbourhood of

$$\{z \ ; \ z_1 = a_1^q, \ z_2 = a_2^q, \ \ldots , \ z_{n-1} = a_{n-1}^q, \ |z_n| \le 1\} \cup \{z \ ; \ |z_1 - a_1^q| \le \delta, \\ z_2 = a_2^q, \ \ldots , \ z_{n-1} = a_{n-1}^q, \ |z_n| = 1\},$$

f can be meromorphically continued in a neighbourhood of

$$\{z ; |z_1 - a_1^q| \leq \delta, z_2 = a_2^q, \ldots, z_{n-1} = a_{n-1}^q, |z_n| \leq 1\}.$$

from 3). Of course f can be meromorphically continued in a neighbourhood of

$$\{z ; z_1 = a_1^0, z_2 = a_2^q, \ldots, z_{n-1} = a_{n-1}^q, |z_n| \leq 1\}$$

Continuing the same argument we can prove that f can be meromorphically continued in a neighbourhood of

$$\{z ; z_1 = a_1^0, z_2 = a_2^0, \ldots, z_{n-1} = a_{n-1}^0, |z_n| \leq 1\}.$$

Okuda-Sakai [7] proved the validity of 1). Therefore 1), 2) and 3) are all valid form the above discussion.

LEMMA 2. If f is meromorphic in $\{z = (z_1, z_2, \ldots, z_n); 1 - \varepsilon < |z_1| < 1 + \varepsilon, |z_2| < 1 + \varepsilon, \ldots, |z_n| < 1 + \varepsilon\} \cup \{z; |z_1| \le 1, |z_2| < 1, \ldots, |z_n| < 1\}, f can be meromorphically continued in <math>\{z; |z_1| < 1 + \varepsilon, |z_2| < 1 + \varepsilon, \ldots, |z_n| < 1 + \varepsilon\}$.

Proof. We take any a_j with $|a_j| < 1$ for j = 1, 2, ..., n-1. Let δ be any positive number with $\delta < 1$. Since f is meromorphic in a neighbourhood of

$$\{z ; |z_1| = 1, z_2 = a_2, \ldots, z_{n-1} = a_{n-1}, |z_n| \le 1 + \varepsilon - \delta\} \cup \{z ; |z_1| \le 1, z_2 = a_2, \ldots, z_{n-1} = a_{n-1}, z_n = 0\},\$$

f can be meromorphically continued in a neighbourhood of

$$\{z ; |z_1| \leq 1, z_2 = a_2, \ldots, z_{n-1} = a_{n-1}, |z_n| \leq 1 + \varepsilon - \delta\}$$

from 3) of Lemma 1. Therefore f can be meromorphically continued in a neighbourhood of

$$\{z ; |z_1| \leq 1, |z_2| < 1, \ldots, |z_{n-1}| < 1, |z_n| < 1 + \varepsilon \}.$$

Continuing the same argument we can prove that f can be meromorphically continued in a neighbourhood of

$$\langle z ; |z_1| \leq 1, |z_2| < 1 + \varepsilon, \ldots, |z_n| < 1 + \varepsilon \rangle.$$

Therefore f can be meromorphically continued in

$$\{z ; |z_1| < 1 + \varepsilon, |z_2| < 1 + \varepsilon, \ldots, |z_n| < 1 + \varepsilon\}$$

§2. Envelope of meromorphy

In this section we shall define a meromorphic completion, an envelope of meromorphy and a domain of meromorphy. At the same time we can define a holomorphic completion, an envelope of holomorphy and a domain of holomorphy.

