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1. Introduction. Several authors have investigated 
! !rings of quotients" of a given ring R. Johnson showed that 
if R has zero right singular ideal, then the injective hull of 
R may be made into a right self injective,- regular (in the 

R 
sense of von Neumann) ring (see [7] and [12]). In ar t ic les by 
Utumi [10], Findlay and Lambek [6], and Bourbaki [2], various 
s t ructures which correspond to sub-modules of the injective 
hull of R a re made into rings in a natural manner, m [8], 
Lambek points out that in each of these cases the r ings con
structed are subrings of Utumi1 s maximal ring of right quotients, 
which is the maximal rational extension of R in its injective 
hull. Lambek also shows that Utumi1 s ring is canonically 
isomorphic to the bicommutator of the injective hull of R 

if R has 1. It thus appears that a "natural" definition of 
the injective hull of R as a ring extending module multipli-

R 
cation by R has been car r ied out only in the case that the 
injective hull is a rational extension of R. (See [12], [10], 
or [6] for various definitions of this concept. ) 

The purpose of this note is to study what may happen if 
one t r i es to make the entire injective hull of a ring R into a 
ring extending module multiplication, ra ther than stopping at 
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Utumi' s ring of quotients. The author first exhibits an example 
which shows that it may be impossible to do so. Then a ring is 
constructed whose injective hull may be made into a ring, 
a l though t h i s r i n g p r o p e r l y con t a in s Utumi* s r i ng of quo t i en t s , 

F i n a l l y s o m e in fo rma t ion about such a r i ng ex t ens ion is d e r i v e d . 

In wha t fo l lows, R wi l l denote an a s s o c i a t i v e r i ng wi th 
iden t i t y . M wil l signify tha t M i s a uni ta l r igh t R m o d u l e , 

R 
and M wi l l denote i t s in jec t ive hu l l . M is a m a x i m a l e s s e n t i a l 
e x t e n s i o n and m i n i m a l in jec t ive ex t ens ion of M (see [5]), Much 
use wi l l be m a d e of the fact tha t M is in jec t ive if and only if 

R 
for e v e r y r i g h t i dea l I of R and e v e r y it Horn (I, M), t h e r e 

R 
i s an m £ M such tha t f(x) = m x for a l l x e I ( see [ l ] , or [3] 
p . 8) . Such an e l e m e n t m wi l l be sa id to induce f. 

If { a, b , « . » } C *vl * | a , b , . . . ) wi l l denote the sub-
R 

m o d u l e of M » and <a , b , . . . > the s u b g r o u p of (M,+) 
R 

g e n e r a t e d by { a, b , «. . } - Z wi l l denote the r i n g of r a t i o n a l 
i n t e g e r s , and Z wi l l deno te Z / n Z for n e Z . 

2) 
2 . An e x a m p l e w h e r e R i s not a r i n g . L e t R be the 

r i n g 

4 4 

u n d e r u s u a l m a t r i x add i t ion and m u l t i p l i c a t i o n . 

Lret 

I 
0 Q 

0 2 
J = 

0 2 

LO OJ 

2) 
F^ax f u r t h e r e x a m p l e s w h e r e R m a y fai l to be a r i n g , see 
the a u t h o r 1 s d i s s e r t a t i o n . In t h e s e o the r e x a m p l e s , the 
a s s o c i a t i v e law r a t h e r than the d i s t r i b u t i v e law f a i l s . 

406 

https://doi.org/10.4153/CMB-1964-039-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1964-039-3


One r e a d i l y ve r i f i e s that the m a p 

0 0 

0 2 J 

0 2 

LO 0. 

gives an R i s o m o r p h i s m be tween I and J . Then f ex tends 
to an i s o m o r p h i s m £:î -* J . One a l so r ead i ly v e r i f i e s tha t 

o o l \ 

i s an e s s e n t i a l ex tens ion of I, so it i s conta ined in 

some in jec t ive hul l of I, say I. 
Since I i s in jec t ive , the m a p f c Horn ( J , I) i s induced 

R r -% a 

by an e l e m e n t m t L Le t m 1 = m 
1 0 
0 0 

R 
Then 

m ' 

i 0 

0 0 
= m f , m f 

[0 Z 

Lo o_ 
= 

'o o" 

J) 2_ 
. m' 

"0 0] 
= 0 

A s s u m e 2m1 # 0. Since I i s an e s s e n t i a l ex t ens ion of 
I, | ( 2 m ' ) R ) O l # 0; but 

| (2m')R) = <m' (2R)> = <m ! 
2 0 

L0 2J 
> = < 2 m ' > , 

so that 2m' = 
0 0 
0 2 

0 = 
0 0 

L0 2. 

