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HIGHER MONOTONICITY PROPERTIES OF CERTAIN 
STURM-LIOUVILLE FUNCTIONS. IV 

LEE LORCH, MARTIN E. MULDOON, AND PETER SZEGO 

1. I n t r o d u c t i o n . The Sturm-Liouville functions considered in this instal
ment are real (as are all other quanti t ies discussed here) non-trivial solutions of 
the differential equation 

(1.1) (g(x)y'Y + f(x)y = 0, g(x)>0. 

Higher monotonicity properties, as defined in § 2, are investigated for a number 
of sequences (finite or infinite) associated with these functions. One such 
sequence, discussed in detail later, has the &th term 

J *xk+1 

W(x)\y(x)\*dx, k = 1 , 2 , . . . , 
xk 

where the constant X > — 1 (to assure convergence of each integral), W(x) 
possesses higher monotonicity properties and, moreover, is such tha t , again, each 
integral converges, and Xi, x2, . . . is a sequence (finite or infinite) of consecutive 
zeros of a solution of (1.1), which may or may not be linearly independent of 
y(x), in the interval of definition of the functions under consideration. 

In our earlier work [7 ; 8 ; 9] and tha t of Vosmansky [18 ; 19], similar sequences 
were studied, associated only with the special differential equation (1.1) where 
g(x) = 1. However, the Introductions to [7] and [9] discuss the background and 
motivat ion to the entire series of papers. 

In § 2, the definition of higher monotonicity is recalled and some notat ions 
introduced. In § 3, new results are provided, extending earlier results (valid when 
g(x) = 1) to the more general g(x) involved here. These sections utilize hypoth
eses on the coefficient functionsj(x), g(x) in (1.1) to deduce higher monotonicity 
properties of sequences such as (1.2). In § 5, similar inferences are drawn, bu t 
now from hypotheses based ra ther on the functionsp(x) = b>i(x)]2 + b>2(x)]2 and 
iV{x) = y\(x)yi(x) — y2(x)yi(x), where yi(x), yi{x) are appropriate linearly 

independent solutions of (1.1). 
T h e intervening § 4 provides results on the behaviour of the extrema, and the 

slopes a t the zeros, of solutions of (1.1). These theorems are new even in the 
special case gix) = 1. A rather special case of either Theorem 4.1 or Theorem 4.3 
may serve to suggest the flavour: If g(x) = l , / ( x ) > 0, andf'(x) is completely 

Received May 18, 1971 and in revised form, November 16, 1971. This study was supported 
by the National Research Council of Canada. Some of M. E. Muldoon's work on this was 
performed while he was a member of the Summer Research Institute of the Canadian Mathe
matical Congress. 

349 

https://doi.org/10.4153/CJM-1972-029-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-029-9


350 L. LORCH, M. E. MULDOON, AND P. SZEGO 

monotonie, then the squares of the extrema of any solution on (a, oo) of (1.1) form 
a completely monotonie sequence. 

The proofs in § 4 are based on appropriate representations in terms of quanti
ties resembling (1.2) to which the results of § 3 can then be applied. A common 
feature of these representations is that X = 2 throughout, a special case of (1.2), 
etc., not employed before. Previous applications [7 ; 8 ; 9 ; 18] involved only X = 0, 
yielding information about the zeros of Sturm-Liouville functions, X = 1, 
concerning the areas under consecutive arches of their graphs, and the limiting 
case [9, § 8] X —> — 1 + , leading to special sequences. 

The limiting case is mentioned only in passing here (§ 6), unlike in [9, § 8] 
where considerable detail is supplied. 

The final § 7 consists of applications of our general results to Bessel functions. 
Similar applications could be made to other special functions, such as the 
generalized Airy function, the Coulomb wave function, and the confluent 
hypergeometric function for various ranges of the parameters. 

The scope of the present applications is considerably wider than the earlier 
ones, thanks to the availability in §§ 3-5 of results relating to the differential 
equation (1.1) so that we are no longer restricted to the special case g(x) = 1. 

The earlier applications [7 ; 8 ; 9 ; 18 ; 19] were primarily to Bessel functions of 
order v with \v\ > | , with a substantial sprinkling [9] of those valid for \v\ ^ | 
and an occasional result [9] for other v. Here, besides additional such results, we 
establish for the first time higher monotonicity properties valid for all v 
(Theorem 7.2). Thus, the squares of the extrema (beginning with one with positive 
abscissa at least \v\) of an arbitrary Bessel function of any order form a completely 
monotonie sequence. So, too, do the (first) differences of their consecutive abscissae. 

Finally, we note three corrections to [9]: On p. 1248, in line 16, replace N by 
N — 1. On p. 1256, in the right members of (5.17) and (5.18), replace the minus 
signs by plus signs (the absolute value signs are thus superfluous). On p. 1258, in 
line 6, replace v (in the exponent of the first x) by n. 

2. Definitions and notations. A function <p(x) is said to be n-times monotonie 
(or monotonie of order n) on an interval I if 

(2.1) ( - 1 ) V W ) ( * ) ^ 0 (m = 0, 1, . . . ,n;x 6 7). 

For such a function we write cp(x) £ ^Jén{T) or cp(x) G <yiïtn{a, b) in case I is an 
open interval (a, 6). In case strict inequality holds throughout (2.1) we write 
<p(x) G ^fn*(I) or <p(x) Ç ^#w*(a, b). We say that <p(x) is completely monotonie 
on I if (2.1) holds for n = oo. A sequence {/x̂ ĵ Li, denoted simply by {/x&}, is 
said to be n-times monotonie if 

(2.2) ( -1) W A>* è 0 {m = 0, 1, . . . , n ; k = 0, 1, . . .). 

Here Afxk = ixk+i — ixkl A2/x* = A(A^), etc. For such a sequence we write 
{Mfc} 6 ^n- In case strict inequality holds throughout (2.2) we write {nk} 6 ~#n* ; 
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{nk} is called completely monotonie if (2.2) holds for n = oo . As usual, we write 
[a, b) to denote the interval {x\ a ^ x < b). 

