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Abstract

Let a, b, c be a primitive Pythagorean triple and set a = m2 − n2, b = 2mn, c = m2 + n2, where m and n
are positive integers with m > n, gcd(m, n) = 1 and m . n (mod 2). In 1956, Jeśmanowicz conjectured
that the only positive integer solution to the Diophantine equation (m2 − n2)x + (2mn)y = (m2 + n2)z is
(x, y, z) = (2, 2, 2). We use biquadratic character theory to investigate the case with (m, n) ≡ (2, 3) (mod 4).
We show that Jeśmanowicz’ conjecture is true in this case if m + n . 1 (mod 16) or y > 1. Finally,
using these results together with Laurent’s refinement of Baker’s theorem, we show that Jeśmanowicz’
conjecture is true if (m, n) ≡ (2, 3) (mod 4) and n < 100.
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1. Introduction

Let a, b, c be positive integers satisfying a2 + b2 = c2. Clearly, the Diophantine
equation

ax + bx = cz (1.1)

has the positive integer solution (x, y, z) = (2, 2, 2). In 1956, Sierpiński [14] and
Jeśmanowicz [6] showed that this is the only solution of the equation (1.1) for
(a, b, c) = (3, 4, 5), (5, 12, 13), (7, 24, 25), (9, 40, 41) and (11, 60, 61). Based on these
results, Jeśmanowicz conjectured that the only positive integer solution to equation
(1.1) is (x, y, z) = (2, 2, 2). If (a, b, c) is a primitive Pythagorean triple with 2 | b, it is
well known that a, b, c can be written as

a = m2 − n2, b = 2mn, c = m2 + n2,

where m, n are positive integers such that gcd (m, n) = 1, m > n,m . n (mod 2). Then
(1.1) can be written as

(m2 − n2)x + (2mn)y = (m2 + n2)z. (1.2)
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Many special cases of Jeśmanowicz’ conjecture have been settled for primitive
Pythagorean triples. In 1959, Lu [9] proved that, if n = 1, then (1.2) has only the
positive integer solution (x, y, z) = (2, 2, 2). In 1965, Deḿjanenko [2] extended the
results of [14] and [6] by proving the following proposition.

Proposition 1.1. If m − n = 1, then (1.2) has only the positive integer solution (x, y, z) =

(2, 2, 2).

The results of Lu and Deḿjanenko were extended by Miyazaki [10] in 2013
and further extended by Miyazaki et al. [12] in 2014. Further results concerning
Jeśmanowicz’ conjecture have been obtained under the condition that 2 ‖ mn. For
example, Le [8] showed that if 2 ‖ mn and m2 + n2 is a power of an odd prime
q, then Jeśmanowicz’ conjecture is true. Using the theory of linear forms in two
logarithms, Guo and Le [5] proved that if n = 3,m ≡ 2 (mod 4) and m > 6 000, then
Jeśmanowicz’ conjecture is true. Takakuwa [15] further proved that if n = 3, 7, 11, 15
and m ≡ 2 (mod 4), then Jeśmanowicz’ conjecture is true. Under the assumption that
m or n has no prime factor of the type 4k + 1, Deng and Cohen [4] and Deng [3] proved
amongst other results that Jeśmanowicz’ conjecture is true if 2 ‖ m or 2 ‖ n and some
other conditions concerning the prime factors of m ± n are satisfied. Again, under the
condition that 2 ‖ mn, Cao [1] proved the following two propositions.

Proposition 1.2. If (m, n) ≡ (2, 1) (mod 4), or (m, n) ≡ (2, 3) (mod 4) and m + n has
a prime factor of the form 4k + 3, then (1.2) has only the positive integer solution
(x, y, z) = (2, 2, 2).

Proposition 1.3. If (m,n) ≡ (1,6) or (5,2) (mod 8), or (m,n) ≡ (3,2) (mod 4) and m + n
has a prime factor of the form 4k + 3, then (1.2) has only the positive integer solution
(x, y, z) = (2, 2, 2).

In 2014, Terai [16] proved that if n = 2, then Jeśmanowicz’ conjecture is true
without any assumption on m. Recently, Miyazaki and Terai [11] extended this result.

