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Abstract

In this article, we define lattice graphs (which generalise ultragraphs) as well as their Cuntz–Krieger
families and C∗-algebras. We will give a thorough study in the special case of lattice atomic graphs.
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1. Introduction and preliminaries

Ultragraphs were first introduced by Tomforde as a generalisation of the notion of
directed graphs. The C∗-algebras for ultragraphs include both the C∗-algebras of
graphs (see [1, 5, 9, 10]) as well as the Exel–Laca algebra defined in [6] (see [11]
and [12]).

In this paper, we define a more general notion called lattice graphs
(see Definition 1.1) and define their Cuntz–Krieger families as well as their
C∗-algebras (if such Cuntz–Krieger families exist). We mainly restrict our attention to
what we call lattice atomic graphs (see Definition 1.1).

More precisely, we show in Section 2 that Cuntz–Krieger families exist for
distributive lattice atomic graphs. We also give a graph theoretical characterisation
for the existence of Cuntz–Krieger families for general lattice atomic graphs
(see Proposition 2.9). In Section 3, we define the C∗-algebra of a lattice atomic graph
that admits a Cuntz–Krieger family and show that, in that case, one can replace the
original lattice graph with a distribution lattice graph (see Theorem 3.1).

Let us first give a definition of lattice graphs. Recall that a partially ordered set
(L ,≤) is a lattice if for any x, y ∈ L , there exists x ∧ y, x ∨ y ∈ L such that x ∧ y ≤
x, y ≤ x ∨ y, and if u, v ∈ L with u ≤ x, y ≤ v, then u ≤ x ∧ y and x ∨ y ≤ v. An
element 0 ∈ L is the zero of L if 0≤ y for every y ∈ L , and x ∈ L \ {0} is an atom if
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there does not exist y ∈ L \ {0, x} such that y ≤ x . A lattice L is said to be distributive
if it satisfies the following identities (for any x, y, z ∈ L):

(a) (x ∧ y) ∨ (x ∧ z)= x ∧ (y ∨ z);
(b) (x ∨ y) ∧ (x ∨ z)= x ∨ (y ∧ z).

Throughout this article, we denote by La the set of all atoms of a lattice L
(with zero).

DEFINITION 1.1. We make the following definitions.

(a) Let E 0 be a lattice with zero. A lattice graph E = (E 0, E 1, r, s) consists of a set
(of vertices) E 0, a set (of edges) E 1, and maps r, s : E 1

→ E 0
\{0} (the range and

source maps of each edge). An element x ∈ E 0 is called a sink if there does not
exist e ∈ E 1 with s(e)= x .

(b) Let E = (E 0, E 1, r, s) be a lattice graph. If E 0 is distributive, we call E a
distributive lattice graph. If s(E 1)⊆ E 0

a , we call E a lattice atomic graph.
(c) A standard lattice graph is a lattice atomic graph E = (E 0, E 1, r, s) that satisfies

the following conditions:

(i) both E 0 and E 1 are countable;
(ii) E 0 is generated by {x | x ∈ E 0

a } ∪ {r(e) | e ∈ E 1
} ∪ {0};

(iii) if Ax := {a ∈ E 0
a | a ≤ x} (x ∈ E 0), then x 7→ Ax is an injection from E 0 to

P(E 0
a ).

Ultragraphs are examples of distributive standard lattice graph. In fact, any
distributive standard lattice graph comes from an ultragraph in the way as described in
the following example (this fact will be proved in Corollary 2.3).

EXAMPLE 1.2. Let G = (G0, G 1, r, s) be an ultragraph. If E 0
= G 0 and E 1

= G 1,
then E = (E 0, E 1, r, s) is a distributive standard lattice graph (because G 0 is the lattice
generated by the elements in G0 and {r(e) | e ∈ G 1

}).

Given a standard lattice graph (E 0, E 1, r, s), one can set X = E 0
a and identify

x ∈ E 0 with Ax ∈ P(X). However, it is not true in general that this gives a
lattice homomorphism from E 0 to P(X) (for example, if E 0 is the lattice as in
Example 2.7(a)). Nevertheless, this is a lattice homomorphism when E 0 is distributive
but the argument is far from obvious. In fact, this is the main difficulty in showing that
any distributive standard lattice graph is an ultragraph.