3. New basic results. In this section we consider the equation (1.1) with/(x) 
and g(x) continuous, g(x) > 0, for a < x < oo. The change of variable 

(3.i) É= f [gwr1 du, 

where the integral is assumed convergent, transforms (1.1) into 

(3.2) ^ + *({), = 0, 

where rç(£) = y(x) and <p(£) = f(x)g(x). Thus, some of the results of [9] can be 
applied to equation (3.2) to give information on solutions of (1.1). 

Our first theorem is a generalization of [9, Theorem 3.3]. 

THEOREM 3.1. Let y{x), z(x) be solutions 0/(1.1) on (a, oo) where 

0 < limx_œf(x)g(x) ^ oo, 

and suppose that z(x) has consecutive zeros at Xi, x2, . . . on [a, oo). Suppose also 
that g(x)} Dx[f(x)g(x)], and W(x) are positive and belong to *Jtn{a, oo) for some 
w H , Then, for fixed \ > — 1, 

(3.3) | Jk+1 wwigwr^ywfdxj e ^»*. 

Remark. Hence, under the hypotheses of the theorem, 

(3.4) \ {,k+1 W(x)\y(x)\xdx\ € Jt* 

because (3.3) is still valid when W(x) is replaced by W(x)g(x), since this last 
function belongs to^n(a, oo). 

Proof. For n ^ 1, g(x) is non-increasing. Hence, the mapping (3.1) takes the 
x-interval (a, oo) into the ^-interval (0, oo). By hypothesis, 0 < <p(°°) ^ oo , 
since <p(£) = f(x)g(x). This shows (in case n ^ 1) that z(x) does indeed have an 
infinite sequence of zeros on [a, oo). Using the change of variable (3.1) we get 

f *+1 TF(x)k(x)]-1b(x)|^x = r + 1 W(x(S))\r,(£)\xdS, 

where £i, £2, • • • are the zeros of f (£) corresponding, respectively, to the zeros 
Xi, x2, . . . of JS(X). (Here f (£) = s(x).) In case n ^ 2 and Xi > a, the present 
theorem will follow from [9, Theorem 3.3] as applied to the equation (3.2), 
provided we show that 

(3.5) <p'(Q > ( W ( £ ) 6 ^ ( 0 , 0 ) ) , 

and that 

(3.6) W(x(Q) > 0, W(x(Q) G ̂ « ( 0 , oo). 
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NowV(£) = Dx[f(x)g(x)W(Q = g(x)Dx[f(x)g(x)] > O.But,g(s) 6^,(0,00) , 
so that a slight modification of [9, Lemma 2.2] (in which p'(x) ^ 0 replaces 
p'(x) < Oand ^ replaces > in (2.7)), implies that#'(£) £ ^n(0, co). Hence, in 
view of [9, Lemma 2.1], our hypotheses on W(x) show that W(x(Ç)) (E - ^ ( 0 , 00), 
and (3.6) holds. Since Dx[(p(£)], considered as a function of x, belongs to J(n{a, 00), 
andx'(£) 6 ^C(0 , 00), [9, Lemma 2.1] shows that Ds[<p(£)] £ ^C(0 , 00). Hence, 
(3.5) holds and the proof of Theorem 3.1 is complete, in case n ^ 2 and xi > a. 

It remains to prove the theorem in the cases n = 0, n = 1 and (for all n) in the 
case where X\ = a. It is clear from the above discussion that it will be sufficient 
to show that these extensions can be made in the case of [9, Theorem 3.3]. 

The case n = 0 is obvious. For the case n = 1 we use results of P. Hartman 
[4, Theorem 18.1wincase/(oo) < co , Theorem 20. lwwhen/(oo) = 00 ; both with 
n = 0] to show that under the hypotheses of [9, Theorem 3.3] the equation 
y" + f(x)y = 0 has linearly independent solutions ji(x) and y^x) on (a, 00) 
which are such that p(x) = [yi(x)]2 + [y2(x)]2 satisfies p(x) > 0,p'(x) ^ 0. 

This leads, as in the proof of [9, Theorem 3.1 and Remark (i), p. 1249], to the 
inequalities Mk > 0, AMk ^ 0 (k = 1 ,2 , . . . ) , but we need to show that in fact 
AMk < 0. 

In the notation of [9, p. 1245], 

AM, 

xdt 

= f*+1 {AT{W[x(t)][x'(t)]1+hX}}\u(t)\Xdt 

= J *+X W[x(t + T)]Ar{[x'(t)]1+ix}\u(t)\ 

+ f k+1 [x'(t)]1+ixAAW[x(t)]\\u(t)\xdt. 
•J h 

It is clear from the proof of [9, Theorem 3.1] that both integrands here are non-
positive; thus AMk = 0 would imply AT{[x'(t)]1+^} = 0 for tk < t < tk+x and 
so AT[x'(t)] = 0 for tk < t < tk+1. This would entail then that 

A2xk = AMk(l;0) = { Arlx'(t)]dt = 0, 

which is a contradiction to the result A2xk < 0 arising from the Sturm comparison 
theorem. Thus AMk < 0 (k = 1 ,2 , . . . ) and the proof for the case n = 1 is 
complete. 

The case n = 1 for the modified form of [9, Theorem 3.3] noted in its last 
sentence has already been discussed [9, Remark (iii), p. 1250]. 

Finally, we establish that [9, Theorem 3.3] can be extended to include a 
possible end-point zero xi = a. As observed in [9, Remark (ii), p. 1250] an 
end-point zero can be included, as, e.g., in [9, Theorem 5.4, (5.10)], since the 
function p(x) is bounded away from zero as x —» a+, being a positive non-
increasing function, in case n ^ 1. When n = 0 the result is trivial. 
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In case %i = a the function W(x) must be chosen in such a way that the 
integrals occurring in the statement of the theorem exist. 

We have the following generalization of [9, Theorem 3.4] (which corresponds 
to the case g(x) = 1, n ^ 4, xi > a). 

THEOREM 3.2. Let y(x), z(x) be solutions of (1.1) on (a, co) where f(x) and 
Dx[f(x)g(x)] are positive and where g(x) and Dx[f(x)g(x)] belong to *J?n(a, oo ) for 
some w ^ 2 . Let z'(x) have consecutive zeros Xi, x2', . . . on [a, oo). Let W(x) > 0 
and W(x) £ ^ n _ 2 ( a , oo). Then, for fixed X > — 1, 

lx; W{x)[g(x)Tl\[f(x)r[g(x)fy'{x)fdxj € ^ „ - 2 * . 

