
1 
Spin and helicity 

Traditionally, in textbooks on quantum mechanics, spin is introduced via 
an idealized Stern-Gerlach experiment in which a non-relativistic beam 
of silver atoms passes through an inhomogeneous magnetic field. Each 
atom is treated as a single valence electron of charge -e in an s-state. The 
subsequent splitting of the beam into two indicates the two-valuedness 
of Sz, which is related to the value 1/2 for s, and the magnitude of the 
splitting shows that the magnetic moment /l is related to s by 

e 
/l = -~s, 

me 

the proportionality factor (the gyromagnetic ratio) being twice as big as 
the factor that classically gives the magnetic moment due to the orbital 
angular momentum of a point charge. 

Historically, however, it seems that the early Stern-Gerlach experiments, 
begun in 1922, had no influence at all upon the discovery of spin, simply 
because they were too imprecise. Rather, the concept of spin appeared 
after a long and tedious battle to understand the splitting patterns and sep
arations in line spectra. Several people had for various reasons discussed 
classical models of rotating charge distributions but Kronig, in 1924, was 
the first to show that an electron with spin 1/2 would explain the pattern 
of what we would today call L · S splitting, as well as anomalies in the 
Zeeman effect. He realized, though, that the gyromagnetic ratio ( -ejmc) 
needed for the latter would give L · S splittings twice as big as those 
observed. It is said that Pauli expressed his negative reaction to Kronig's 
idea with such vehemence that Kronig never published his work (Mehra 
and Rechenberg, 1982). Soon thereafter, in 1925, the same idea occurred 
to Uhlenbeck and Goudsmit (1925), who proceeded to a detailed analysis 
of the splittings, concluding at first that everything worked beautifully, 
but then becoming aware, as a consequence of a comment by Heisenberg, 
of the factor-of-2 inconsistency mentioned above. 
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2 1 Spin and helicity 

Some months later Thomas demonstrated that a careful relativistic 
treatment produced exactly the factor of one half needed to bring about 
agreement between the theory of L · S splitting and experiment (Thomas, 
1926). 

In this work appears for the first time the infamous 'Thomas preces
sion', which is mentioned, yet almost never explained, in all textbooks 
on quantum mechanics. We shall return to it later, but we should like, 
immediately, to demistify one aspect of it. It is usually said that relativistic 
effects produce a factor of one half. Now that would indeed be mysterious! 
What is forgotten is the fact that the L · S coupling is itself a relativistic 
effect. By means of a Lorentz transformation, we can understand that the 
electron, moving through the Coulomb field of the nucleus, sees a mag
netic field in its rest frame. So the Thomas result is simply a correction to 
an already intrinsically relativistic effect. 

1.1 Spin and rotations in non-relativistic quantum mechanics 

In non-relativistic quantum mechanics the spin of a particle is introduced 
as an additional rotational degree of freedom. Analogously to orbital 
angular momentum one introduces three spin operators 

A (A A A ) 
S := Sx, Sy, Sz ; 

the spin states Ism) are the simultaneous eigenstates of the commuting 
operators s2 and s2 , with eigenvalues s(s + 1) and m respectively. The spin 
s of the particle can be zero or a positive integer or half integer, while m 
can take values -s ~ m ~sin unit steps. The quantity m is referred to as 
the 'z-component of the spin'. 

The three spin operators s1 satisfy the usual angular momentum com
mutation relations 

(1.1.1) 

For a free particle the spin degree of freedom is totally decoupled from 
the usual kinematic degrees of freedom, and this fact is implemented by 
writing the state vector in the form of a product, one factor referring to 
the usual degrees of freedom and the other to the spin degree of freedom. 
Thus, for a particle of momentum p, 

lp; sm) = lp) ®Ism) 

or, equivalently, for the wave function, 

lpp;sm(x) = ({Jp(X)IJ(m) 

(1.1.2) 

(1.1.3) 

where IJ(m) is a (2s + 1)-component spinor and ({Jp(x) IS a standard 
Schrodinger wave function. 
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1.1 Spin and Rotations 3 

Since the labelling of the above spin states uses rn = Sz and therefore 
makes reference to 'the z-direction' it is tacitly assumed that we are 
working in a well-defined, fixed coordinate reference system with origin 
0. 