2. Cuntz–Krieger families for lattice graphs

Let us begin this section with the following result concerning lattices that is crucial
throughout this paper. Since we could not find this result in the literature, we give a
proof here for completeness.

PROPOSITION 2.1. For any distributive lattice L with zero, there exist a set X and an
injective lattice homomorphismψ : L→ P(X) such thatψ(La)⊆ X (here we identify
elements in X as singleton subsets of X) and ψ(0)= ∅.
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PROOF. By a variant of the Birkhoff theorem (see, for example, [3, Theorem 5.7]),
there is a lattice isomorphism ϕ1 from L to a ring of sets S ⊆ P(Z). If Y := Z \ ϕ1(0)
and ϕ : L→ P(Y ) is defined by

ϕ(u)= ϕ1(u) \ ϕ1(0) (u ∈ L),

then ϕ is an injective lattice homomorphism sending 0 to the empty set (note that any
element in S contains ϕ1(0)). We define an equivalent relation ∼ in Y by x ∼ y if
either x = y or there exists a ∈ La with x, y ∈ ϕ(a) (note that ϕ(a) ∩ ϕ(b)= ∅ for
any distinct a, b ∈ La). Let

X := Y/∼

and Q : Y → X be the canonical quotient map. It is clear that Q(A ∪ B)= Q(A) ∪
Q(B) and Q(A ∩ B)⊆ Q(A) ∩ Q(B) for any A, B ⊆ Y . Suppose that u, v ∈ L and

z ∈ Q ◦ ϕ(u) ∩ Q ◦ ϕ(v).

Then there exist x ∈ ϕ(u) and y ∈ ϕ(v) such that z = Q(x)= Q(y). Consequently,
either x = y or there exists a ∈ La with x, y ∈ ϕ(a). In the first case, we clearly have
z ∈ Q(ϕ(u) ∩ ϕ(v))= Q ◦ ϕ(u ∧ v). In the second case, ϕ(u ∧ a)= ϕ(u) ∩ ϕ(a) 6= ∅
which implies a ≤ u (as a ∈ La and ϕ is injective) and a ≤ v. This shows that x, y ∈
ϕ(a)⊆ ϕ(u ∧ v) and z ∈ Q ◦ ϕ(u ∧ v). Thus, ψ := Q ◦ ϕ is a lattice homomorphism
sending elements in La to singletons in P(X). It remains to show that ψ is injective.
Suppose that u, v ∈ L with

Q ◦ ϕ(u)⊆ Q ◦ ϕ(v).

Then, for any x ∈ ϕ(u), there exists y ∈ ϕ(v) such that x ∼ y. If x 6= y, then there
exists a ∈ La with x, y ∈ ϕ(a). This tells us that ϕ(a) ∩ ϕ(v) 6= ∅ and, as above, we
have a ≤ v which implies x ∈ ϕ(a)⊆ ϕ(v). Therefore, we always have ϕ(u)⊆ ϕ(v)
and so u ≤ v (as ϕ is injective). This gives the injectivity of ψ . 2

REMARK 2.2. Note that although we have Proposition 2.1, a distributive lattice
atomic graph is still far from being an ultragraph. For example, there is a distributive
lattice atomic graph E with E 0 being countable infinite and E 0

a being a singleton set
while if G is an ultragraph, then G0

= G 0
a is finite if and only if G 0 is finite.

Now, we can give the converse of Example 1.2. As noted in the paragraph after that
example, the difficulty is to show that x 7→ Ax is a lattice homomorphism.

COROLLARY 2.3. Any distributive standard lattice graph E = (E 0, E 1, r, s) can be
realised as an ultragraph.