Proof. The change of variable (3.1) yields, as in the proof of Theorem 3.1, 

{Z'k+1W{x)[g{x)Tl\[f{x)r[g{x)fy'{x)\xdx 

- x ^(*(£))|[p(É)rV(É)ix#, 

where £/, £2', • • . are the zeros of f'(£) = g(x):s'(x) corresponding to the zeros 
xi, x2', . . . of z'(x). Now, <?'(£) = -Drc[/(^)g(ac)]g(x) > 0 for 0 < J < oo and, as 
in the proof of Theorem 3.1, (3.5) and (3.6) hold with n replaced by n — 2. The 
theorem follows on applying [9, Theorem 3.4] to solutions of the equation (3.2). 
(We require an extended form of [9, Theorem 3.4] in which a possible end-point 
zero and the cases n = 2, 3 are included. This can be established in much the 
same way as was the extension of [9, Theorem 3.3].) 

Again, the existence of an infinite sequence of zeros is a consequence of the 
hypotheses onf(x) and g(x). 

We have a further result with a conclusion similar to that of Theorem 3.2 but 
with different hypotheses. 

THEOREM 3.3. Let y(x) and z(x) be solutions of (1.1) on (a, oo) withf{x) > 0. 
Suppose that, for somen ^ 2,f'(x) £ *J?n(a, co) and that W(x) and Dx{f(x)/g(x)} 
belong to ^ n _ 2 ( a , oo ). Suppose also that W(x) > 0 and that at least one of the two 
functions f\x) and Dx[f(x)/g(x)] is positive on (a, oo). Suppose that z'(x) has 
consecutive zeros x / , x2', . . . on [a, oo). Then, for fixed X > — 1, 

{ £k+1 w(x)\yf^UM]Mx)\xdxj e Jt*-?. 

Proof. The function u(x) = y'(x)[f(x)]~*g(x) satisfies 

u" + F(x)u = 0, 
where 

F(x) = -§ 
• / ( * ) -I 

• ! / " ( « ) , / ( « ) 

^2 f(x) ^ g(x) 
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Thus, the present theorem will follow from Theorem 3.1 provided we show that 

(3.7) 0 < lim F(x) S oo, 
£->co 

that F'(x) > 0, and that F'(x) <E ^ _ 2 ( a , oo). 
It follows from work of Vosmansky [18, p. 108] that 

lim F(x) = lim [f(x)/g(x)]. 

This gives (3.7), since f(x)/g(x) is non-decreasing and positive. 
We have 

(3.8) F>{x) = -2f^gf±+i /'(*) 
+ 2L/(x) 

3 

+ DX Lg(x)J /(*) . 

From [9, Lemma 2.1], we see that [1//(#)] £ ^n(a, °°). Moreover, 
—/"(#) £ ^n-i(a, co) andf'"(x) Ç ~#n_2(a, oo). Since the set ^#w_2(a, oo) is 
closed under pointwise multiplication of functions, each term on the right-hand-
side of (3.8) belongs to^ w _ 2 ( a , co) ; hence so does Ff(x). The positivity of F'(x) 
follows also from (3.8), since it has been assumed that at least one of the two 
functions f'(x) and Dx[ f(x)/g(x)] is positive on (a, oo ). This completes the proof 
of Theorem 3.3. 

Remark. It is possible to prove results analogous to those of this section con
cerning solutions g(x)y'(x) and g{x)z'{x) of the equation 

(3.9) \fUU/ +lb)U = 0' f(%) > 0> gM > °" 
4. Some analogues for higher monotonicity of the Sonin-Butlewski-

Polya theorem. Sonin's theorem (see [10, p. 168] and [20, p. 518] ; for an exten
sion to non-linear equations cf. [1]) states that if z{x) is a solution of 
y" + f(x)y = 0> where/(x) is a positive continuous function, then the successive 
maxima of [z(x)]2 form a decreasing or increasing sequence according as/(x) is 
increasing or decreasing. An extension, due independently to Butlewski 
[2, Théorème I, p. 42] and to G. Pôlya [16, footnote, p. 166], concerns the more 
general equation (1.1) with jf(x) and g(x) continuous. Their result says that if 
z{x) is a solution of (1.1), the relative maxima of [z(x)]2 form an increasing or 
decreasing sequence according as f(x)g(x) is decreasing or increasing when 
fix) > 0 and g(x) > 0. 

The hypotheses just suggested are somewhat lighter than those required in 
[16, footnote, p. 166]. That they are adequate can be seen by using transformation 
(3.1) to reduce equation (1.1) to the form (3.2) and then applying Watson's 
[20, p. 518] or Makai's [10, p. 168] approach. 

Strictly speaking, Watson proves only weak inequality ( ^ ) , and nothing 
stronger is valid in general, although his result asserts strict inequality ( > ) . 
However, in the present circumstances, his proof can be modified to yield strict 
inequality by noting that now an additional hypothesis is satisfied. In his 
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notation, it can be expressed as liIi(x) > h(x) for some x in each open interval 
(a, a + e), e > 0." This suffices to assure strict inequality in his conclusions. 

In this section we consider the higher monotonicity behaviour of the sequences 
{JS2(X/)} and {[g(xk)z'(xk)]

2} wheres(x) is a solution of (1.1) on (a, oo) ands(x) and 
z'(x) have sequences of successive zeros Xi, x2, . . . and x / , x2'', . . . on [a, oo), 
respectively. The inclusion of an end-point zero or extremum, i.e., permitting 
Xi = a or Xi = a, is an extension of both the Sonin and Sonin-Butlewski-Pôlya 
theorems even in the case of ordinary monotonicity. 

Theorems 4.1 and 4.3 are partial extensions to higher monotonicity corre
sponding to the hypothesis fix) g (x) increasing. Theorem 4.2 corresponds to the 
assumption that/(x)g(x) is decreasing. 

We need two lemmas. 