Let M be a complex manifold. If there exists a local biholomorphic mapping of a complex manifold V in M, (V, φ) is called an open set over M. Moreover, if V is connected, (V, φ) is called a *domain over M*. Let (V, φ) and (V', φ') be open sets over M. If a holomorphic mapping λ of V in V' satisfies $\varphi = \varphi' \circ \lambda$, λ is called a *mapping of* (V, φ) in (V', φ') . Consider domains (V, φ) and (V', φ') over M with a mapping λ of (V, φ) in (V', φ') . Let f be a meromorphic (or holomorphic) function on V. A meromorphic (or holomorphic) function f' on V with $f = f' \circ \lambda$ is called a *meromorphic* (or *holomorphic*) continuation of f to (λ, V', φ') , or shortly to (V', φ') . Let \mathfrak{F} be a family of meromorphic (or holomorphic) functions on V. If any meromorphic (or holomorphic) function of $\tilde{\alpha}$ has a meromorphic (or holomorphic) continuation to (λ, V', φ') , (λ, V', φ') , or shortly (V', φ') , is called a *meromorphic* (or holomorphic) completion of (V, φ) with respect to the family \mathfrak{F} . A meromorphic (or holomorphic) completion $(\tilde{\lambda}_{\mathfrak{F}}, \tilde{V}_{\mathfrak{F}}, \tilde{\varphi}_{\mathfrak{F}})$ of (V, φ) with respect to \mathfrak{F} , or shortly $(\tilde{V}_{\mathfrak{H}}, \tilde{\varphi}_{\mathfrak{H}})$, is called an envelope of meromorphy (or holomorphy) of (V, φ) with respect to the family & if the following conditions are satisfied:

Let (λ', V', φ') be another meromorphic (or holomorphic) completion of (V, φ) with respect to $\tilde{\mathfrak{F}}$. Then there exists a mapping ψ of (V', φ') in $(\tilde{V}_{\tilde{\mathfrak{F}}}, \tilde{\varphi}_{\tilde{\mathfrak{F}}})$

with $\tilde{\lambda}_{\mathfrak{F}} = \psi \circ \lambda'$ such that $(\psi, \tilde{V}_{\mathfrak{F}}, \tilde{\varphi}_{\mathfrak{F}})$ is a meromorphic (or holomorphic) completion of (V', φ') with respect to the family \mathfrak{F}' of meromorphic (or holomorphic) continuations of all meromorphic (or holomorphic) functions of \mathfrak{F} .

If \mathfrak{F} is the family of all meromorphic (or holomorphic) functions on V, a meromorphic (or holomorphic) completion of (V, φ) with respect to \mathfrak{F} and an envelope of meromorphy (or holomorphy) of (V, φ) with respect to \mathfrak{F} are called shortly a *meromorphic* (or holomorphic) completion of (V, φ) and an *envelope* of meromorphy (or holomorphy) of (V, φ) respectively.

LEMMA 3. Let (V, φ) be a domain over a complex manifold M and (λ, V', φ') be its meromorphic completion. Then (λ, V', φ') is a holomorphic completion of (V, φ) .

Proof. Let f be a holomorphic function on V. f has a meromorphic continuation f' to (λ, V', φ') . Since exp f must be meromorphically continued to the function exp f' on V', f' must be holomorphic in V'.

By the same method as Malgrange [5], who proved the unique existence of the envelope of holomorphy, we shall prove the unique existence of the envelope of meromorphy.

LEMMA 4. Let (V, φ) be a domain over a complex manifold M and $\mathfrak{F} = \{f_i; i \in I\}$ be a family of meromorphic functions on V. There exists uniquely an envelope of meromorphy of (V, φ) with respect to \mathfrak{F} .

Proof. Consider an open neighbourhood U of a point $a \in M$. Let $(g_i)_{i \in I}$ be a family of meromorphic functions in U indexed by the above I. Let $(g'_i)_{i \in I}$ be another such family defined in a neighbourhood U' of a. If there exists a neighbourhood W of a such that $W \subset U \cap U'$ and $g_i = g'_i$ in W for any $i \in I$, $(g_i)_{i \in I}$ and $(g'_i)_{i \in I}$ are identified. In this manner we shall induce an equivalence relation in the set of all families $(g_i)_{i \in I}$ of meromorphic functions defined in an open neighbourhood of a. An equivalence class is denoted by $(g_i)_a$ and the set of all classes $(g_i)_a$ is denoted by $\Re_{\mathfrak{H}, a}$. Let

$$\Re_{\mathfrak{F}}=\bigcup_{a\in M}\Re_{\mathfrak{F},a}.$$

We shall define a mapping p of $\Re_{\mathfrak{F}}$ in M by putting $p(\mathbf{x}) = a$ for $\mathbf{x} = (g_i)_a \in \Re_{\mathfrak{F}}$. We can induce on $\Re_{\mathfrak{F}}$ a sheaf structure as usual such that $(\Re_{\mathfrak{F}}, p)$ is an open set over M. If we define a mapping ϕ of V in $\Re_{\mathfrak{F}}$ by putting

