Determinantal Systems of Apolar Triads in a Conic.

By Dr W. L. Marr.

(Read June 1917. Received 13th June 1919.)

The discovery of the configuration known as a Determinantal System of Points was made by Dr W. P. Milne while investigating the problem of the "Generation of a cubic curve by apolar pencils of lines." In the Proc. L. M. S., Ser. 2, Vol. 15, Part 4, he obtained a complete solution, but in unsymmetrical form. He therefore suggested to me that as he was up to that time unable to find a symmetrical solution for the general cubic I should investigate Determinantal Systems for the case of rational curves. The results of my investigations are given in this and the ensuing paper, and have enabled Dr Milne to solve the general problem in symmetrical form in a paper which will appear in the Proc. L. M. S. at an early date. I commence from the result given in the paper by Dr Milne, entitled Determinantal Systems of Points, in the Proc. E. M. S., Vol. XXXIV., Part 2.

1. The present paper discusses the Det. System of nine points when the nine points lie on a conic and the initial triad is apolar to a given triad.

Construction of the system.
$P_{1} Q_{2} R_{3}$ is a triad of points on a conic apolar to a given triad $A B C$.

Let Z and X (real points) be the hessian points of $A B C$, an imaginary triad on the conic.
Y, T are the poles of $Z X, Q_{2} R_{3} . \quad P_{1} X$ meets $Y T$ in V, and $V Q_{2}$ and $V R_{3}$ meet the conic again in Q_{3} and R_{2}.

By the isolation of P_{1} two new points Q_{3} and R_{2} appear, which with P_{1} form a triad $P_{1} Q_{3} R_{2}$. Similarly the isolation of Q_{2} gives a triad $Q_{2} R_{1} P_{3}$, and the isolation of R_{3} gives $R_{3} P_{2} Q_{1}$.

Using Dr Milne's determinantal arrangement

$$
\begin{array}{lll}
P_{1} & P_{2} & P_{3} \\
Q_{1} & Q_{2} & Q_{3} \\
R_{1} & R_{2} & R_{3}
\end{array}
$$

we prove that the nine points can be reached from whatever term of the determinant we start.

The choice of the initial five points is unrestricted. Any five will serve, but these being chosen $A B C$ is determined uniquely.

2. First characteristic.

If $P_{1} Q_{2} R_{3}$ is apolar to $A B C$ then all the other triads which are terms of the determinantal configuration are apolar to $A B C$.

The polar of the intersection of $Q_{2} R_{3}$ and $Z X$ is $Y T$ which is also the polar of the intersection of $Q_{2} R_{3}$ and $Q_{3} R_{2}$.

Therefore $Z X, Q_{2} R_{3}, Q_{3} R_{2}$ are concurrent:
and $\quad Q_{2} R_{2}, Q_{3} R_{3}, Y T$ are concurrent.
Let the equation of the conic referred to $X Y Z$ be $y^{2}=z x$, and let the parameters of the nine points be

$$
\begin{align*}
& \\
& {\left[P_{1} X Q_{2} R_{3}\right]=\left[P_{1} X R_{2} Q_{3}\right] \quad \text { By construction, }} \\
& \frac{l_{1}-l_{2}}{l_{1}-l_{3}}=\frac{l_{1}-n_{3}}{l_{1}-m_{2}} . \tag{3}
\end{align*}
$$

By (1)

$$
\left[Z X Q_{2} Q_{3}\right]=\left[Z X R_{2} R_{3}\right]
$$

i.e.

$$
\begin{equation*}
\frac{l_{2}}{m_{2}}=\frac{n_{3}}{l_{3}} \tag{4}
\end{equation*}
$$

From (3) and (4)

$$
\begin{equation*}
\frac{l_{1}-l_{2}}{l_{1}-l_{3}}=\frac{l_{1}-n_{3}}{l_{1}-m_{2}}=\frac{-l_{2}}{m_{2}}=\frac{-n_{3}}{l_{3}} . \tag{5}
\end{equation*}
$$

(5) follows from the isolation of P_{1}. The isolation of Q_{2} and R_{3} give (6) and (7)

$$
\begin{align*}
& \frac{l_{2}-l_{3}}{l_{2}-l_{1}}=\frac{l_{2}-n_{1}}{l_{2}-m_{3}}=\frac{-l_{3}}{m_{3}}=\frac{-n_{1}}{l_{1}} . \tag{6}\\
& \frac{l_{3}-l_{1}}{l_{3}-l_{2}}=\frac{l_{3}-n_{2}}{l_{3}-m_{1}}=\frac{-l_{1}}{m_{1}}=\frac{-n_{2}}{l_{2}} . \tag{7}
\end{align*}
$$

Multiply
(5), (6) and (7), and $l_{1} l_{2} l_{3}=m_{1} m_{2} m_{3}=n_{1} n_{2} n_{3}=l_{1} m_{2} n_{3}=\ldots$, so that if $P_{1} Q_{2} R_{3}$ is apolar to $A B C$ so are all the other triads.

Further, $l_{1}+n_{2}+m_{3}=m_{1}+l_{2}+n_{3}=$ etc. $=0$ for $l_{1}+n_{2}+m_{3}$

$$
\begin{equation*}
=l_{1}+l_{2} \frac{l_{3}-l_{2}}{l_{2}-l_{3}}+l_{3} \frac{l_{1}-l_{2}}{l_{2}-l_{3}}=0 . \tag{8}
\end{equation*}
$$

We require this equation (8) for the evaluation of the parameters of the hessian points of the six triads.
3. The system of nine points is a symmetrical or closed system. It is a matter of indifference from which triad we start.