In this paper, using biquadratic character theory, we first show that, for some
(m,n) ≡ (2,3) (mod 4), the condition that m + n has a prime factor of the form 4k + 3 in
Proposition 1.2 can be removed. Then, using the above results together with Laurent’s
refinement of Baker’s theorem on linear forms in two logarithms, we will extend
Takakuwa’s result in [15]. The following results will be proved.

Theorem 1.4. If (m, n) ≡ (2, 3) (mod 8) or (m, n) ≡ (6, 7) (mod 8), then (1.2) has only
the positive integer solution (x, y, z) = (2, 2, 2).

Theorem 1.5. If one of the following conditions is satisfied, then (1.2) has only the
positive integer solution (x, y, z) = (2, 2, 2):

(i) y > 1 and (m, n) ≡ (2, 7) (mod 8);
(ii) (m, n) ≡ (2, 7) (mod 16) or (m, n) ≡ (10, 15) (mod 16).

Theorem 1.6. If one of the following conditions is satisfied, then (1.2) has only the
positive integer solution (x, y, z) = (2, 2, 2):
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(i) y > 1 and (m, n) ≡ (6, 3) (mod 8);
(ii) (m, n) ≡ (6, 3) (mod 16) or (m, n) ≡ (14, 11) (mod 16).

Theorem 1.7. If (m, n) ≡ (2, 3) (mod 4) and n < 100, then (1.2) has only the positive
integer solution (x, y, z) = (2, 2, 2).

When y = 1, (1.2) becomes

(m2 − n2)x + 2mn = (m2 + n2)z. (1.3)

For every given n, using the lower bound for linear forms in two logarithms due to
Laurent [7], we obtain an upper bound for the corresponding m. Then by considering
the congruences

(m2 − n2)x + 2mn ≡ (m2 + n2)z (mod N) (1.4)

for a suitable choice of the modulus N in the relevant range of x, z,m, we prove that
(1.3) has no solution. It is worth noting that checking the congruence (1.4) involves
much less computation than checking the equation (1.3).

2. Preliminaries

In order to prove that equation (1.3) has no solution, we need three lemmas. We
first recall some notation. Let α1 and α2 be real algebraic numbers with α1 ≥ 1 and
α2 ≥ 1. For an algebraic number α of degree n, let

h(α) =
1
n

(
log |α0| +

n∑
j=1

log max{1, |α( j)|}

)
denote the logarithmic height of α, where α0 is the leading coefficient of the minimal
polynomial of α (over Z) and (α( j))1≤ j≤n are the conjugates of α. Let A1 and A2 be real
numbers greater than 1 with

log Ai ≥ max
{
h(αi),

|logαi|

D
,

1
D

}
for i ∈ {1, 2}, where D is the degree of the number field Q(α1, α2) over Q. Let b1 and
b2 be positive integers. Define

b′ =
b1

D log A2
+

b2

D log A1
,

Λ = b2 logα2 − b1 logα1.

The following lemma is obtained from a result due to Laurent [7, Corollary 2] by
taking m = 10 and C2 = 25.2.

Lemma 2.1 [16, Proposition 2]. Let Λ be given as above with α1 ≥ 1 and α2 ≥ 1 and
suppose that α1 and α2 are multiplicatively independent. Then

log |Λ| ≥ −25.2D4
(

max
{

log b′ + 0.38,
10
D

})2
log A1 log A2.
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When n = 2, using Lemma 2.1, Terai [16, Lemmas 3 and 4] found upper and lower
bounds for x in equation (1.3). In a similar may, we have the following generalisation.

Lemma 2.2. If x, z satisfy equation (1.3), then, for any positive integer n,

x < 2 521 log c.

Proof. Let Λ = z log c − x log a. Since

0 < Λ = log
cz

ax = log
(
1 +

b
ax

)
<

b
ax ,

log Λ < log b − x log a. (2.1)

On the other hand, from Lemma 2.1,

log |Λ| ≥ −25.2(max{log b′ + 0.38, 10})2 log a log c, (2.2)

where b′ = x/ log c + z/ log a. Since

ax+1 − cz = a(cz − b) − cz ≥ (m2 − n2 − 1)(m2 + n2)2 − (m2 − n2)2mn
= (m2 − n2)[(m2 + n2)2 − 2mn] − (m2 + n2)2

≥ (m + n)(m4 + n4) − 2(m4 + n4) > 0,

we have ax+1 > cz and b′ < (2x + 1)/ log c. Let M = x/ log c. From (2.1) and (2.2),

x log a < log b + 25.2
(

max
{

log
(
2M +

1
log c

)
+ 0.38, 10

})2
log a log c.