PROOF. Let X and ψ be as in Proposition 2.1 for L = E 0. Put X0 := ψ(E 0
a ) (which is

a countable set). By regarding X0 ⊆ X , one can define a lattice homomorphism ψ0 :

E 0
→ P(X0) by ψ0(x) := ψ(x) ∩ X0 (x ∈ E 0). It is easy to see that ψ0(x)= ψ(Ax )

and so ψ0 is injective by Definition 1.1(c)(iii). This, together with Definition 1.1(c)(ii)
and the countability of E 1, shows that G = (X0, E 1, ψ0 ◦ r, ψ0 ◦ s) is an ultragraph
with G 0

= E 0. 2
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We now define the Cuntz–Krieger family for lattice graphs and study their existence
in the case of lattice atomic graphs.

DEFINITION 2.4. Let E be a lattice graph. A Cuntz–Krieger E -family in a C∗-algebra
B is a collection of partial isometries {se | e ∈ E 1

} with nonzero mutually orthogonal
ranges and a collection of projections {px | x ∈ E 0

} such that for any x, y ∈ E 0 and
e ∈ E 1:

(CK1) p0 = 0, px py = px∧y and px∨y = px + py − px∧y ;
(CK2) s∗ese = pr(e);
(CK3) ses∗e ≤ ps(e);
(CK4) px =

∑
f ∈s−1(x) s f s∗f whenever 0< |s−1(x)|<+∞.

Using a similar argument as in [11, Theorem 2.11], we have the following.

LEMMA 2.5. Let Y be a set and E = (P(Y ), E 1, r, s) be a lattice atomic graph. There
exists a Cuntz–Krieger E -family {se, pA} such that pA 6= pB whenever A 6= B ∈ P(Y ).

PROOF. Set He := `2(P(Y ))⊕ `2(E 1) for each e ∈ E 1. If a ∈ Y is a sink, we put
Ha := `2(P(Y ))⊕ `2(E 1). If a ∈ Y is not a sink, we put Ha :=

⊕
e∈s−1(a) He. Let

HA :=
⊕

a∈A Ha for any A ∈ P(Y ). We write H := HY and identify He ⊆ Hs(e). For
every e ∈ E 1, we define a partial isometry se ∈ L(H) with initial space Hr(e) and final
space He. For every A ∈ P(Y ), we define pA ∈ L(H) to be the orthogonal projection
onto HA. It is not hard to check that {se, pA} is a Cuntz–Krieger E -family satisfying
the required property. 2

This result, together with Proposition 2.1, gives the following corollary.

COROLLARY 2.6. If E is a distributive lattice atomic graph, then there exists a Cuntz–
Krieger E -family. In fact, there exists a Cuntz–Krieger E -family on some L(H) which
satisfies a stronger condition than (CK4):

(CK4′) px = SOT−
∑

f ∈s−1(x) s f s∗f whenever s−1(x) 6= ∅

(where SOT−
∑

means the strong operator limit of the finite sums).

However, the Cuntz–Krieger E -family does not exist for arbitrary lattice atomic
graph as can be seen in the following example.

EXAMPLE 2.7. (a) Let E 0
= {o, a, b, c, i} be a lattice represented by the following

Hasse diagram:

@
@
@

a ◦

◦ o�
�
�
◦c�

�
�

◦b

◦i

@
@
@
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Put E 1
= {α, β, γ }, where

s(α)= a, s(β)= b, s(γ )= c and r(α)= r(β)= r(γ )= i.

Clearly, E = (E 0, E 1, r, s) is a lattice atomic graph. Suppose that there is a
Cuntz–Krieger E -family {se, px }. Since a ∨ b = b ∨ c = a ∨ c = i , we have, by
(CK1),

pi = pa + pb = pb + pc = pa + pc

and so, pa = pb = pc. As pi = 2pa is a projection, we must have pa = pb =

pc = 0. Now (CK3) implies that sαs∗α = sβs∗β = sγ s∗γ = 0 which contradicts the
assumption on their ranges.