We wish now to discuss the effect of rotations upon the spin states. To 
begin with we recall the well-known rules for ordinary vectors. We shall 
denote by r the physical operation of a rotation. Thus, if we say that an 
object is rotated by e.g. rz(e), where e is positive, then we mean that we 
are to physically push that object around the Z -axis through an angle e 
in the sense of a right-hand screw advancing along OZ. 

If we apply r to a given three-dimensional vector A we shall call the 
resultant rotated vector rA or Ar. The action we have described is often 
referred to in the literature as the 'active' point of view as distinct from the 
'passive' one, in which the axis system is rotated. We think that this is a 
confusing nomenclature. All our rotations act as described in the previous 
paragraph and if we wish to rotate axes we shall simply state that r acts 
on the coordinate axes. 

The components of the rotated vector are related to the components Ai 
of A by 

(1.1.4) 

where the 3 x 3 matrix R with elements RiJ depends, of course, on r. 
Strictly speaking, we should write it as R(r). Sometimes it is convenient 
to write the components Ai in the form of a column vector 

in which case (1.1.4) can be written in matrix notation as 

Ar = RA. 

As an example, if r = ry(e) then 

R [ry(e)] = ( co; e ~ 
-sine 0 

sine) 
0 . 

cos e 

( 1.1.5) 

(1.1.6) 

( 1.1.7) 

For a tensor T, say of rank 2, the components of the rotated tensor yr 
will be given by 

T{j = RikRjm Tkm (1.1.8) 

with obvious generalization to tensors of higher rank. It should be noted 
that tensors of rank ~ 2 do not transform irreducibly under rotations. (The 
irreducible representations of the rotation group are discussed briefly in 
Appendix 1.) 
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4 1 Spin and helicity 

Often one wishes to utilize a set of three orthogonal unit 'basis vectors' 
e(i) along the three coordinate axes. If we rotate one of them, say C(j), the 
n components of e(J) will be related to those of e(J) by (1.1.4). But we can 
also consider e(J) as a linear superposition of the e(i), and one easily shows 
that 

(1.1.9) 

where RT is the transpose of the matrix R. (Recall that for rotations R is 
orthogonal i.e. R T R = RR T = I.) 

Note that whereas R appears in (1.1.4) it is RT that occurs in (1.1.9). 
We come now to the physical role of rotations. We are interested in the 

relationship between the descriptions that different observers give to the 
same physical phenomenon. Let A be a fixed vector, which observer 0 in 
our fundamental reference system S describes as having components Aj. 
Thus 

A= LAje(j) (1.1.10) 
j 

Let or be an observer using a reference system sr that has been rotated 
from S by a rotation r. Using the basis vectors e(l) the observer describes 
A as having components (Ads'· Thus 

and via (1.1.9) one finds, using [R(r)]-1 = R(r-1 ), that 

(Ai)sr = Rij(r-1)Aj. 

(1.1.11) 

(1.1.12) 

Although slightly misleading it is convenient to abbreviate (1.1.12) in 
the form 

(A)sr = r-1 A. (1.1.13) 

In summary, if the reference system is rotated by r then the components 
of a fixed vector, as described in S' and in S, are related via R(r-1 ), in 
contradistinction to (1.1.4) in which R is shorthand for R(r). 

Spin-s spinors are dealt with in complete analogy to the above. We 
introduce 2s + 1 unit basis spinors IJ(m), where 

1 0 0 
0 1 0 
0 0 0 

IJ(s) = IJ(s-1) = ... , 11(-s) = 

0 0 0 
0 0 1 
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1.1 Spin and Rotations 

the 1J(s) represent eigenstates of Sz. We write for a general spinor 

X = L Xm1J(m); 
m 

5 

(1.1.14) 

The numbers Xm are the 'components' of X. The components (Xm)sr at
tributed to the spinor X in the rotated reference frame sr are related to 
Xm analogously to (1.1.12): 

(1.1.15) 

where the matrices ~(sl(r) are the (2s + !)-dimensional representation 
matrices of the rotations r. (See Appendix 1; recall that the~ are unitary 
matrices, i.e. ~t~ = 1.) By analogy with the inverse of (1.1.9) we have 

- ""(s) ( -l) r (1116) 1J(m) - :::Lim'm r 1J(m')· .. 