LEMMA 4.1. Let z{x) be a solution of (1.1), for a < x ^ b, with bothf(x) and g(x) 
positive and differentiable for a < x ^ b, and Dx{[f(x)g(x)]~1} integrable for 
a < x ^ b. Suppose z'(b) = 0. Then, for a < x < b, 

(4.1) z\b) - z\x) = «(*)[ / (*)] -Vfr) ] 1 

If j in addition, g(x)[/(x)]-1[s,(^)]2 —> I as x -^> a+, and if z(a+) exists, then 

(4.2) z\b) - z\a+) = / + f [g(t)z'(t)fDt{ [/(/^(O]"1}*. 

Proof. The differential equation (1.1) implies that 

2g(x)z'(x)[g(x)z'(x)]' + g(x)f(x)[2z(x)z'(x)] = 0; 

i.e., 

DtMWm +f(t)g(t)Dt{[z(tm = 0. 

Dividing by f(t)g(t) and using integration by parts between x and b yields (4.1). 
The remaining assertions follow at once. 

The other lemma is due essentially to Butlewski [2, p. 41] ; see also [17]. In the 
special case g(x) = 1 it was proved by Wiman [21]. 

LEMMA 4.2. Let z(x) be a solution of (1.1), for a < x rg b, where f(x) and g(x) 
are differ entiable andDx{f{x)g(x)) is integrable on a ^ x ^ b. Let z(b) = 0. Then 
if g(x)z'(x) is continuous at a+ and if f(x)g(x)z2(x) —» 0, x —» a+, 

[g(b)z'(b)f - [g(a)z'(a)f = f [z(t)fD,{f(t)g(t)}dt. 

The first of the principal results of this section incorporates an analogue of the 
Sonin-Butlewski-Pôlya theorem. 

https://doi.org/10.4153/CJM-1972-029-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-029-9


356 L. LORCH, M. E. MULDOON, AND P. SZEGO 

THEOREM 4.1. Let y(x) and z(x) be linearly independent solutions of (1.1) on 
(a, oo ) where 

(4.3) 0 < lim f(x)g(x) ^ oo, 

Xi > a, Xi ^ a, and for somen ^ 0, g(x) andDx[f(x)g(x)] are positive and belong 
to *Jtn{a, oo). If xi = a, let the hypotheses of Lemma 4.2 hold on [a, X2]. Then 

(4.4) {[g(xk+1y(xk+1)f - [g{xk)z'{xk)f\ 6 ^ » * , 

and if ;y(x) is continuous at Xi+, 

(4.5) !bfe+I)]-2 - bfe)]-2} € ^ ,* . 

If, in addition, f(x) > 0 on (a, oo) awrf » ^ 1 , ifeew 

(4.6) {*(**')} € ^ U * . 

Proof. For « ^ 1, Lemma 4.2 asserts that 

[g(xk+1)z'(xk+1)]
2 - [g(xk)z'(xk)]

2 = f**+1 [a(0]2Bi{/(0g(0}*. 
•/^ 

Hence, (4.4) follows from Theorem 3.1 with y(x) = z(x), A = 2, and 

W(x) = g(*)Z>*[/(*)*(*)]. 

Abel's formula for the Wronskian shows that 

y(x)z'(x) — yf{x)z{x) = c/g{x)y 

where c is a non-zero constant. Hence, for k = 1,2, . . . , [g(xk)z'(xk)]
2 = ^ b f e ) ] - 2 

and (4.5) follows from (4.4). 
In case n = 1, (4.6) is obvious. For n ^ 2, Lemma 4.1 implies 

- I A W ) -*2fe')] - - P*+1 fe«*W0i{[/(Os(orV, 

the number / of Lemma 4.1 being 0 here. Thus, 

-[z\xk+1') - z\xk')} = J^1^^D,^)g(t))\U(f)ri\g(t)]^(f)\tdt. 

Hence, Theorem 3.2 implies that 

{ - [ * ( W ) -z\xu)\\ Ç ^ - 2 * , 

so that (4.6) holds, provided we can show that 

JTTDx[f(x)g(x)] 6 ^ n _ 2 ( a , o o ) . 
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However, because of the hypotheses on g(x) and f(x)g(x) and because of 
[9, Lemma 2.1] we even have 

jrrDx{f(x)g(x)} G Jén(a,<n). 

This completes the proof of Theorem 4.1, for n ^ 1. 
When n = 0, the result can be reduced to Makai's [10, p. 168] or Watson's 

version [20, p. 518] of Sonin's theorem by applying a transformation of the type 
(3.1) to the equation (3.9) satisfied by g{x)z'(x). 

Remarks, (i) In case z'(a+) = 0 and either 

(4.7) 0 < lim [f{x)/g(x)] ^ o o , 
x->a + 

or 

(4.8) 0 < lim Dx[f(x)/g(x)] ^ oo, lim z'(x)z" (x) = 0, 
x-$a + x->a + 

we could include the case Xi = a in the statement of our theorem, because the 
number / in Lemma 4.1 would exist and equal zero, from FHospitaPs rule, 

(ii) When n = 0, (4.5) is included in [17]. 

An application of Theorem 4.1 to solutions g(x)y'(x) and g(x)zr(x) of the 
equation (3.9) gives the following analogue of the Sonin-Butlewski-Pôlya 
theorem for the case in which f(x)g(x) is decreasing. 

THEOREM 4.2. Let y(x), z(x) be linearly independent solutions of (1.1) on (a, oo ) 
where l/f(x) and Dx{[f(x)g(x)]~1} are positive and belong to ^n(a, oo) for some 
n ^ 0, X\ > a and X\ > a. Then 

(4.9) {*2(W) - *2(*/)} G -*„*. 

If n ^ 1, then 

(4.10) Mxk)*(xk)]*} G ^ - i * , 

and 

(4.11) fbfe)]"2} G ^ n - l * . 

Remark. A possible zero of z'(x) occurring at the end-point x = a may be 
included in Theorem 4.2 under the same circumstances as those given in the 
remark following Theorem 4.1. In analogous circumstances Xi could equal 2. 