(b) Let E = (E 0, E 1, r, s) be a lattice atomic graph with E 0
= {o, e, f, g, i} being a

lattice represented by the following Hasse diagram:

e ◦

A
A
A

◦ o�
�
◦ f

◦ g
@@�

�
�

◦ i

Suppose that F 0
= {o, a, c, i} is the sublattice of the lattice represented by the

Hasse diagram in part (a) and ϕ : E 0
→ F 0 is the lattice homomorphism defined

by ϕ(o)= o, ϕ(i)= i , ϕ(e)= a, ϕ( f )= c = ϕ(g). Set r ′ = ϕ ◦ r and s′ = ϕ ◦ s.
Then F = (F 0, E 1, r ′, s′) is a lattice atomic graph such that any Cuntz–Krieger
F -family {se, py} induces a Cuntz–Krieger E -family {se, pϕ(x)}. As F 0 is
distributive, we know that a Cuntz–Krieger E -family exists (Corollary 2.6).

It is well known that a lattice is nondistributive if and only if it has a sublattice
whose Hasse diagram is isomorphic to either the diamond shape as in part (a) or the
pentangonal shape as in part (b). The above example seems to indicate that the only
obstruction to the existence of a Cuntz–Krieger family is the appearance of a sublattice
with the Hasse diagram being of diamond shape.

In the following, we give a more thorough study of the existence of Cuntz–Krieger
families which explains the difference between the diamond shape and the pentangonal
shape lattices as in the above example. Let us first make the following simple
observation about Cuntz–Krieger families.

LEMMA 2.8. Let E = (E 0, E 1, r, s) be a lattice atomic graph and {se, px } be a Cuntz–
Krieger E -family on a C∗-algebra B.

(a) If we consider B as a C∗-subalgebra of some L(H), then PE 0 := {px | x ∈ E 0
}

is a distributive sublattice of the lattice of projections in L(H). If E is a lattice
atomic graph, then ps(e) is an atom in PE 0 (for every e ∈ E 1).

(b) We have se 6= s f for every e 6= f ∈ E 1.
(c) If x, y ∈ E 0

a with px = py and s−1(x) 6= ∅, then x = y.
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PROOF. (a) It is clear that if p, q are commuting projections of L(H), then p ∧ q =
pq as well as p ∨ q = p + q − pq. Now, this part is clear.

(b) If e 6= f ∈ E 1 but se = s f , then ses∗e = s f s∗f and we have ses∗es f s∗f = ses∗e 6= 0
which contradicts the fact that s∗es f = 0.

(c) For any e ∈ s−1(x), we have 0 6= ses∗e ≤ px . Hence, px∧y = px 6= 0 and
x ∧ y 6= 0 which means that x = y. 2

PROPOSITION 2.9. Let E = (E 0, E 1, r, s) be a lattice atomic graph. There exists a
Cuntz–Krieger E -family if and only if there exist a distributive lattice L and a lattice
homomorphism ϕ : E 0

→ L such that ϕ is injective on E 0
s := {x ∈ E 0

a | s
−1(x) 6= ∅}.

PROOF. The necessity follows from Lemma 2.8. Conversely, suppose that such L and
ϕ exist. Note that ϕ(E 0) is a (distributive) sublattice of L and so we can assume that ϕ
is surjective. It is easy to see that ϕ(0) is the zero of L . Moreover, ϕ(x) is an atom of
L for each x ∈ E 0

a . Indeed, if ϕ(y)≤ ϕ(x), then

ϕ(y)= ϕ(y ∧ x) ∈ {ϕ(0), ϕ(x)}.

Let r ′ = ϕ ◦ r and s′ = ϕ ◦ s. Then F = (L , E 1, r ′, s′) is a distributive lattice atomic
graph. By Corollary 2.6, there exists a Cuntz–Krieger F -family {se, qy}. We claim
that if px := qϕ(x) (x ∈ E 0), then {se, px } is a Cuntz–Krieger E -family. The only
nontrivial part is (CK4). Suppose that x ∈ E 0

a such that 0< |s−1(x)|<∞. For any
e ∈ (s′)−1(ϕ(x)), we have ϕ(s(e))= ϕ(x) which means that s(e)= x (because of the
hypothesis and the fact that x, s(e) ∈ E 0

s ). Thus, (s′)−1(ϕ(x))= s−1(x) and {se, px }

will satisfy (CK4). 2

COROLLARY 2.10. For any lattice K with a zero, the following two statements are
equivalent.