The physical interpretation of (1.1.16) is that the state described by ob
server 0 in the frame S as 1J(m) is described by the rotated observer O' as 
a superposition of the states 1J(m')· 

Because of its importance we restate this in more general terms. If an 
observer 0 with reference system S sees a spin s particle in a state Ism) 
then the observer or whose reference frame sr is rotated from s by the 
rotation r describes the state of the particle as lsm)sr, where 

lsm)sr = ~~Jm(r-1 )1sm'). (1.1.17) 

It is implicit in (1.1.17) that the states on the right-hand side are the Ism) 
of or. 

Although it is not simple to see what we mean by physically rotating 
a spinor, by analogy with the vector case we shall talk about the active 
rotation of a state Ism) to Ism)'. Comparing with eqn (1.1.9) for the vector 
case, we shall interpret Ism)' as given by 

Ism)'= ~~Jm(r)lsm'). (1.1.18) 

It is very convenient in quantum mechanics to represent the effect of an 
operation by an operator acting directly on the state vectors. Thus we 
rewrite (1.1.18) in the form 

Ism)'= U(r)lsm) 

where U(r) is the operator representing the rotation r. 
From (1.1.18) and (1.1.19) follows the well-known relation 

~~Jm(r) = (sm'IU(r)lsm). 

In this operator notation (1.1.17) becomes 

lsm)sr = U(r-1)1sm). 

(1.1.19) 

(1.1.20) 

(1.1.21) 
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6 1 Spin and helicity 

In the case of spin 1/2, the spin operators Sj when acting on the two
dimensional spinors x112 are represented by the set rJ /2 of 2 x 2 hermitian 
matrices Gj/2, the Gj being the usual Pauli matrices. In the case of arbitrary 
spins the operators Sj when operating on the (2s+ !)-dimensional spinor xs 
can similarly be represented by a set of three (2s+ 1 )-dimensional hermitian 
matrices Sj, the Sj being the generalization of the Pauli matrices O"j. There 
is an important and vital distinction, however, between the O"j and the Sj, 

which in a sense makes the spin-1/2 case unique. It is a fact that the most 
general 2 x 2 hermitian matrix M can be specified by four independent 
real parameters and, as a consequence, because the O"j are hermitian and 
independent, such a matrix M can always be written as 

(1.1.22) 

where the factor 1/2 is for convenience, I is the unit matrix, b · rJ is short 
for bjcrj and the four numbers a,bj are all real. The form of (1.1.22) is 
particularly convenient since it is trivial to solve for a and bj. One has 

a= Tr M, (1.1.23) 

where Tr = trace means the sum of the diagonal elements of the matrix. 
The Pauli crj thus play a dual role. On the one hand, they represent 

the spin operators s j; on the other they furnish a basis for expressing any 
2 x 2 hermitian matrix. It is the confusion of these two roles that sometimes 
leads to difficulties in understanding spin effects in relativistic situations. 

In the case of higher spins the most general hermitian matrix is specified 
by (2s + 1)2 real parameters, so the set of the three Sj matrices is far from 
adequate as a basis for an expansion analogous to (1.1.22). 

The special role of spin 1/2 shows itself in yet another way. The most 
general two-component spinor X can be specified by four-real parameters, 
of which one, the overall phase, is totally irrelevant. 

If, further, the spinor is normalized to unity, i.e. 

xtx = 1 
' 

we are left with two independent real parameters. Thus we can write, 
without loss of generality, 

( cos 1 e e-i¢/2 ) 
X= 2 . . 

sin le e1¢12 
2 

(1.1.24) 

If now we compute the spin-polarization vector 'Px defined by 

'Px = (G)x = xt(Jx (1.1.25) 

we shall find that 

'Px = (sine cos</>, sine sin</>, cos e) (1.1.26) 
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1.2 Spin and helicity in a relativistic process 7 

with Pi = 1. We see trivially that a knowledge of Px completely specifies 
the quantum state X. In the case of higher spin, one can still define a 
spin-polarization vector for a state X such that 

( 1.1.27) 

where s is the mean spin vector, but now the three components of P 
are insufficient to fix the 2(2s + 1) - 2 independent parameters of the 
(2s + 1)-dimensional spinor X. Besides the case of spin 1/2 there is no 
other situation in nature where a knowledge of the spin-polarization 
vector completely specifies the quantum state. (Of course P and s are 
really pseudovectors. P is commonly referred to as the polarization vector 
but it is not at all the same thing as the polarization vector B used in 
the description of photons or massive spin-1 particles. For this reason we 
shall refer to it as the spin-polarization vector.) 