THEOREM 4.3. Let z(x) be a solution of (1.1) on (a, co) withf{x) > 0. For some 
n ^ 2 suppose that fix) £ ^n(a, °°), l/g(x) £ e^n_i(a, oo) awd 

#*[/(*)/$(*)] € ^ » - 2 ( a , oo). 
Suppose, further, that at least one of the two functions f ' {x) and Dx[f(x)/g(x)] is 
positive on (a, co), and X\ > a. Then 

(4.12) {z\xk')} G ^ _ ! * . 
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Proof. Using Lemma 4.1, we have 

~[z\xk+1') -z\xk')] = - p ; + 1 [g{t)z'{t)?Dt{m)g{t)]-l\dt 

where W(x) = —f(x)Dx{ [f(x)g(x)]~1}. The result follows from Theorem 3.3 once 
it is shown that W(x) > 0 and W(x) Ç ^ n _ 2 ( a , oo ). A simple calculation shows 
that 

(4'13) W{x)=7toïÛ+W)?-
Because of [9, Lemma 2.1], we havef'(x)/f(x) £ ^n{a, oo ) and so the hypothesis 
on g(x) shows that the first term on the right-hand-side of (4.13) belongs to 
<^n_i(a, oo ). Also, 

g'(*)te(*)]-2 = -ArUg(x)]-1} e ^ _ 2 ( a , o o ) , 
and so W(x) G ~#w_2(a, oo). 

It remains to show that TF(x) > 0. If f'(x) > 0, this is clear from (4.13). In 
case Dx[f(x)/g(x)] > 0, the positivity of W(x) follows from 

f(x)W(x) = Dx[f(x)/g(x)] + 2f(x)g'(x)[g{x)]-\ 

This completes the proof of Theorem 4.3. 

Remark. As in the case of Theorems 4.1 and 4.2, the assertion of Theorem 4.3 
may be extended to include an end point zero of z'(x) occurring at the point 
x = a, provided we have either (4.7) or (4.8). In particular, if n ^ 3 in the 
present theorem, one of these conditions is satisfied. To see this, we recall that 
Dx[f(x)/g(x)] is non-increasing. Hence (4.8) holds unless f(x) is a constant 
multiple of g(x). In the latter case, (4.7) holds. 

5. Hypotheses involving a specific pair of solutions. Here yi(x), y2(x) are 
linearly independent solutions of (1.1) on an open interval (a, b), not necessarily 
(a, oo ), and as usual, p(x) = [ji{x)Y + [j2{x)Y1 where p{N){x) exists in (a, b) for 
some positive integer N. The function y(x) is an arbitrary non-trivial solution 
of (1.1) on (a, b) and {xi, x2, . . .} denotes any finite or infinite increasing 
sequence of consecutive zeros on (a, b) of a nontrivial solution z(x) of (1.1). We 
put 

(5.1) W(x) = y^yJix) - y2(*):yi'(*), 

where the solutions yi(x), 3>2(#) are normalized so that W(x) > 0. 
In §§ 3 and 4 of the present work, the results were inferred from hypotheses on 

the coefficient f unctions/(x) and g(x). In this section, we give some corresponding 
results in which hypotheses are placed instead on an appropriate pair of solution 
functions yi(x) and 3>2(x). 
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THEOREM 5.1. Suppose that for some positive integer N there exists a function 
W(x) and a pair of linearly independent solutions yi(x), y2(x) such that 

(5.2) (~l)np(n\x)>0 (« = 0,1), 
. ( - 1 ) W ) £ 0 (» = 2 N), 

(5.3) W(x) > 0, (-1)"W<">(*) = 0 (n = 1, ...,N), 

and 

(5.4) (-l)"Dx"{[W(x)]-'} = 0 (n = 0, 1, . . . , N). 

Then, for fixed A > — 1, 

)"Ai I (5.5) (-1)BA"| |_ TF(x) i r (x ) |y (x ) | ^ J > 0 

(n = 0,l,...,N;k = 1 ,2 , . . . ) . 

^4// 0///^ above remains true if the factor ( — 1)n is deleted simultaneously from (5.2), 
(5.3), (5.4) and (5.5). 

Proof. Abel's formula for the Wronskian shows that W(x) = c[g(x)\~l, where c 
is a positive constant. As in the proof of Theorem 3.1, we make the change of 
variable (3.1) t so that equation (1.1) becomes (3.2) and we find that 
W(x(Q) e ^ ( * ( a ) , {(ft)) and *'(£) G ̂ ( É ( a ) , *(«). « we put 171(f) = yi(x), 
V2(£) = y 2(00) we find that TT(̂ ) = 77i2(̂ ) + T?22(£) is an iV-times monotonie 
function of £ on ({(a), £(6)). Also *•(£) > 0 and *•'(£) = £'(x)g(x) > 0. This 
means that [9, Theorem 3.1] may be applied to solutions of equation (3.2). Thus 

f k+1 W(x)W(x)\y(x)\xdx = c f T^(*(£))|i?(£)|xd£, 

where £1, £2, . . • are the zeros of the solution f(£) ( = JS(X)) of (3.2). Applying 
[9, Theorem 3.1] to this last expression yields the desired result. 

The last sentence follows on making obvious changes in the above proof. 

THEOREM 5.2. Suppose that the solutions y(x) and z(x) of (1.1) are linearly 
independent and that, for some positive integer N, there exists a pair of linearly 
independent solutions yi(x), y2(00) for which 

(,,, U-lTpM(x)>0 (n = 0,l), 
^•b; l ( - l ) W ) = 0 (n = 2,...,N), 

(5.7) (-imw?r(x)] ^ 0 in = 0,1,..., m, 
and, for a < x < b, 

(5.8) W(x) > 0, ( - 1 ) W > ( « ) = 0 (w = 1, . . . , N). 

Then, for any a > 0, 

(5.9) (-\yA»W(xk)\y(xk)\« > 0 (n = 0, 1, . . . , N; k = 1, 2, . . .) 

f Increasing a slightly (here and elsewhere), if necessary to assure convergence in (3.1). 
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and 

(5.10) (-l)nAnW(xk)\W(xk)/z'(xk)\« > 0 (n = 0, 1, . . . , N; k = 1, 2, . . .). 

All of the above remains true if the factor ( — l)n is deleted simultaneously from 
(5.6), (5.7), (5.8), (5.9) and (5.10). 