Since log c = log(m2 + n2) > log 13 > 2 and b < c,

M < 1 + 25.2
(

max
{

log
(
2M +

1
2

)
+ 0.38, 10

})2
,

and we thus obtain M < 2 521. This completes the proof of Lemma 2.2. �

Lemma 2.3. If x, z satisfy equation (1.3), then, for any positive integer n,

x >
m2 − n2

2n2 log c.

Proof. Clearly, (1.3) implies x > z. Let Λ0 = log c − log a. Then

xΛ0 − Λ = x(log c − log a) − z log c − x log a = (x − z) log c ≥ log c.

From

Λ0 = log
( c
a

)
= log

(m2 + n2

m2 − n2

)
= log

(
1 +

2n2

m2 − n2

)
<

2n2

m2 − n2 ,

x ≥
log c
Λ0

+
Λ

Λ0
>

log c
Λ0

>
m2 − n2

2n2 log c.

This completes the proof of Lemma 2.3. �
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3. Proof of the main results

Proof of Theorem 1.4. From (m, n) ≡ (2, 3) (mod 8), taking (1.2) modulo 4, we have
(−1)x ≡ 1 (mod 4), and hence x ≡ 0 (mod 2). Taking (1.2) modulo m + n gives
(−2n2)y ≡ (2n2)z (mod m + n), and thus

(−1)y =

(
−2n2

m + n

)y
=

( 2n2

m + n

)z
= (−1)z,

which implies y ≡ z (mod 2). There are two cases to consider.

Case 1. Suppose y > 1. In this case, from (1.2), 1 ≡ 3x ≡ 5z (mod 8). Therefore,
y ≡ z ≡ 0 (mod 2). From the proof of [5, Lemma 2] (page 226, lines 3–13), we see that
x = y = z = 2.

Case 2. Suppose y = 1. In this case, we use (1.3) and work over the Gaussian integers.
Taking (1.3) modulo n − mi, where i =

√
−1, gives (−2n2)x ≡ −2m2i (mod n − mi).

Since n ≡ 3 (mod 8) and m ≡ 2 (mod 8), n − mi is an odd primary number, and so
m = 2m1 and (

−2n2

n − mi

)x

4
=

(−8m2
1i

n − mi

)
4
, (3.1)

where ( ∗
∗
)4 denotes the biquadratic residue symbol (see, for example, [13]). By the

properties of the biquadratic residue symbol and biquadratic reciprocity,(
−2n2

n − mi

)
4

=

(
−2

n − mi

)
4

(
−n

n − mi

)
4

(
−n

n − mi

)
4

=

(
−2

n − mi

)
4

(mi
n

)
4

(mi
n

)
4

=

(
−2

n − mi

)
4

=

( i
n − mi

)
4

( 1 + i
n − mi

)2

4
= i(m

2+n2−1)/4 · i(m++n−m2−1)/2 = −i

and (−8m2
1i

n − mi

)
4

=

( 2i
n − mi

)
4

( m2
1

n − mi

)
4

=

( 2i
n − mi

)
4

=

( 1 + i
n − mi

)2

4
= 1.

Thus, (3.1) implies (−i)x = 1, and hence x ≡ 0 (mod 4).
Next taking (1.3) modulo m + n gives −2n2 ≡ (2n2)z (mod m + n), and so

(2n2)z−1 ≡ −1 (mod m + n). (3.2)

If m + n has a prime factor p with p ≡ −1 (mod 4), taking (3.2) modulo p gives

1 =

(2n2

p

)z−1
=

(
−1
p

)
= −1,

which is a contradiction. Thus, m + n must have a prime factor p with p ≡ 5 (mod 8)
and taking (3.2) modulo p gives

(2n2)z−1 ≡ −1 (mod p). (3.3)
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From p ≡ 5 (mod 8), we get (−1)(p−1)/4 ≡ −1 (mod 2), and hence −1 is a nonbiquadratic
residue modulo p. Since (n2)z−1 = (n4)(z−1)/2 is a biquadratic residue modulo p,
2z−1 must be a nonbiquadratic residue modulo p by (3.3). Hence, 4 - z − 1 and
z ≡ 3 (mod 4).