Finally we note a very important property of the matrices Si representing 
the spin operator Si for spin s, namely that they 'transform as vectors under 
rotation'. More precisely: 

(1.1.28) 

This relation is best known in the spin-1/2 case in the simpler looking, 
but really equivalent, form 

((Ji)gr = Rij(r-1) ((Jj) (1.1.29) 

relating expectation values inS' to those in S. 

1.2 Spin and helicity in a relativistic process 

The pioneering work of Dirac (1927) showed that spin emerges automat
ically in a relativistic theory and that it could no longer be treated as an 
independent additional degree of freedom. Nevertheless it is not trivial 
to see precisely how the spin is to be described relativistically, nor how 
it is to be interpreted physically. We shall give a brief discussion of this 
question, and then turn to consider the helicity states of Jacob and Wick 
(1959). Here our emphasis will be upon the physical interpretation and is 
somewhat complementary to the approach used by other authors. 

We assume that the reader has some familiarity with homogeneous and 
inhomogeneous Lorentz transformations. A clear account can be found 
in Gasiorowicz (1967). 

In a relativistic quantum theory the fundamental operators are the 
generators of the inhomogeneous Lorentz transformations. There are 10 of 
these. The three momentum operators pi and the hamiltonian operator P0 

generate translations in space and time respectively, and the six operators 
M!lv ( = - tJvJl) generate the homogeneous Lorentz transformations. It 
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8 1 Spin and helicity 

is physically more revealing to work not with the Mflv but with the 
combinations 

A 1 A "k J . = --r=··kM1 
l- 2 l) ' 

KA. =MAiO 
z- ' (1.2.1) 

which can be shown to be the generators of pure rotations and of pure 
Lorentz transformations ('boosts') respectively. Thus the )i are identified 
as the total angular momentum operators. 

As a consequence of the inherent characteristics of the inhomogeneous 
Lorentz transformations, one can derive commutation relations that must 
be satisfied by the generators. In particular, and in accordance with the 
interpretation of the )i as angular momentum operators, one naturally 
finds 

(1.2.2) 

The operator PflPfl is invariant, i.e. it commutes with all the generators 
and its eigenvalues can thus be used to label states. Indeed, what we mean 
when we talk of an elementary particle of mass m is nothing other than 
matter that is an eigenstate of PflPfl with eigenvalue m2. 

The question that now arises is the following. If the theory already 
contains the spin then which operators are to be identified as the spin 
operators? Is there a set of operators si, with commutation relations akin 
to eqn (1.2.2)? 

The nearest one can get to a covariant spin operator is the set of 
Pauli-Lubanski operators Wfl, defined as follows: 

A 1 A VA W - __ c Mfl pP 
(J - 2 L JlVP(J ( 1.2.3) 

(with r=om = + 1), whose commutation relations can be shown to be 

(1.2.4) 

These are not quite what we hoped for, but we notice that ifwe consider 
the action of these operators on states of momentum p = 0, i.e. on 'rest' 
states, then for the space parts of the commutation relations (1.2.4) one 
will have 

[ A A] A A 
Wj, wk = iEjkpO WPm= -imEjkl Wz. 

Thus, for the case m -=/= 0 the three operators 

have the commutation relations 

A 1 A i 
Si=-W 

m 

[sj,sk] = ir=jklsl 

provided they act on the states of particles at rest. 

(1.2.5) 

(1.2.6) 

(1.2.7) 
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1.2 Spin and helicity in a relativistic process 9 

Further, the operator wll Wll is invariant1 and its eigenvalues, as can be 
deduced from(1.2.4)-(1.2.7), are of the form m2s(s + 1) with s = 0, ~, 1, .... 
It is the number s that is defined as the 'spin' of a particle in a relativistic 
theory. 