(a) There exists a distributive lattice L and a lattice homomorphism φ : K → L such
that φ is injective on Ka .

(b) For any lattice atomic graph E = (E 0, E 1, r, s) with E 0
= K , there exists a

Cuntz–Krieger E -family.

PROOF. (a) H⇒ (b) This follows directly from Proposition 2.9.
(b) H⇒ (a) Take any x ∈ Ka and put E 1

:= {(a, x) | a ∈ Ka}. Define r, s | E 1
→ K

by s((a, x))= a and r((a, x))= x . Then E = (K , E 1, r, s) is a lattice atomic graph.
Let {se, px } be a Cuntz–Krieger E -family. Then L = {px | x ∈ E 0

} and φ(x)= px will
satisfy the conditions in part (a) (because of Lemma 2.8). 2

3. C∗-algebras of lattice atomic graphs

Let E = (E 0, E 1, r, s) be a lattice graph. Suppose that G is the disjoint union
{se | e ∈ E 1

} ] {px | x ∈ E 0
} of symbols indexed by E 1 and E 0 respectively, and R

is the relations (CK1)–(CK4). Then the existence of a Cuntz–Krieger E -family will
imply that (G, R) is admissible in the sense of [2, Definition 1.1], and so one can
construct a C∗-algebra C∗(G, R) as in [2]. We denote this C∗-algebra by C∗(E) and
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call it the C∗-algebra of the lattice graph E . Note that C∗(E) exists only when there
is a Cuntz–Krieger E -family. The canonical image of E 1

] E 0 in C∗(E) is called the
universal Cuntz–Krieger E -family.

In the following, we again restrict our attention to lattice atomic graphs. Our first
result shows that any lattice atomic graph C∗-algebra can be realised as a distributive
lattice atomic graph.

THEOREM 3.1. Let E be a lattice atomic graph such that there exists a Cuntz–Krieger
E -family. Then there is a distributive lattice atomic graph F such that C∗(E)= C∗(F).

PROOF. Let {se, px } be the universal Cuntz–Krieger E -family and PE 0 be the
corresponding distributive lattice as given in Lemma 2.8(a). Define ϕ : E 0

→PE 0

by ϕ(x)= px as well as r ′ = ϕ ◦ r and s′ = ϕ ◦ s. Then F := (PE 0, E 1, r ′, s′) is a
distributive lattice atomic graph. If {te, qy} is the universal Cuntz–Krieger F -family
and p′x := qϕ(x), then Lemma 2.8(c) and the argument of Proposition 2.9 tell us
that {te, p′x } is a Cuntz–Krieger E -family. This shows that there is a surjective
∗-homomorphism 8 : C∗(E)→ C∗(F) such that

8(px )= qϕ(x) and 8(se)= te.

Conversely, if we define q′px
:= px , then {se, q′y} is a Cuntz–Krieger F -family. This

induces a surjective ∗-homomorphism 9 : C∗(F)→ C∗(E) such that 9(qϕ(x))= px
and 9(te)= se. 2

Note that if E = (E 0, E 1, r, s) is a lattice atomic graph such that there exists a
largest element i ∈ E 0 and {se, px } is the universal Cuntz–Krieger E -family, then pi
is the identity. The converse is true if E is distributive. More generally, we have the
following result which is a generalisation of the corresponding result for ultragraph
C∗-algebras.

PROPOSITION 3.2. Let E = (E 0, E 1, r, s) be a lattice atomic graph such that there
exists a Cuntz–Krieger E -family. If C∗(E) is unital, then 1 ∈PE 0 where PE 0 is the
lattice as in Lemma 2.8(a) for the universal Cuntz–Krieger E -family {se, px }. If, in
addition, E 0 is distributive, then the uniticity of C∗(E) will imply that there exists
i ∈ E 0 with x ≤ i for any x ∈ E 0.

PROOF. Suppose that C∗(E) is unital. The set F(E 0) of all finite subsets of E 0 is
a directed set. For any F ∈ F(E 0), we set yF :=

∨
{x | x ∈ F}. For any e ∈ E 1 and

x ∈ E 0, we have

‖pyF se − se‖ + ‖sepyF − se‖ + ‖pyF px − px‖ + ‖px pyF − px‖→ 0.