Finally, we show that (1.3) has no solution. Taking (1.3) modulo 16,

(−5)x + 12 ≡ 13z (mod 16). (3.4)

From x ≡ 0 (mod 4) and z ≡ 3 (mod 4), we obtain (−5)x ≡ 1 (mod 16) and 13z ≡

5 (mod 16). Therefore, (3.4) cannot hold and (1.3) has no solution. This implies y > 1
and, similarly to the proof of Case 1, we deduce that Jeśmanowicz’ conjecture is true.

For (m,n) ≡ (6,7) (mod 8), we similarly prove that (1.2) has only the positive integer
solution (x, y, z) = (2, 2, 2). �

Proof of Theorem 1.5. From (m, n) ≡ (2, 7) (mod 8), taking (1.2) modulo 4 gives
x ≡ 0 (mod 2) and taking (1.2) modulo m − n gives (2n2)y ≡ (2n2)z (mod m − n). Thus,

(−1)y =

( 2n2

m − n

)y
=

( 2n2

m − n

)z
= (−1)z,

which implies y ≡ z (mod 2). There are two cases to consider.

Case 1. Suppose y > 1. In this case, similarly to the proof of Theorem 1.4, we have
x = y = z = 2.

Case 2. Suppose y = 1. In this case, y ≡ z ≡ 1 (mod 2). Similarly to the proof of
Theorem 1.4, (

−2n2

n − mi

)x

4
=

(−8m2
1i

n − mi

)
4
,

where m = 2m1 and(
−2n2

n − mi

)
4

= i(m
2+n2−1)/4 · i(m++n−m2−1)/2 = i3 · i4l+2 = i,(−8m2

1i
n − mi

)
4

=

( 1 + i
n − mi

)2

4
= i(m++n−m2−1)/2 = i4l+2 = −1.

Then from ix = −1 we get x ≡ 2 (mod 4).
Next, we prove that if (m, n) ≡ (2, 7) (mod 16), then equation (1.3) has no

solution. Taking (1.3) modulo m + n, we have (2n2)z−1 ≡ −1 (mod m + n). Since
m + n ≡ 9 (mod 16), m + n must have a prime factor p such that p . 1 (mod 16),
that is, p ≡ 3, 5, 7, 9, 11, 13, 15 (mod 16). But (2n2)z−1 ≡ −1 (mod m + n) so
p . 3 (mod 4), and therefore p ≡ 5, 9, 13 (mod 16).

If p ≡ 5, 13 (mod 16), that is, p ≡ 5 (mod 8), then from (−1)(p−1)/4 ≡ −1 (mod 2) we
deduce that −1 is a nonbiquadratic residue modulo p, and therefore 4 - z − 1, which
implies z ≡ 3 (mod 4).
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If p ≡ 9 (mod 16), from (2n2/p) = 1 we see that there is an integer h satisfying
2n2 ≡ h2 (mod p). Hence,

h2(z−1)) ≡ −1 (mod p). (3.5)

Because (−1)(p−1)/8 ≡ −1 (mod 2), −1 is a nonbiquadratic residue modulo p, and
therefore 8 - 2(z − 1), which implies z ≡ 3 (mod 4). Working modulo 16, since
(m, n) ≡ (2, 7) (mod 16),

(m2 − n2)x ≡ (4 − 1)4x1+2 ≡ 9 (mod 16),
2mn ≡ 2 · 2 · 7 ≡ 12 (mod 16),

(m2 + n2)z ≡ (4 + 1)4z1+3 ≡ 13 (mod 16).

Then (3.5) gives 5 ≡ 13 (mod 16), which is a contradiction. Thus, if (m, n) ≡
(2, 7) (mod 16), we must have y > 1 and, from Case 1, Jeśmanowicz’ conjecture is
true when (m, n) ≡ (2, 7) (mod 16). When (m, n) ≡ (10, 15) (mod 16), we can similarly
get the same conclusion. �

Proof of Theorem 1.6. The proof of Theorem 1.6 is very similar to that of
Theorem 1.5. We omit the details. �

Proof of Theorem 1.7. By Theorems 1.5 and 1.6 and the first part of Proposition 1.2,
we need only prove that (1.3) has no solution when y = 1, (m, n) ≡ (2, 15), (10, 7)
(mod 16) and (m,n) ≡ (6,11), (14,3) (mod 16). To this end, as pointed out in Section 1,
we consider the congruence (1.4).