$$\psi(a) = (f_i \circ \varphi^{-1})_{\varphi(a)}$$

for $a \in V$, ψ is a mapping of (V, φ) in $(\Re_{\mathfrak{F}}, p)$. The connected component of the complex manifold $\Re_{\mathfrak{F}}$ containing the connected open set $\psi(V)$ is denoted by $\widetilde{V}_{\mathfrak{F}}$. We put

$$\widetilde{\varphi}_{\mathfrak{F}} = p | \widetilde{V}_{\mathfrak{F}}.$$

We shall define a meromorphic function \tilde{f}_i on $\tilde{V}_{\mathfrak{F}}$ for any $i \in I$ so as the germ defined by \tilde{f}_i at $x = (g_i)_a \in \tilde{V}_{\mathfrak{F}}$, defined by a family of meromorphic functions $(g_i)_{i \in I}$ in a neighbourhood of *a*, coincides with the germ defined by $g_i \circ \tilde{\varphi}_{\mathfrak{F}}$ at *x*. For $x \in \phi(V)$, we have

$$\mathbf{x} = (f_i \circ \varphi^{-1})_{\varphi(a)}$$

for $a \in V$. Therefore we have

$$f_i = \tilde{f}_i \circ \psi$$

for any $i \in I$. Hence \tilde{f}_i is a meromorphic continuation of f_i to $(\phi, \tilde{V}_{\mathfrak{F}}, \tilde{\varphi})$ for any $i \in I$. This means that $(\phi, \tilde{V}_{\mathfrak{F}}, \tilde{\varphi}_{\mathfrak{F}})$ is a meromorphic completion of (V, φ) with respect to \mathfrak{F} .

Let (λ, V', φ') be another meromorphic completion of (V, φ) with respect to \mathfrak{F} . Let f_i be any meromorphic function of \mathfrak{F} . There exists a meromorphic function f'_i on V' with $f_i = f'_i \circ \lambda$. If we define a mapping φ' of V' in $\mathfrak{R}_{\mathfrak{F}}$ by putting

$$\psi'(a) = (f'_i \circ \varphi'^{-1})_{\varphi'(a)}$$

for any $a \in V'$, ψ' is a mapping of (V', φ') in $(\Re_{\mathfrak{F}}, p)$. Since V' is connected and $\psi(V) \subset \psi'(V')$, we have

$$\phi'(V') \subset \widetilde{V}_{\mathfrak{F}}.$$

Therefore ψ' is a mapping of (V', φ') in $(\tilde{V}_{\mathfrak{F}}, \tilde{\varphi}_{\mathfrak{F}})$ too. Moreover we have $\psi = \psi' \circ \lambda$ and

$$f'_i = \tilde{f}_i \circ \psi'$$

for any $i \in I$. Therefore $(\psi, \tilde{V}_{\mathfrak{F}}, \tilde{\varphi}_{\mathfrak{F}})$ is an envelope of meromorphy of (V, φ) with respect to \mathfrak{F} .

Now let $(\tilde{\lambda}, \tilde{V}, \varphi)$ and $(\tilde{\lambda}', \tilde{V}', \tilde{\varphi}')$ be envelopes of meromorphy of (V, φ) with respect to \mathfrak{F} . There exist, respectively, a mapping ψ of $(\tilde{V}, \tilde{\varphi})$ in $(\tilde{V}', \tilde{\varphi}')$ and a mapping ψ' of $(\tilde{V}', \tilde{\varphi}')$ in $(\tilde{V}, \tilde{\varphi})$ such that

$$\lambda' = \phi \circ \lambda, \ \lambda = \phi' \circ \lambda'.$$

From the theorem of identity $\psi' \circ \psi$ and $\psi \circ \psi'$ are, respectively, identities of \tilde{V} and \tilde{V}' . Hence ψ is biholomorphic. In this sense the envelope of meromorphy of (V, φ) with respect to \tilde{v} exists uniquely.

\S 3. Pseudoconvexity of an envelope of meromorphy

LEMMA 5. Let (V, φ) be a domain over an n-dimensional Stein manifold S, $\mathfrak{F} = \{f_i ; i \in I\}$ be a family of meromorphic functions on V and $(\tilde{\lambda}_{\mathfrak{F}}, \tilde{V}_{\mathfrak{F}}, \tilde{\varphi}_{\mathfrak{F}})$ be the envelope of meromorphy of (V, φ) with respect to \mathfrak{F} . Then $(\tilde{V}_{\mathfrak{F}}, \tilde{\varphi}_{\mathfrak{F}})$ is $p_{\mathfrak{F}}$ convex in the sense of Docquier-Grauert [2] and, therefore, $\tilde{V}_{\mathfrak{F}}$ is a Stein manifold.