Hence, {pyF } is an approximate unit in C∗(E) and ‖1− pyF ‖→ 0. This implies that
there exists D ∈ F(E 0)with 1= pyD . If E 0 is distributive, the relation px = px∧yD (x ∈
E 0) will imply that x ≤ yD (note that x 7→ px is injective because of Lemma 2.5). 2

We end this paper with two examples.
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EXAMPLE 3.3. (a) Let E 0
= {0, 1, 2} with the usual ordering, E 1

= {a}, r(a)= 2
and s(a)= 1. Then E = (E 0, E 1, r, s) is a distributive lattice atomic graph. If
{sa, p1, p2} is the universal Cuntz–Krieger E -family, then p2 is the identity of
C∗(E) (by Proposition 3.2) and p1 6= p2 (by Proposition 2.1 and Lemma 2.5).
Thus, C∗(E) is generated by a nonunitary isometry and is thus the Toeplitz
algebra (see, for example, [4]).

(b) Let E 0
= {0} ∪ [1,∞) with the usual ordering, E 1

= {a} and r(a)= 1= s(a).
Suppose that {sa, pt } is the universal Cuntz–Krieger family for the distributive
lattice atomic graph E = (E 0, E 1, r, s). Note that sa = p1 and so C∗(E)
is generated by a increasing net of distinct nonzero projections {pt | t ∈
[1,∞)}. Thus, there exists a locally compact Hausdorff space � such that
C∗(E)∼= C0(�). For each ω ∈�, we denote

Sω := {t ∈ [1,∞) : ω(pt )= 1} 6= ∅.

Note that if ω, ν ∈� with Sω = Sν , then ω and ν agree on the generating set
{pt } which implies that ω = ν. Moreover, since ω(ps)= 1 will imply ω(pt )= 1
when t ≥ s, we see that Sω is either [s,∞) or (s,∞) for some s ∈ [1,∞). We
now show that both of these two types of sets are possible, that is, we have a
bijection from � to {[s,∞) | s ∈ [1,∞)} ∪ {(s,∞) | s ∈ [1,∞)}. In fact, for
any t ∈ [1,∞), we can set at , bt ∈ `

∞([1,∞)) by

bt = χ[1,t] and at =

{
χ[1,t) t 6= 1

χ{1} t = 1.

Then both {at } and {bt } are increasing nets of nontrivial projections
in `∞([1,∞)) and there exist surjective ∗-homomorphisms 8 : C∗(E)→
C∗({at })⊆ `

∞([1,∞)) and 9 : C∗(E)→ C∗({bt }) such that 8(pt )= at and
9(pt )= bt (t ∈ [1,∞)). Let ϕs ∈ `

∞([1,∞))∗ be defined by ϕs( f )= f (s)
(s ∈ [1,∞)). Put φs := ϕs ◦8 ∈� and ψs := ϕs ◦9 ∈�. It is easy to see that
Sφs = (s,∞) and Sψs = [s,∞). Now, we set

1 := {χ[s,∞) : s ∈ [1,∞)} ∪ {χ(s,∞) : s ∈ [1,∞)} ⊆ `
∞([1,∞))

and equip it with the topology of pointwise convergence on [1,∞). The above
tells us that ω 7→ χSω gives a bijection from � to 1. Note that ω(pt )=

χSω(t) (t ∈ [1,∞)). Thus, for ωi , ω ∈�, we have ωi → ω if and only if
ωi (pt )→ ω(pt ) for any t ∈ [1,∞) (because {pt } generates C∗(E) and ωi are
contractive homomorphisms). This shows that ωi → ω if and only if χSωi

→ χSω
pointwisely on [1,∞). Consequently, �∼=1 as topological spaces.

REMARK 3.4. (a) Note that although Toeplitz algebra is a graph C∗-algebra, the
lattice graph E in Example 3.3(a) is not even an ultragraph.

(b) Since the C∗-algebra in Example 3.3(b) is not separable, it is not an ultragraph
C∗-algebra.
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