In summary, in a relativistic theory a particle is assigned an invariant 
spin quantum number s. But only when the particle is at rest can one 
identify a set of spin operators si and proceed to invoke the usual formal
ism of non-relativistic quantum mechanics. Indeed from (1.2.3) one sees 
that when wll acts upon a particle at rest it has the form 

or, from (1.2.1) 

(1.2.8) 

Thus the si when acting on states at rest are just the :h so that all the 
rotational properties of non-relativistic spin hold for particles at rest. The 
possibility that a particle at rest has non-zero total angular momentum 
has emerged automatically. 

For a particle at rest it is convenient to fix a reference frame and then 
to classify the states of the particle as in the non-relativistic case, i.e. 
using eigenstates lssz) of 82 and Sz. For a particle in motion, however, the 
labelling of the states is not so clear cut. 

The standard approach is to generate states of arbitrary momentum 
by acting upon the rest states with suitable Lorentz transformations. We 
shall adopt an equivalent but more physical approach, considering Lorentz 
transformations in a similar spirit to our discussion of rotations in Section 
1.1. 

We denote an arbitrary physical Lorentz transformation by l. We con
tinue to denote physical rotations by r, and we denote by lj, j = x, y, z, 
physical pure Lorentz transformations ('boosts') along the axes. We re
mind the reader that care must be taken when specifying a sequence of 
operations acting on the reference system. For example, if we first rotate 
a system S about its Y axis through angle (J (call this frame S') and then 
boost to a new frameS" moving with speed v along the Z -axis of S', then 
we should represent the complete transformation from S to S" as 

S ~ S" = lz'(v)ry(8)S; 

it is essential for clarity to use the primed label z' on l. A pure Lorentz 
transformation or boost in an arbitrary direction is denoted by l(v), where 

1 WI' WI' and PI'PI' are the only invariant operators of the inhomogeneous Lorentz group. 
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10 1 Spin and helicity 

conventionally 

(1.2.9) 

Here r(v) is the rotation about e(z) x v that rotates the Z -axis into the 
direction of v and (r-1(v))" is its inverse, applied to the boosted frame. 
We shall refer to (1.2.9) as a canonical boost. 

The reason for calling (1.2.9) a pure boost is clear from Fig. 1.1, which 
shows (for the case of v lying in the XZ plane) that the final reference 
system S"' has its Z -axis at the same angle e to v as did 0 Z of S. 

If a 4-vector A is acted upon by a physical Lorentz transformation l 
then it is transformed to a new vector, which we shall denote by lA or A1. 
Its components are related to those of A by 

(1.2.10) 

When using matrix notation we shall denote by A the 4 x 4 matrix whose 
elements are N\, f1 referring to the row, v to the column. The column 
matrix A is defined to have as components the contravariant components 
Av. Thus (1.2.10) reads as 

A1 = A(l)A 

Explicit forms for All v for a few cases of special importance follow. If l 
is simply a rotation r, then we have 

( 
1 0 

A= 0 
0 
0 

where R is the matrix defined in (1.1.4). 

X 

s 

X" X'" 

\ 
s"' \ 

\ 

S"' 

Fig. 1.1. A canonical boost along v to S ----> S"' as shown. 

( 1.2.11) 
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1.2 Spin and helicity in a relativistic process 11 

If l is a boost of speed v along the Z axis then 

( 
y 0~1 0001 y 0~{3 ) A [lz(v)] = ~ 

yf3 

(1.2.12) 

where y = (1- {32)-112, f3 = vjc. 
For the canonical boost (1.2.9) one has 

( 
Y Yf3x Y/3y Yf3z ) 

A [Z(v)] = yyf3/3xy 1 + rt./3~ rt.f3x/3y rt.f3xf3z 
rt./3y/3x 1 + af3; rt./3y/3z 

Yf3z rtf3zf3x rt.f3z/3y 1 + af3; 

(1.2.13) 

where fJ = v /c, y = (1- {32)-112 and a= y2(y + 1)-1. 

If S1 is a frame obtained by applying a Lorentz transformation l to a 
frame S then analogously to (1.1.12) a fixed 4-vector A in S will appear 
in S1 to have components 

(1.2.14) 

which for convenience will be written, somewhat loosely, as 

(1.2.15) 

A brief discussion of the finite-dimensional representations of the Lor
entz group is given in Appendix 2. 