Proof. We may suppose that $n \ge 2$. We put

$$D = \{z = (z_1, z_2, \ldots, z_n) ; |z_1| \leq 1, |z_2| < 1, \ldots, |z_n| < 1\}$$

and

$$\delta D = \langle z ; |z_1| = 1, z \in D \rangle.$$

Consider a continuous mapping ψ of the closure \overline{D} of D in $\tilde{V}_{\mathfrak{F}} \cup \tilde{\partial} \tilde{V}_{\mathfrak{F}}$ with the following properties:

- 1) $\psi(\delta D) \Subset \widetilde{V}_{\mathfrak{R}}$
- 2) $\psi(\mathring{D}) \subset \widetilde{V}_{\mathfrak{R}}$

3) $\tilde{\varphi}_{\mathfrak{F}} \circ \psi$ can be continued to a biholomorphic mapping $\boldsymbol{\xi}$ of a neighbourhood of \overline{D} in S.

From 3) ξ is a biholomorphic mapping of B_{ε} in S for $0 < \varepsilon \leq \varepsilon'$ where

 $B_{\varepsilon} = \{z ; |z_1| < 1 + \epsilon, |z_2| < 1 + \epsilon, \ldots, |z_n| < 1 + \epsilon\}$

and ε' is a suitable positive number. If we put $G_{\varepsilon} = \xi(B_{\varepsilon})$, $\tilde{\varphi}_{\mathfrak{F}}$ maps $\tilde{\varphi}_{\mathfrak{F}}^{-1}(G_{\varepsilon})$ biholomorphically on the subdomain G_{ε} of S for $0 < \varepsilon \leq \varepsilon'$. From 1) and 2) ψ can be regarded as a biholomorphic mapping of C_{ε} in $\tilde{V}_{\mathfrak{F}}$ for $0 < \varepsilon \leq \varepsilon''$ where

$$C_{\varepsilon} = D \cup \{z \ ; \ 1 - \varepsilon < |z_1| < 1 + \varepsilon, \ |z_2| < 1 + \varepsilon, \ \ldots, \ |z_n| < 1 + \varepsilon \}$$

and ϵ'' is a suitable positive number.

Now let f_i be any meromorphic function of \mathfrak{F} and \tilde{f}_i be its meromorphic continuation to $(\tilde{\lambda}_{\mathfrak{F}}, \tilde{V}_{\mathfrak{F}}, \tilde{\varphi}_{\mathfrak{F}})$. Then $g_i = \tilde{f}_i \circ \psi$ is meromorphic not only in D but also in C_{ε} for $0 < \varepsilon \leq \delta = \min(\varepsilon', \varepsilon'')$. Lemma 4 means that B_{ε} is a meromorphic completion of C_{ε} . Therefore there exists a meromorphic contination \tilde{g}_i of g_i to B_{δ} . We shall consider the sum space $\widetilde{V}_{\mathfrak{F}} \cup B_{\delta}$. We shall identify a point $x \in \widetilde{V}_{\mathfrak{F}}$ and a point $y \in B_{\delta}$ if

$$\widetilde{\varphi}_{\mathfrak{F}}(x) = \xi(y), \ (\widetilde{f}_i \circ \widetilde{\varphi}_{\mathfrak{F}}^{-1})_{\widetilde{\varphi}_{\mathfrak{F}}(x)} = (\widetilde{g}_i \circ \xi^{-1})_{\mathfrak{F}(y)}.$$