We first give upper and lower bounds for m (for given n). From Lemmas 2.2
and 2.3, (m2 − n2)/2n2 < 2 521, and we deduce that m < 71n. On the other hand,
since m ≡ 2 (mod 4), n ≡ 3 (mod 4), by Proposition 1.1, m ≥ n + 3 if (m, n) ≡ (2, 15),
(10, 7) (mod 16) or m ≥ n + 11 if (m, n) ≡ (6, 11), (14, 3) (mod 16). Therefore, m2 − n2,
2mn and m2 + n2 are all bounded above and below for given n.

Next, we consider the moduli N. Let x ≡ α (mod 72), z ≡ β (mod 72). From
x ≡ 0 (mod 2) and z ≡ 1 (mod 2), we may suppose that α ∈ {2, 4, . . . , 72} and β ∈
{1, 3, . . . , 71}. Since gcd (m, n) = 1, we have m2 + n2 . 0 (mod 3). In addition, if
3 | mn, then m2 − n2 . 0 (mod 3). Put N1 = 24 · 5 · 7 · 13 · 19 · 37 · 73. It is easy to
prove that

(m2 − n2)x ≡ (m2 − n2)α (mod 33N1),
(m2 + n2)z ≡ (m2 + n2)β (mod 33N1).

Thus, if (1.3) has the solution (x, z) with x ≡ α (mod 72) and z ≡ β (mod 72), then

(m2 − n2)α + 2mn ≡ (m2 + n2)β (mod 33N1) (3.6)

when 3 | mn. If 3 - mn, that is, 3 - n and 3 - m, we have m2 − n2 ≡ 0 (mod 3), and
therefore (m2 − n2)x ≡ (m2 − n2)α (mod 33) when α ≥ 3. So, in this case, (3.6) still
holds. If 3 - n, 3 - m and α = 2, then (m2 − n2)x ≡ (m2 − n2)α (mod 32). In this case,

(m2 − n2)α + 2mn ≡ (m2 + n2)β (mod 32N1). (3.7)

Finally, with computer assistance, in the range 2 ≤ α ≤ 72, 1 ≤ β ≤ 71, we checked
(3.7) in the following four cases using Maple 18:
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(1) n ∈ {7, 23, 39, 55, 71, 87} with m ≡ 10 (mod 16), n + 3 ≤ m < 71n;
(2) n ∈ {15, 31, 47, 63, 79, 95} with m ≡ 2 (mod 16), n + 3 ≤ m < 71n;
(3) n ∈ {3, 19, 35, 51, 67, 83, 99} with m ≡ 14 (mod 16), n + 11 ≤ m < 71n;
(4) n ∈ {11, 27, 43, 59, 75, 91} with m ≡ 6 (mod 16), n + 11 ≤ m < 71n.

By Proposition 1.1, in Cases (1) and (2), n + 3 ≤ m, and, in Cases (3) and (4),
n + 11 ≤ m. In Cases (1) to (3), no solutions (m, n, α, β) to (3.7) were found. In Case
(4), (3.7) has the following three solutions when n = 91:

(m, n, α, β) = (2 027, 91, 14, 5), (4 198, 91, 22, 37), (4 198, 91, 58, 37).

Although all three solutions satisfy α > 2, none of them is a solution to congruence
(3.6). Hence, (1.3) has no solutions. This completes the proof of Theorem 1.7. �

Remark 3.1. We used a 64-bit computer with frequency 2.93 GHz to check
congruences (3.6) and (3.7) by Maple 18. For each n ≤ 99 the computation takes
less than 1 second. Equation (1.3) can be checked by Maple 18 for n = 3, 7, 11, . . . , 99.
But the computation takes much more time. For example, we checked (1.3) for n = 3
by Maple 18 in the range of 6 ≤ m ≤ 210, 1 ≤ z < x ≤ 2 521 log c with m ≡ 14 (mod 16)
(cf. case (3) in the proof of Theorem 1.7), x ≡ 0 (mod 2), z ≡ 1 (mod 2), and though
we took Lemma 2.3 and [12, Lemma 12(i)] into consideration, the computation still
took 625 seconds.
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Pythagorean triples’, J. Number Theory 133 (2013), 583–595.

https://doi.org/10.1017/S0004972716000605 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000605
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