Proof. Making the change of variable (3.1) and using the same notation as in 
the proof of Theorem 3.1 we have 

W{x)\y{x)\" = 7({)|u(*)|" 

where V($j) = W[x(£)] is an iV-times monotonie function of £. The differential 
equation now has the form (3.2). The further changes of variable [7, Lemma 2.3] 

m = T«) , M) = [*•«)]*«(*) 

reduce this to the form u"(t) + u(t) = 0. Thus we have 

W(x)\y(x)\' = V{i)Um«"\u{t + B) |«, 

W(Xlc)\y(xk)\« = CVimUiiW*)]}"*, 

where C is a constant independent of &. As in the proof of Theorem 5.1, we have 
*« ) > 0, Tr'a) < 0, *({) G ^ . ( { ( a ) , f(6)), 7(«) > 0, 7(f) G ^r({(«) ,ê(6))-
Hence, if we write #(£) = F(£)[7r(£)]a/2, we get, using [9, Lemma 2.2], 

(5.11) ( - i m n f e ( { ) ] > 0 (» = 0, 1, . . . , N). 

We have for n = 0, 1, . . . , N, 

(-l)nAnW(xk)\y(xk)\° = (-l)nCA^q(ï(tk)) 

= (-l)nCDt
nq[£(tk + On*)], 0 < 6 = 0(0 < 1, 

on using a mean value theorem for higher derivatives and differences [12, no. 98, 
p. 55]. Hence, in view of (5.11), we get the desired (5.9). 

The result (5.10) follows easily from (5.9) on noticing that the Wronksian of 
y(x) and z(x) is a constant non-zero multiple of iV{x). 

Again, the last sentence in the statement of the theorem follows on making 
obvious changes in the above proof. 

COROLLARY 5.1. Under the hypotheses of Theorem 5.2 we have 

(5.12) (~l)nAnlog\y(xk)\ ^ 0 (n = 1, 2, . . . , N; k = 1, 2, . . .), 

and 

(5.13) {-lYAn\og\W(xk)/z
f(xk)\ ^ 0 (n = 1,2, ...,N;k = 1,2, . . .). 

These results remain true if the factor ( — \)n is deleted simultaneously from (5.6), 
(5.7), (5.8), (5.12) and (5.13). 
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Proof. From Theorem 5.2 we have, for each a > 0, 

(_l)»A»iM**)r- M > Q ( M = l , 2 , . . . , J V ; & = 1 , 2 , . . . ) . 
a 

Taking the limit as a —-> 0+ , we get (5.12). Similarly, (5.13) follows from (5.10). 
T h e inequalities (5.12) and (5.13) can be shown to be strict in certain cases by 

employing results of [6] or of [11]. 

T h e following corollary may be proved in the same way as was Corollary 5.1. 
T h e remarks on the possibility of strict inequality apply again. 

COROLLARY 5.2. If the hypotheses of Theorem 5.2 hold and if, in addition, 

(5.14) (-l)nDx
n{[W(x)]"} ^ 0 (a < x < b;n = 1, 2, . . . , N) 

for each a > 0, then 

(5.15) (-l)nAn\og{W(xk)\y(xk)\} ^ 0 (n = 1, 2, . . . , N; k = 1, 2, . . .) 

and 

(5.16) ( -1)»A» log \W(xk)W(xk)/z'(xk)\ ^ 0 

in = 1,2, ...,N;k = 1,2, . . . ) . 

The results remain true if the factor ( — l)n is deleted simultaneously from (5.6), 
(5.7), (5.8), (5.14), (5.15) and (5.16). 

6. T h e case X —» — 1 + . T h e sequence with Mh term 

(6.1) lim (1 + X)M*(W;X), * = 1, 2, . . . , 

possesses essentially the same higher monotonicity properties as does the 
sequence {Mk(W; X)}, k = 1, 2, . . . . This observation is explored in detail in 
[9, § 8] where specific sequences arising thus are enumerated. The same basic 
lemmas and approach can be applied in the present more general setting. 

Wi thou t going into detail or offering particular examples in terms, say, of 
Bessel functions, we remark only tha t the following sequences arise on applying 
[9, Lemmas 8.1 and 8.2] to the respective theorems indicated below. Each 
sequence displayed will possess higher monotonicity properties as s tated 
essentially in the theorem referred to, provided that the hypotheses of that theorem 
are satisfied. Moreover, in each case, the {xk} and {xk} are the zeros of y(x) and 
yr(x), respectively. 

(i) From Theorem 3.1: 

(6.2) 
W(x/k) 

l(xk)y'(xk) 
k= 1,2, 
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(ii) From Theorem 3.2: 

(6.3) / I f
w(**)x , 11 

(6.4) 

[/(** )g(xk )Yy(pck ) 

(iii) From Theorem 3.3: 

W(pck') 
[/(** )Yy(xk ) 

k = l, 2 , . . . 

* = 1,2, 

7. Applications to Bessel (cylinder) functions. Throughout this section 
we write, as is customary, 

<é v{x) = AJv(x) + BY,(x), 

where Jv(x), Yv(x) are the usual Bessel functions of first and second kind, 
respectively, and A, B are real constants, independent also of the order v. This 
last is relevant to Theorem 7.3 in which different orders are present. The 
successive positive zeros of *$ v(x) are denoted by {cvk}, those of ^V(x) , by 
{cm'}, k = 1, 2, . . . , those of Jv(x) by j v k , of Yv(x) by yPk, etc., k = 1, 2, . . . . 

The first four theorems are consequences of §§ 3, 4 in which hypotheses are 
placed solely on the coefficient functions/(x), g(x) in the differential equation 
(1.1). Theorem 7.5, on the other hand, follows from § 5 which requires some 
knowledge of the behaviour of 

p(x) = ±Trx{[Jv(x)]2 + [Yv(x)]2}. 

A number of the results of this section hold when the range of the order v 
exceeds the usual one, \v\ > J, to which most results on higher monotonicity 
have been restricted [7 ; 8 ; 9 ; 18 ; 19]. In particular, Theorem 7.2 reveals complete 
monotonicity properties which hold for all v. However, the first result is not in 
this category. 