We can put a complex structure on the quotient space V' of $\tilde{V}_{\mathfrak{F}} \cup B_{\delta}$ by the equivalence relation induced by the above identification. The holomorphic mappings φ and ξ induce naturally a local biholomorphic mapping φ' of V' in S. The natural injection $\tilde{V}_{\mathfrak{F}} \to \tilde{V}_{\mathfrak{F}} \cup B_{\delta}$ induces a biholomorphic mapping i of $\tilde{V}_{\mathfrak{F}}$ in V'. i is a mapping of $(\tilde{V}_{\mathfrak{F}}, \tilde{\varphi}_{\mathfrak{F}})$ in (V', φ') . Since $(i \circ \tilde{\lambda}_{\mathfrak{F}}, V', \varphi')$ is a meromorphic completion of (V, φ) with respect to \mathfrak{F} and since $(\tilde{\lambda}_{\mathfrak{F}}, \tilde{V}_{\mathfrak{F}}, \tilde{\varphi}_{\mathfrak{F}})$ is the envelope of meromorphy of (V, φ) with respect to \mathfrak{F} , there exists a mapping j of (V', φ') in $(\tilde{V}_{\mathfrak{F}}, \tilde{\varphi}_{\mathfrak{F}})$ such that $\tilde{\lambda}_{\mathfrak{F}} = j \circ i \circ \tilde{\lambda}_{\mathfrak{F}}$. From the theorem of identity $j \circ i$ is the identity of $\tilde{V}_{\mathfrak{F}}$. The natural injection $B_{\delta} \to V_{\mathfrak{F}} \cup B_{\delta}$ induces a biholomorphic mapping ψ' of B_{δ} in V'. It holds that

$$\psi' = i \circ \psi$$

in $D \Subset B_{\delta}$. Therefore we have

 $\psi = j \circ \psi'$

in D. Hence we have

 $\psi(D) \Subset V_{\mathfrak{F}}$

as $\psi'(D) \Subset V'$. Thus we have proved that $(\tilde{V}_{\mathfrak{F}}, \tilde{\varphi}_{\mathfrak{F}})$ is p_7 -convex in the sense of Docquier-Grauert [2]. Of course $\tilde{V}_{\mathfrak{F}}$ is a Stein manifold from [2].

§4. Main results

Let (V, φ) be a domain over a complex manifold M and f be a meromorphic (or holomorphic) function on V. The envelope $(\tilde{\lambda}_f, \tilde{V}_f, \tilde{\varphi}_f)$ of meromorphy (or holomorphy) of (V, φ) with respect to the family consisting of only f is called the *domain of meromorphy* (or *holomorphy*) of f. A domain over M is called a *domain of meromorphy* (or *holomorphy*) if it is a domain of meromorphy of a meromorphic (or holomorphic) function on a domain over M.

PROPOSITION 1. Let (V, φ) be a domain over a Stein manifold S. Then V is of weak Poincaré type.

Proof. Let f be a meromorphic function on V and $(\tilde{\lambda}_f, \tilde{V}_f, \tilde{\varphi}_f)$ be the domain of meromorphy of f. There exists a meromorphic continuation \tilde{f} of f

to $(\tilde{\lambda}_f, \tilde{V}_f, \tilde{\varphi}_f)$. From Lemma 5 \tilde{V}_f is a Stein manifold, which is of weak Poincaré type from Hitotumatu-Kôta [3]. There exist holomorphic functions \tilde{g} and \tilde{h} on \tilde{V}_f such that $\tilde{f} = \tilde{g}/\tilde{h}$ on $\tilde{V}_{\mathfrak{F}}$. If we put $g = \tilde{g} \circ \tilde{\lambda}_f$ and $h = \tilde{h} \circ \tilde{\lambda}_f$, gand h are holomorphic functions on V such that f = g/h on V.

If we put

$$S = C^n \times P \ (n \ge 1),$$

S is a non compact holomorphically convex complex manifold which is not of weak Poincaré type. The authors do not know whether there exists a holomorphically convex complex manifold which is obtained by a proper modification of a Stein space and a domain over which is not of weak Poincaré type. We shall prove the converse of Lemma 3 for domains over a Stein manifold.

PROPOSITION 2. Let (V, φ) be a domain over a Stein manifold S and (λ, V', φ') be its holomorphic completion. Then (λ, V', φ') is a meromorphic completion of (V, φ) .

Proof. Let f be a meromorphic function on V. From Proposition 1 there exist holomorphic functions g and h on V such that f = g/h on V. There exist holomorphic continuations g' and h' of g and h to (λ, V', φ') respectively. Then f' = g'/h' is a meromorphic continuation of f to (λ, V', φ') .

COROLLARY. Let (V, φ) be a domain over a Stein manifold. Then (λ, V', φ') is a holomorphic completion of (V, φ) if and only if it is a meromorphic completion of (V, φ) .