, and 

1 0" 

.0 0 
= 2m' 

1 0 

0 0 
= 2m' 

This contradicts our assumption that 2m' 4 0 . 

Now a s s u m e R i s a ring. Then, from the above , 

0 = (2m' ) f 
0 0 

0 1 
(m» ) ?' 

[0 0" 

L° 2_ 
= m» 

/ 

"o 

. 0 

2" 

0_ 
— 

"o o"] 

- 0 2 j 

a contradiction. 
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3. R a ring properly containing Utumi1 s ring of quotients. 
Let R be an algebra over Z with basis { l , x, y, xy} and 

Cm 

multiplication defined by: 

1 is a two sided identity, 

2 2 2 
0 = x =y = (xy) = yx = x(xy) = y(xy) =(xy)x = (xy)y . 

R is associative, since any triple product not involving 1 is 0. 

We observe that the socle of R = |y) (±) |xy). Hence 

R = |y) © I^y) ( s e e [9])* Moreover, since R is unital, 
2R =0. 

By direct computation we obtain |y) = <y, m, n, u> 
where 

mx = y , my = 0 , 

nx s 0 , ny = y , 

ux = n , uy = 0 . 

This may be easily verified by showing that every map from a 
right ideal of R into <y, m, n, u> is induced by some element 
thereof, and that we indeed have an essential extension of |y). 

^jSince |xy) is isomorphic to |y), |xy) is isomorphic 
to |y). We then get an infective hull of |xy) by taking 
<xy, m, x, l-n> where 

mx = xy , my = 0 . 

Then a basis for R is { i , x, y, xy, m, n, u, m} » We 
construct the following multiplication table for R as an 
algebra over Z . 
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1 ! 

x 

y 

xy 

m 

n | 

u 

m 

1 

1 

x 

! y 

xy 

m 

! n 

u 

! 5i 

X 

X 

0 

0 

0 

y 

0 

n 

*y 

y 

y 

xy 

0 

0 

0 

y 

0 

0 

*y 

*y 

0 

0 

0 

0 

0 

y 

0 

m 

m 

m 

0 

0 

0 

m 

0 

0 

n 

n 

X 

y 

xy 

0 

n 

0 

0 

u 

u 

1-n 

m 

m 

0 

u 

0 

0 

m 

m 

0 

0 

0 

0 

0 

m 

0 

That this multiplication i s a s soc ia t ive may be verif ied by 
actually computing triple products. "*' The author was unable 
to find a non-computational method for proving that R i s a ring. 

>\ 
To prove that R i s not Utumif s ring of quotients, we use 

the fact that Utumi1 s ring cons i s t s prec i se ly of those e lements 
of R which are annihilated by ai l X e Horn (R,R) such that 

R 
X(l) = 0 ( see Lambek [8]). It i s eas i ly veri f ied that the following 
induce R homomorphisms of R: 

f ( m ) = y ; f ( l ) = f(m) = f(u) = 0 ; 

g(m) = y ; g ( i ) = g(m) = g(u) = 0 ; 

h(u) = m ; h( l ) =h(m) = h(m) = 0 . 

Since each homomorphism i s 0 on the identity and each e lement 
of <m, n, u, m> i s not sent into 0 by some one of {£, g, h} , 
we conclude that Utumi1 s ring of quotients i s p r e c i s e l y R. 

4. R i s a ring. In this sect ion we general ize a resul t 
of Lambek [8] to the case where R may be made into a ring, 
although that ring may properly contain Utumi1 s ring of quotients. 

A table of these triple products may be found in the author' s 
doctoral d issertat ion. 

409 

https://doi.org/10.4153/CMB-1964-039-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1964-039-3


«Assume that (R, +,*) is a ring, where m « r = m r for 
all m e R, r e R. Let A =Hom (R,R). We first prove a 

R 
standard embedding lemma. 