THEOREM 7.1. Let the zeros of Dx{x^v(x)} on the interval [(V — £)*, oo) be 
Xi, x2

f, . . . . Then, for \v\ > \ and 0 < a ^ 1, 

(7.i) {(**+/)*- (**')«} e^j9 

(7.2) ( l o g ( W / x / ) } e ^ « * , 

(7.3) ixt'Vffa')} e ^ J , 

and 

(7.4) {cv>w[^v\cVik+1)Y - cvk{^v\cvk)Y\^m G ^ J , 

where m is the smallest positive integer such that cvm ^ (v2 — J)*. 

Proof. Assertion (7.1) is an immediate consequence of Theorem 3.2, with 
X = 0, W(x) = xa_1, n = oo, applied to the equation (1.1) with 

f{x) = 1 - (v2 - \)x~2 
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and g(x) = 1 ; i.e. to 

satisfied by y(x) = x^v{x). 
Assertions (7.3) and (7.4) follow from an application of Theorem 4.1 to the 

same equation. In case X\ = (v2 — \Y, it is necessary in connection with (7.3) to 
observe also that the number / in (4.2) exists and equals zero, from l'Hospital's 
rule, since ff([v2 - l]h) > 0, so (4.8) holds. 

The remaining conclusion (7.2) follows from (7.1) on using THospital's rule: 
First, we have 

O g \mi-(-l)nAn{(xk+ir- (**')"} 
a->0+ Oi 

= ( - l ) n A n lim fe+/) ~ (**T 

= ( - l f A M o g ^ f 

(» = 0, 1, . . . ;k = 1 ,2 , . . . ) -

Now, if equality were ever to occur, then [6] (cf. [11] for extensions), for 
* = 1 , 2 , . . . , 

1 < * 4 = «a4 < &t*_ 1 (as£->oo), 
# 2 %2+k qk 

where £k is the zero of ^ v{x) immediately preceding x2+/ and the limit is obtained 
from a familiar asymptotic formula [20, p. 506]. The resulting contradiction 
shows that equality is precluded and thus completes the proof of (7.2) and of the 
theorem. 

Remarks, (i) In (7.4), m ^ 2. It has been pointed out in [5] and in [9, § 7] that 
the interval ([v2 — i]% oo) contains all except possibly the first of the positive 
zeros of Dx{x^(iû v{x)}. When v > ^, it embraces all these zeros in case ^v(x) is 
either Jv(x) [5] or Yv(x) [9, (7.2), p. 1259] and cv2 > v > (v2 - i ) l Otherwise, 
*£ v(x) would vanish twice in (0, v] and the Sturm separation theorem would 
imply jvi < v, contradicting the well-known result that jvi > v [20, p. 485(1)]. 

(ii) From (7.3) it is clear that {xk"if v
2(xk')} is a decreasing sequence for 

\v\ > \. The same inference follows from an application of Sonin's theorem to the 
differential equation 

y" + {1 - (v2 - \)x~2}y = 0. 

Watson has shown [20, p. 488 (II)] that the analogous sequence \cvk
,(io 2{cvk}\ is 

decreasing for v > 3*/2 from a certain k on. Richard [13, p. 320] has noted that 
the range of Watson's result can be extended. 
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(iii) The device used to establish (7.2) can be applied also to some of the 
sequences discussed in [9, pp . 1254-1255, esp. (5.12), (5.12')]. This implies, e.g., 

(7.5) ( - 1 ) " + ^ » log log*,* > 0 (» = 1,2, . . . ; * = 2, 3, . . . ) , 

for \v\ ^ J, s incec v 2 > e when \v\ ^ J. (In [9, p . 1255] it is shown t h a t cv2> 1 for 
all v. This inequality can be improved as required for \v\ ^ \ by noting t h a t 
cV2 > jvi ^ j\,i > 2.9 > ewhen*> ^ \ and by making then obvious modifications 
in the earlier proof.) 

In this context, l 'Hospital 's rule is applied to 

(-l)ntf\ïm{l0gCv1c) a ~ 1 (* = 2, . . . ; \v\ ^ i ) . 

These differences are non-negative for n = 1 , 2 , . . . , bu t not for n = 0. This 
accounts for the special form of (7.5). 

The next theorem, valid for all v, follows from an application of our general 
results to a differential equation satisfied by fâ y(x) ra ther than, as in the 
preceding theorem, to one satisfied by x*9%(x). 

T H E O R E M 7.2. For all v 

(7.6) {{cv,k+1'Y - (cvh
fY}^m G <J?J, 0 < a £ 1, 

(7.7) { l0g(c , ,* + 1 7O}*=m É X o * . 

and 

(7.8) W C c * ' ) } ^ € - * » * , 

where m is the smallest positive integer for which cvm' ^ | v\, i.e., the squares of such 
extrema of an arbitrary Bessel function form a completely monotonie sequence. 

Proof. T h e function y = *$ v(x) satisfies the differential equation 

(xy'Y + (x2 - v2)x~ly = 0, 0 < x < oo. 

This equat ion satisfies the hypotheses of Theorem 3.3, with n = co, on the 
interval (\v\, oo). Tak ing X = 0 and W(x) = x a _ 1 gives (7.6) ; the proof of (7.7) 
then parallels t h a t of (7.2). A similar application of Theorem 4.3 gives (7.8). 

Remarks, (i) Here, m ^ 2, e.g., the squares of the extrema, beginning with 
the second, of an arb i t ra ry Bessel function form a completely monotonie 
sequence. (This is the most t h a t can be said, as may be seen by taking *$ v(\v) = 1, 
^ v\\v) = 0. T h e differential equat ion x2yn + xyr + (x2 — v2)y = 0, y — ^v{x), 
shows then t h a t x — \v yields a positive minimum.) 

I t suffices to prove tha t cv2 ^ \v\. Indeed, if cvl < cv\, then already cv\ ^ |z>|, 
as may be seen from the foregoing differential equat ion: If ^ „ ( 0 ) = 0, then 
v > 0 and *% v{x) = AJv(x), A ^ 0, so t h a t cvl' = j v l ' > v. Otherwise, *& v(x) 
can be normalized so t ha t fëv(0) > 0 (possibly 9%(0) = + o o ) . Then x = cv\ 
yields either a negative minimum or a negative point of inflection, whence 
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y"(cvl') ^ 0, y'icvi) = 0, y(cvl') < 0. With x = cvl
f, the differential equation 

makes it obvious that cv\ ^ \v\, as asserted. 
If, on the other hand, cv\ < \v\, then cv\ > cv\, so that x = cv\ yields a 

positive minimum and x = cv2 provides either a positive maximum or a positive 
point of inflection. Substituting x = cv2 in the differential equation as before 
shows that cv2 ^ \v\. 