As a special case of the above Corollary we have the following Proposition.

PROPOSITION 3 Let (V, φ) be a domain over a Stein manifold S. Then the envelope $(\tilde{\lambda}_{\mathfrak{R}}, \tilde{V}_{\mathfrak{R}}, \tilde{\varphi}_{\mathfrak{R}})$ of meromorphy of (V, φ) coincides with the envelope $(\tilde{\lambda}_{\mathfrak{D}}, \tilde{V}_{\mathfrak{D}}, \tilde{\varphi}_{\mathfrak{D}})$ of holomorphy of (V, φ) .

Proof. From Lemma 3 and Proposition 2 there exist, respectively, a mapping ψ of $(\tilde{V}_{\mathfrak{N}}, \tilde{\varphi}_{\mathfrak{N}})$ in $(\tilde{V}_{\mathfrak{D}}, \tilde{\varphi}_{\mathfrak{D}})$ and a mapping ψ' of $(\tilde{V}_{\mathfrak{D}}, \tilde{\varphi}_{\mathfrak{D}})$ in $(\tilde{V}_{\mathfrak{R}}, \tilde{\varphi}_{\mathfrak{R}})$ such that $\lambda = \psi \circ \lambda'$ and $\lambda' = \psi' \circ \lambda$. From the theorem of identity $\psi' \circ \psi$ and $\psi \circ \psi'$ are, respectively, identities of $\tilde{V}_{\mathfrak{R}}$ and $\tilde{V}_{\mathfrak{D}}$. Hence ψ is a biholomorphic mapping of $\tilde{V}_{\mathfrak{R}}$ in $V_{\mathfrak{D}}$. In this sense $(\tilde{\lambda}_{\mathfrak{R}}, \tilde{V}_{\mathfrak{R}}, \tilde{\varphi}_{\mathfrak{R}})$ coincides with $(\tilde{\lambda}_{\mathfrak{D}}, \tilde{V}_{\mathfrak{D}}, \tilde{\varphi}_{\mathfrak{D}})$.

THEOREM. Let (V, φ) be a domain over a Stein manifold S. Then the following

assertions are equivalent:

1) (V, φ) is an envelope of meromorphy with respect to a family of meromorphic functions on a domain over S.

2) (V, φ) is a domain of meromorphy.

3) (V, φ) is domain of holomorphy.

4) V is holomorphically convex.

Proof. From Lemma 5 1) implies 4). Ouite similarly as in the proof of Lemma 5, 4) follows from 3) by Docquier-Grauert [2]. If V is holomorphically convex, (V, φ) is a domain of meromorphy of a holomorphic function on V from Cartan-Thullen [1]. A domain of meromorphy of a meromorphic function is an envelope of meromorphy with respect to the family consisting of only f.

Roughly speaking, the theory of domains of meromorphy over a Stein manifold coincides almost with the theory of domains of holomorphy over C^n .

References

- H. Cartan und P. Thullen, Zur Theorie der Singularitäten den Funktionen mehrerer komplexen Veränderlichen: Regularitäts - und Konvergenz-bereiche, Math. Ann., 106 (1932), 617-647.
- [2] F. Docquier und H. Grauert, Levisches Problem und Rungescher Satz f
 ür Teilgebiete Steinscher Mannigfaltigkeit, Math. Ann., 140 (1960), 94-123.
- [3] B. A. Fuks, Special chapters of theory of analytic functions of several complex variables, Moscow (1963).
- [4] S. Hitotumatu and O. Kôta, Ideals of meromorphic functions of several complex variables, Math. Ann., 125 (1952), 119-126.
- [5] B. Malgrange, Lectures on the theory of functions of several complex variables, Tata Inst. Fund. Res. Bombay, (1958).
- [6] K. Oka, Sur les fonctions analytiques de plusieur variables IX: Domaines finis sans point critique intérieur, Jap. J. Math., 27 (1953), 67-155.
- [7] H. Okuda and E. Sakai, On the continuation theorem of Levi and the radius of meromorphy, Mem. Fac. Sci. Kyushu Univ. (A), 11 (1957), 65-73.
- [8] C. L. Siegel, Analytic functions of several complex variables, Priceton Lecture (1949/50).

Mathematical Institute, Nagoya University and

Mathematical Institute, Kanazawa University

84