LEMMA 1, (R, +, o) is isomorphic to a subring of A • 

Proof. Define a map from R to A by m -** m, where 
— — — — — AK AS 

m(x) = mox for all m, x e R. For all m, n, xeR, 

(m-j-n)(x) = (m+n)*x = m*x +n<»x = m(x) + n(x) = (m+n)(x) , 

(mj?n){x} = {m«n)*x = m*(n<*x) =m(n(x)) = (mn)(x) , 

so this map is a ring homomorphism. If m = 0 

0 =m(l) =m»l = ml =m , 

so the map is one-to-one. 

We will denote the image of R under this map by % , 
and the image of R by /Z . 

LEMMA 2. A is a unital ^ module. 

Proof. Let e be the identity of A • ï Î = 1 °1 = 1, so 
1 is an idempotent of A • Hence e - 1 is also idempotent, 
and (e - T)(r) = r - r = 0 for all r t R. 

Since A is the endomorphism ring of the injective 
module R , the Jacobson radical of A consists precisely of 

R 
those elements of A which annihilate an essential submodule 
of R (see [11], Lemma 8). Then (e - Ï) is an idempotent 

R 
in the Jacobson radical, so e - Ï = 0. Thus, e actually 
belongs to /? . 

We wish to show that f\* is an injective module. To do 

so we need some more information about the structure of A • 
Let /?X = {X £ A | Ml) =0} . 

LEMMA 3. A = /P , © /fx . 
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Proof. Let X, u t /?*\ r £ R. (X + u)(l) = 0 so 
\ + fie /f"-. Xr(l) = X(r) =0 so Xr £ / 6 X . Thus / f 1 is an 
/Ç module. 

Let X € A , m = X(l). Then (X - m)(l) = m - m = 0 , 
so X - m £ J?*~ and A = ^ + ^ X - If x e /f H / f 1 , let 
m e R be such that x = m. Then 0 = x(l) = m(l) = m, so 
0 = fn = x. Thus the sum is direct . 

We are now ready to prove the theorem. 

THEOREM. A is an injective /? module. 

Proof. Since [\g is unitai by Lemma 2, to prove that 
A is injective we need only show that every f £ H o m ^ ( ^ A )> 

for KT a right ideal of y?, is induced by some element 6 £ A • 

For X £ A » let IIX be the projection of X onto & 
with respect to /fx. Then II£ Horn-(A >/€)• Let / be a 

right ideal of / f , feHom£(%/?A)- Then II f £ H o r n e d / /£}. 

Since R is injective, by the isomorphism of Lemma 1» ^ -
R "^ 

is injective. Then there exists 9 £ Horn ( /?, /f7) such that 9 

res t r ic ted to i / is Ilf. For all m e R, define 9 e A hy 
9(m) =[9(m)](l) . Then 

9(mr) =[9(mr)]( l) = [9 (m)r](l) = [9 (m)](r) = [^(m)](l)r = 9 (m)r , 

so 8 is indeed an R hornomorphism. 

For all x £ *J?, 

(f(x) - 8x)(l) *f(x)(i) - 8(x) = f(x)(l) - [9(x)](l) 

^[ f (x) - nf(x)]( l )=0 . 

Hence f(x) - 8x = u e tfx. 

Let m be any element of R. 

u m = (f(x) - 9 x)m = f(x)m - (9 5c)m = f(xm) - 9 xm = u e /?* 
x xom 
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Hence u m ( l ) = u ( m ) = 0 , so u = 0. Thus f ( x ) = 0 x for a l l 
X X X 

x t \f? and A ^ is infective. 

COROLLARY. Let R be a ring with 1 such that the 
infective hull R of R is a rational extension of R . Then 

R R 
A 
RA is infective. 

R 

Proof. In this case , R is Utumi1 s ring of quotients, 
and it is a ring isomorphic to A • Then RA = A ~ is infective 

R R 
by the theorem. 

This corol lary is just (2) =H6) in the proposition of 
section 5 of Lambek [8]. 

A 

The author does not know whether RA must always be 

injective if R may be made into a ring. In the example of 
section 3, we do get a self injective ring. For there is only 

A A 

one irreducible left R module and one irreducible right R module, 
and they a re the duals of each other. Hence RA is injective 
(see [4], section 58). Similarly, one may show that A 

is not injective in this example. 
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