Suppose we start from $P_{2} Q_{3} R_{1}$ which will lead to $P_{2} R_{3} Q_{1}$ if

$$
\begin{equation*}
\frac{m_{1}-m_{2}}{m_{1}-m_{3}}=\frac{m_{1}-l_{3}}{m_{1}-n_{2}}=\frac{-m_{2}}{n_{2}}=\frac{-l_{3}}{m_{3}} . \tag{9}
\end{equation*}
$$

(9) follows readily from (5), (6) and (7), and thus we can begin from $P_{2} Q_{3} R_{1}$ or any other triad and reach the same system of nine points as when we begin from $P_{1} Q_{2} R_{3}$.

4. Second characteristic.

The hessian lines of the six triads and of the triad to which they are apolar are conourrent.

Consider $P_{1} Q_{2} R_{3}$ and $P_{1} R_{2} Q_{3}$. Let H_{1}, H_{2} be the hessian points of the one, and K_{1}, K_{2} of the other.

$$
\left[H_{1} H_{2} P_{1} Q_{2} R_{3} X\right]=\left[K_{1} K_{2} P_{1} R_{2} Q_{3} X\right] .
$$

Therefore $H_{1} K_{8}$ and $H_{2} K_{1}$ meet on $P_{1} X$. Similarly $H_{1} K_{1}$ and $H_{2} K_{2}$ meet on $P_{1} Y$, and hence $H_{1} H_{2}$ and $K_{1} K_{2}$ meet on $X Y$.
5. Evaluation of the parameters of the hessian points of the six triads.

Let $H_{1}^{\prime}, H_{8}^{\prime}$ be the hessian points of $P_{1} Q_{2} R_{3}$

$$
\begin{array}{lllll}
H_{1}^{\prime \prime}, H_{2}^{\prime \prime} & " & " & " & R_{1} P_{2} Q_{3} \\
H_{1}^{\prime \prime \prime}, H_{2}^{\prime \prime \prime} & ", & " & " & Q_{1} R_{2} P_{3}
\end{array}
$$

and K_{1}, K_{2} with the requisite marks the hessian points of the other triads.

The parameter of H is h.

$$
\left[H_{1}^{\prime} P_{1} Q_{2} R_{3}\right]=\frac{h_{1}^{\prime}-l_{3}}{h_{1}^{\prime}-l_{3}} \cdot \frac{l_{1}-l_{3}}{l_{1}-l_{2}}=-\omega .
$$

Therefore since $\frac{l_{1}-l_{3}}{l_{1}-l_{2}}=\frac{-l_{3}}{n_{3}}$

$$
h_{1}^{\prime}=\frac{l_{2} l_{3}-\omega n_{3} l_{3}}{l_{3}-\omega n_{3}}
$$

$$
\left[H_{1}^{\prime \prime} R_{1} P_{2} Q_{3}\right]=\frac{h_{1}^{\prime \prime}-m_{1}}{h_{1}^{\prime \prime}-m_{2}} \cdot \frac{m_{3}-m_{2}}{m_{3}-m_{1}}=-\omega
$$

$$
=\frac{h_{1}^{\prime \prime}-m_{1}}{h_{1}^{\prime \prime}-m_{2}} \cdot \frac{l_{1}-l_{3}}{l_{1}-l_{2}} \text { since } \frac{m_{3}-m_{2}}{m_{3}-m_{1}}=\frac{l_{1}-l_{3}}{l_{1}-l_{2}}
$$

Therefore

$$
\begin{aligned}
{h_{1}^{\prime \prime}}^{\prime \prime} & =\frac{m_{1} l_{3}-\omega l_{2} l_{3}}{l_{3}-\omega n_{3}}=\frac{l_{3}\left(-l_{2}-n_{3}\right)-\omega l_{2} l_{3}}{l_{3}-\omega n_{3}} \\
& =\frac{\omega^{2} l_{2} l_{3}-n_{3} l_{3}}{l_{3}-\omega n_{3}} .
\end{aligned}
$$

Therefore

$$
h_{1}^{\prime \prime}=\omega^{2} h_{1}^{\prime} . \quad \text { So } h_{2}^{\prime \prime}=\omega h_{2}^{\prime} .
$$

The parameters of the hessian points may now be written

$$
\left(h_{1}, h_{2}\right) ;\left(\omega^{2} h_{1}, \omega h_{2}\right) ;\left(\omega h_{1}, \omega^{2} h_{2}\right)
$$

with corresponding expressions in k and further $h_{1} h_{2}=k_{1} k_{2}$.

6. Derivative Systems.

Since $\omega h_{1}, \omega h_{2}=h_{1} \cdot \omega^{2} h_{2}=\omega^{2} h_{1} . \omega h_{2}=\omega k_{1} . \omega k_{2}=\ldots$, there are other six lines intersecting on $Z X$. These are the hessian lines of six triads, the parameters of the nine points of which are $\omega l_{1}, \omega l_{2}, \omega l_{3} ; \omega m_{1}, \omega m_{2}, \omega m_{3}$; etc.

There are also six triads with parameters $\omega^{2} l_{1}, \omega^{2} l_{2}, \omega^{2} l_{3}$; etc.
These two (imaginary) sets of six triads have the two characteristics of the original six.
7. It can be shown that if nine points on a conic are arranged in six triads apolar to a given triad on the conic, each of the nine points occurring in two triads and, the hessian lines of these six triads are concurrent, then the point of concurrence must lie on the hessian line of the given triad to which they are all apolar.