1.2.1 Particles with non-zero mass 

Let us suppose that we are given a definite reference frame SA in which a 
particle A of mass m is at rest in state Is; Sz). Let 0 be an observer moving 
at velocity -v with respect to 0 A· Choose v = p/ y'p2 + m2 where p is 
some arbitrary momentum. Then observer 0 looking at A which is at rest 
in SA, will see a particle moving with momentum p. Thus in describing 
this state 0 will use a label p, i.e. lp; · · ·). However, there are infinitely 
many reference frames S all attached to 0 and moving with velocity -v 
with respect to 0 A in which particle A will still appear to have momentum 
p: if S1 is one such frame then so will be any other frame obtained by 
rotating S1 bodily about p. Clearly, although all these observers report A 
as having momentum p they will each report a different spin state since 
their reference frames are all rotated from each other. Thus the 'spin' label 
given to the state of motion of A must depend on a choice as to which 
reference frame 0 is using. This choice is a matter of convention. 

There are two main choices in the literature. 
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12 1 Spin and helicity 

(1) The canonical choice. Here 0 chooses his/her reference frameS in such 
a way that it is obtained from SA by a pure Lorentz transformation 
l(-v) as in (1.2.9). 0 then labels the state of motion that he/she sees 
as lp;sz). 

(2) The helicity choice. Let p have polar angles e, </J. Then 0 chooses his 
frameS as follows. To begin with, 0 transforms to a frameS' boosted 
by a speed 

in the direction of the negative Z -axis of SA. 
0 then applies a rotation to S' designed to make the momentum of 

A appear as p = (p, e, <P ). The rotation we use is the simplest one: first 
through angle -e about 0 Y' then through -<P about the new Z -axis 
OZ", i.e. the overall transformation is 

(1.2.16) 

We note that if the usual notation r( rx, f3, y) is used for a rotation through 
the Euler angles rx, /3, y, i.e. 

(1.2.17) 

(the latter equality is explained in Hamermesh (1964)) then 

( 1.2.18) 

If the state A in the rest frame SA is lp;s,sz =.A), where p = (m,O,O,O), 

then 0 using the frame S sees the state lp; s, Sz = .A)s, which 0 labels as 
lp; .A), i.e. the helicity state lp; .A) is defined by 

lp;.A) = lp;s,Sz = .A)s, (1.2.19) 

in which S is specified as above. The mathematical relationship between 
lp;.A) and lp;sz =.A) will be given later. 

In what follows we shall seldom use the canonical basis, so that, unless 
specifically indicated, all our states are helicity states. The formalism 
is much simplified thereby and the treatment of massive and massless 
particles is unified. 

It should be noted that the rotation defined in (1.2.16) is simpler than 
the one used in the original paper of Jacob and Wick. Their rotation 
corresponds to having r-1(¢,8,-</J) in (1.2.18). However, both Jacob and 
Wick in later papers adopted the simpler rotation given in (1.2.16). 
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1.2 Spin and helicity in a relativistic process 13 

1.2.2 The physical interpretation of helicity and canonical spin states 

Equations (1.2.18) and (1.2.19) are the crucial tools in understanding the 
physical content of a helicity state. Suppose in a frame S we are told that 
the particle A is in a state of motion described by lp; 2). Then, according 
to eqns (1.2.18) and (1.2.19), particle A will be found at rest with spin 
component Sz = 2 if one observes it in the frame SA related to S by 
(1.2.16), i.e. in the frame 

(1.2.20) 

We refer to this particular one of the infinitely many rest frames for A as 
its 'helicity rest frame'. 

The relation between SA and S, for the case </> = 0, can be seen in Fig. 
1.2. In general, for arbitrary </>, ZA will lie along p and YA along e(z) x p. 
For e = 0 or n we take YA along or opposite to 0 Y respectively. The 
transformation in (1.2.20) is often given the special symbol h(p), i.e. 

h(p) = lz'(v)r(<f>, e, 0). ( 1.2.21) 

Another way of specifying h(p), which is more common in the literature, 
is to refer all the operations involved to just one reference frame. In this 
case it can be shown (Hamermesh, 1964) that 

h(p) = r(<f>, e, O)lz(v), (1.2.22) 

XA 

X ZA 

X' 
\. 