This establishes that m ^ 2 by proving cv2 ^ H-
(ii) Somewhat more is true: cv2 > \v\. Suppose that cv2 = \v\. Then 

y"{cv2) = y'{cv2) = 0, while y(cv2) > 0. These values, when substituted in the 
differentiated differential equation, imply that yf "(c v2) < 0. Thus, y'{cv2) = 0 
is a local maximum of y'(x). Hence y(x) decreases in cv2 — e ^ x S cv2 for 
some e > 0. This is clearly impossible, since cv\ is a positive minimum, and thus 
the proof is complete. 

(iii) If v ^ 0 and <g v(x) is either Jv(x) or Yv(x), then m = 1 [20, p. 485 (1), 
p. 487 (10), p. 521]. 

Next we show that the sequence of squares of the extrema of the function 
££ v(x) = x~vC€ v{x) is completely monotonie for v > — \. That this sequence is 
decreasing was shown essentially by Cheng [3, Lemma 3], Steinig [14, Lemma 1], 
and Szâsz [15, (I)], although all three formulated this only for *$ v(x) = Jv(x). 

THEOREM 7.3. For v > — \ , 

i.e., the sequence of the squares of the extrema of the function x~vC€ „(x) belongs to 

Proof. If y(x) = x~vCê'„(#), then y(x) satisfies the differential equation 

(a2*1/)' + x2v+1y = 0. 

Thus, from Lemma 4.1 and the differentiation formula 

Dx{x~vCé v{x)) = —x~vCêv^(x) 

(which shows that the extrema of x~vCê\{x) occur at x = cv+ltkj k = 1 ,2 , . . . ) , 
it follows that 

-A{(cv+1,ky
2vtfv\cp+1,k)} = 2 ( 2 * + 1 ) f ' * x-x[{x-v^v{x))ffdx 

J cv+l,k 

J|Cy+l,A;+l 

x~2v-2\xhctfv+1(x)\2dx. 
cv+l,k 

This sequence, with fe = 1, 2, . . . , belongs to ~^œ*, as may be seen from 
[9, Theorem 5.1] (with cvk = dvk, W(x) = x~2v~2, and X = 2) and the theorem 
now follows easily. 

Remarks, (i) In [9, (5.15), p. 1256] it was shown that the sequence whose kih 
term is 

lAKCr+i,*)- '^,^!,*)} I 
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belongs to ^ œ * when v > — \ and conjectured that the same may be true of 

{ K c + i , * ) - ^ , ^ ^ ! , * ) ! } , 

k = 1, 2, . . . . If so, this would imply Theorem 7.3. 
(ii) When 9%(x) = Jv(%), the function J£ v{x) is ordinarily written in the 

notation [2T(? + l ) ] - ^ * ) . 
(iii) If ẑ  = — | , the sequences in Theorem 7.3 and Remark (i) become trivial 

and belong to Jé^ but not to JKJ*. For v < — \, Theorem 7.3 would be false, 
since the sequence involved is unbounded for such v. 

(iv) The function x~vJv(x) has an extremum also at x = 0. When 
fë v(x) = Jv(x) Theorem 7.3 can easily be extended to include the extremum at 
x = 0 as the first term in the sequence, as an examination of Lemma 4.1 and its 
consequences shows. 

A similar result follows. 

THEOREM 7.4. 7/ v > J, then 

and, withjv0 = 0, 
{j*M ' [ / /0'*)]2}S-o G ^oo*. 

Proof. The function y(x) = xvC€v{x) satisfies the differential equation 
{xl-2vy')f +x1-2»y = 0. 

From Lemma 4.2 and the fact that fë v(cvk) = 0, it follows that 

MKcn)1-*'?^)]*} = A { ( C r t ) " ' [ ^ / ( ^ ) ] * } 

J
»cv,k+1 

x~u\xk^ r{x)\*dx. 

The theorem can now be inferred from [9, Theorems 5.1 and 5.2]. 

Remark. When v = 1, this shows that the sequence {[^/(cu)]2}, & = 1, 2, . . . , 
is completely monotonie, a result which should be compared with (7.4) according 
to which 

The final theorem follows from Theorem 5.2 in view of [7, p. 62] where it is 
shown that (-l)np^x > 0, n = 0, 1, 2, 

THEOREM 7.5. / / \v\ > -|, a > 0, y ^ J, 5 ^ §, a?zd i/ 9%(x) and i^„(x) are 
linearly independent Bess el functions, then 

{k,*^,(c,*)la} ^ ^oo*, 

{k,^/(^)M e^«*, 
and} for n,k = 1, 2, . . . , 

(-l)nAn\og\cPky@v(cvk)\ > 0, 

(-l)»+iAMog|c r t^/(c r t)l > 0 . 
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Remarks, (i) Watson showed [20, p. 446] that p(x) decreases to 1 as x —» GO 
when \v\ > %. This implies that {cvk@v

2(cvk)} k = 1, 2, . . . , is a decreasing 
sequence. The first assertion of Theorem 7.5 generalizes this consequence to 
complete monotonicity. 

(ii) Watson showed also that pix) increases to 1 as x —» co when \v\ < §, so 
that 

{\cj@v(cvk)\«}, a > 0, 

is an increasing sequence when \v\ < J. We have no information to offer on the 
higher monotonicity properties of this sequence in this case. 

(iii) A number of the complete monotonicity properties associated with ^ v(x) 
for | v\ è \ established in this section and in [9, § 5] can be inferred from the 
differential equation y" + fix)y = 0 with 

f(x) = x - i O 2 - l)*"2; y = x^,(f^ /2). 
An advantage of using this equation is that the results in question follow from 

it in toto, since fix) is completely monotonie for x > 0and|*>| ^ | , whereas our 
previous proofs required a separation into the cases | ^ M = è (using the 
generalized Airy equation [9, (5.8), p. 1252; 7, p. 63]), and \v\ > J (using the 
Bessel equation, where fix) = 1 — (*>2 — \)x~2). 
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