\ "" 
s'' \ 

\ 
\ 
\ 

z 

Fig. 1.2 Definition of the helicity rest frame SA for particle A, which has 
momentum p in a reference frame S. 
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14 1 Spin and helicity 

where the absence of primes on the axis labels is crucial. We note that 

A[h( )] = (YPx cose
0
c?scp -s~ncp yfxj/3) 

p y[Jy cos8smcp coscp y[Jyl/3' 
y f3z -sine o y f3z I f3 

(1.2.23) 

where fJ = PIE has polar angles 8, cp and y = Elm. Note that the form 
for fJ and y for massless particles will be given in subsection 1.2.3. 

We note also, that by its very construction, h(p) operating on the 
4-vector p turns it into p. 

We now have 

S = h-1(p)SA (1.2.24) 

and therefore in complete analogy with eqn (1.1.21) 

lp;A) = lv;s,sz = A)s = U[h(p)]lp;s,sz =A), (1.2.25) 

where U is the unitary operator corresponding to the Lorentz transfor
mation h(p ). 

In the usual treatment of helicity states, the lp; A) are simply defined 
by eqn (1.2.25). The advantage of our treatment is that it clarifies the 
interpretation of the label A. 

We must at this point add a note of warning to the reader. In building up 
helicity states for two particles, Jacob and Wick (1959) make a distinction 
between the states for what they call 'particle 1' and 'particle 2'. For us 
the definition of a helicity state of any particle is the same. 

For the moment the crucial point to be drawn from the above is simply 
that if a helicity state for a particle A is defined in some frame S by 

(1.2.26) 

then A is the z-component of the spin of the particle A when measured in 
the helicity rest frame SA obtained from SA via 

(1.2.27) 

and illustrated in Fig. 1.2. 
Because of the subtle question of phases, some care must be exercised 

in talking about the vector -p. If p = (p, e, ¢) then we shall always use 
-p = (p, n- e, ¢ + n) even when e = ¢ = 0. 

The canonical spin states lp; Sz)can are introduced in complete analogy 
with the above, the only difference being that hA(P) is replaced by the pure 

boost l(v) where v =PAl VP~ + m2. Thus instead of (1.2.26) we have for a 
particle A 

( 1.2.28) 
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1.2 Spin and helicity in a relativistic process 15 

and the physical interpretation is that Sz is the spin component of A as 
measured in its canonical rest frameS~ reached from S by the boost lA(v). 
If v in Fig. 1.1 refers to particle A then the frame S'" is just Sl Comparing 
Figs. 1.1 and 1.2 we see that the two rest frames differ by a rotation and 
thus the physical situations described by say Jp;A. =~)and Jp;sz =~)can 
are different. In classical physics what is loosely termed 'the rest frame' or 
'a comoving frame' is what we have called the canonical rest frame. 

Finally we note that it is easy to show that the state Jp; A.) is an eigenstate 
of the helicity operator J · P /I PI, i.e . 

.J.-p 
-A-Jp;A.) = A.Jp;A.). 
IPI 

(1.2.29) 

Thus the helicity is the projection of the total angular momentum onto 
the direction of the linear momentum, for a free particle. 

1.2.3 Particles with zero mass 

In all the above we leant heavily upon the existence of a rest frame for our 
particle. In fact helicity states can still be defined for massless particles and 
this is one of the many reasons for preferring them to canonical states. 
They unify completely the treatment of spin for particles of any spin and 
mass. 

The generalization to mass-zero particles starts from the realization 
that the helicity states defined by (1.2.25) are eigenstates of the helicity 
operator J · P /IPJ. 

With this interpretation there is no reference to the mass or a rest frame. 
We may therefore adopt eqn (1.2.29) as the definition of a helicity state 
for a massless particle. There is to begin with just one value of A, and the 
spins is defined by s = JA.J. If, however, the interactions of the particle are 
invariant under space reflection then the state obtained by acting with the 
parity operator f!JJ on IP; A.) must also be a physical state. 

Since J · P /I PI is manifestly invariant under rotations and is a pseudo
scalar under space reflection, it is clear that for the state with Pz = (0, 0, p ), 

(1.2.30) 

has momentum Pz and is an eigenstate of J · P /I PI with eigenvalue -A. It 
can thus be written as 

(1.2.31) 

where 11 is called the 'intrinsic parity factor' of the massless particle. 
In summary, if its interactions conserve parity then a massless particle 

of spin s has two independent helicity states for a given momentum, 
namely Jp; A= s) and Jp; A= -s), and they are related by (1.2.31). Thus a 
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16 1 Spin and helicity 

photon, whose interactions conserve parity, has two helicity states A= ±1 
whereas a neutrino, whose interactions violate parity, can exist only as a 
'left-handed particle', i.e. A=-! only. 

Although (1.2.29) gives a meaning to A, it does not specify the state 
lp; A-) uniquely. 

In order to specify the relationship between states seen by different 
observers we can begin in some standard reference frame Sst in which 
the particle is moving in the Z -direction with some definite momentum 
Pst = (p, 0, 0, p). This state is labelled IPst; A-). 

In analogy with (1.2.25) the helicity state lp; A-) can be defined by 

lp;A-) = U[h(p,pst)]IPst;A-) (1.2.32) 

where now h(p, Pst) is the Lorentz transformation of the form 

r( cp, e, O)lz(V) 

such that h-1(p, Pst) changes the frame Sst to the frame S in which the 
momentum is pll = (p, p) with p = (p, 8, cp ). Alternatively, h(p, Pst) acting 
on Pst turns it into p. One can of course show that the lp; A-) defined 
in (1.2.32) do satisfy (1.2.29). But (1.2.32) goes beyond (1.2.29) in that it 
specifies also the relative phases of the states. 

The matrix A[h(P,Pst)] is still given by (1.2.23) but now 

f3 = (p2- p2)/(p2 + p2). 

For a massless particle it is not possible to define the spin s directly 
from the eigenvalues of W11 WJl. This can be seen as follows. From (1.2.4) 
we have that 

A A ) ~ Ap ) 
[WJl, Wv]IPst;A = zp[EJ1Vp0 + E'J1vp3]W IPst;A. 

Therefore one has the following commutation relations for the WJ1 when 
acting on the IPst; A-): 

and 
[W 3, w1] = ipW2 

[W 3, w2] = -ipW 1. 

(1.2.33) 

(1.2.34) 

Now consider the fundamental commutation relations of the translation 
generators with the angular momentum operators. One has 

(1.2.35) 

and of course 

(1.2.36) 
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1.2 Spin and helicity in a relativistic process 

It follows from (1.2.35) and (1.2.1) that 

[.l3,f>11 = if>2 

[.!3,f>21 = -if>l 
and 

[f>l,f>21 = o. 

17 

(1.2.37) 

On comparing (1.2.37) with (1.2.34) and (1.2.33) we see that, acting on 
the states IPst;A.) the set of operators (W3 jp, W1, W2 ) obeys an algebra 
isomorphic to that of (.l3,P 1,P2). Thus the eigenvalues of W1, W2 will 
be, just like momentum eigenvalues, unquantized! It is postulated that 
the physical massless particles in nature correspond to eigenvalue zero for 
l¥1,2: 

( 1.2.38) 

It then follows from (1.2.3) that, when acting on these physical states 
IPst; A.), 

(1.2.39) 

so that 

(1.2.40) 

and 

w3 A .J. p 
-=-IPst;A.) = hiPst;A.) = ~A~IPst;A.) 
P IPI 

=AIPst;A.). (1.2.41) 

Thus the physical helicity states may be thought of as eigenstates of 
(W 3 jp, W1, W2 ) with eigenvalues (A-,0,0). 

Since sis not now given by its usual rules, i.e. as the eigenvalue s(s + 1) 
of the square of some spin operator, we have to ask how we determine 
that s is to have only integer or half-integer values. 

The answer can be seen as follows: although the value of A, is clearly 
invariant under rotations (of course for both zero-mass and massive cases) 
the helicity states do pick up a phase under some rotations. Thus from 
(1.2.29) it is clear that for a rotation by angle 11. about the direction of p 
one will have 

(1.2.42) 

For a rotation of 2n we require that this phase be equal to ±1 in the 
bosonic and fermionic cases respectively and conclude that A, must be an 
integer or half integer. 
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