ON SEMIPRIME AMPLE JORDAN RINGS

$J \subseteq H$ with chain condition ${ }^{(1)}$
BY
DANIEL J. BRITTEN

The purpose of this paper is to point out that the arguments of [2] with slight modification extend the main result of [2] to the case of H satisfying either $A C C$ or $D C C$ or quadratic ideals and they extend [6, Theorem 2] to R being semiprime. Thus we obtain

Theorem 1. Let R be a semiprime associative ring with involution $*$ and $J a$ closed ample quadratic Jordan subring of $H(R)$ satisfying either ACC or DCC on quadratic ideals. Then R is Goldie. In this case, J has a Jordan ring of quotients J^{\prime} which is a closed ample quadratic Jordan subring of $H\left(R^{\prime}\right)$ where R^{\prime} is the associative ring of quotients of R.

In what follows, R denotes an associative ring with involution $* ; H=$ $H(R)=\left\{x \in R: x^{*}=x\right\}: T=T(R)=\left\{x+x^{*}: x \in R\right\} ; \quad$ and $\quad N=N(R)=$ $\left\{x x^{*}: x \in R\right\}$. J will denote a special quadratic Jordan ring; that is, J will be an additive subgroup of $(R,+)$, closed under the quadratic operator $y U_{x}=x y x$ and the binary composition x^{2}. Following Montgomery [5], special quadratic Jordan subring J of H is called ample provided $N \cup T \subseteq J \subseteq H$.
Montgomery [5] and [6] removes the 2-torsion free assumption of Britten [1] and enlargens the class of Jordan subrings to be considered from H to ample special quadratic Jordan subrings J. (If $\frac{1}{2} \in R$, then $H=T$ and so the only ample subring is H.) Thus for this paper, [2], [5] and [6] are the basic references.

In [5, Theorem 4.5], Montgomery assumes in addition to J being ample that $x J x^{*} \subseteq J$ for all $x \in R$. This property is also valid for the Jordan ring of quotients obtained from this theorem and so we shall say that J is closed ample if it is ample and $x J X^{*} \subseteq J$ for all $x \in R$.

Finally if $S \subseteq R, \quad A_{\ell}(S)$ denotes $\{x \in R: x S=0\}$ and $A_{r}(S)$ denotes $\{x \in R: S x=0\}$, then we have

Lemma 1. Let R be a semiprime ring with $*$. Then
(i) if B is a left ideal of R and $A=A_{\ell}(B)$ then $B A=0$;
(ii) If B is $a{ }^{*}$-ideal (i.e. $B^{*}=B$) of R then $A=A_{\ell}(B)$ is a^{*}-ideal and $B \cap(T \cup N)=0$ implies $B=0$.

[^0]145
(i) is easily shown and (ii) is [5, Lemma 3.1]. We shall also have need of [5, Theorem 4.5] which we formulate as

Theorem 2. Let R be an associative ring with involution $*$ and a ring of quotients R^{\prime} (R^{\prime} has a natural involution extending *). Let J be a closed ample Jordan subring of $H(R)$ such that every regular element of J is regular in R. Then J has a Jordan ring of quotients J^{\prime} which is a closed ample Jordan subring of $H\left(R^{\prime}\right)$. When $J=H(R), J^{\prime}=H\left(R^{\prime}\right)$.

Proof. Since we are asking that J^{\prime} be closed ample and Montgomery asked that it only be ample, we must check that $x J^{\prime} x^{*} \subseteq J^{\prime}$ for all $x \in R^{\prime}$. (Here we are using * to denote the natural involution on R^{\prime} which extends the involution on R given to us in the statement of the theorem.) Thus for us the ring of quotients J^{\prime} exists, is an ample Jordan subring of $H\left(R^{\prime}\right)$ and $J^{\prime}=\left\{a U_{b}^{-1}: a, b \in J\right.$, b regular in $J\}$.

Let $x \in R^{\prime}$ and $y \in J^{\prime}$. Express x as $c^{-1} d$ and y as $b^{-1} a b^{-1}$ where $d \in R, a \in J$ and c, b are regular elements in N. Then $x y x^{*}=c^{-1} d b^{-1} a b^{-1} d^{*} c^{-1}$. By the common multiple property of R, we may express $d b^{-1}$ as $b_{1}^{-1} d_{1}$, with $b_{1} \in N$. Thus

$$
\begin{aligned}
x y x^{*} & =c^{-1} b_{1}^{-1} d_{1} a d_{1}^{*} b_{1}^{-1} c^{-1} \\
& =\left(d_{1} a d_{1}^{*}\right) U_{c U_{b 1}}^{-1} U_{b_{1}} .
\end{aligned}
$$

Set $s=\left(d_{1} a d_{1}^{*}\right) U_{c U_{b}}^{-1} \in J^{\prime}$ and $t=b_{1} \in J$. We have now reduced the problem to showing that $s U_{t} \in J^{\prime}$ for $s \in J^{\prime}$ and $t \in J$. This was done by Montgomery in her proof of [5, Theorem 4.5].

Let R be a semiprime ring with * and J an ample quadratic Jordan subring of H satisfy either $A C C$ or $D C C$ on quadratic ideals.

For any subset $S \subseteq R$, we have $B=A_{\ell}(S)=A_{\ell} A_{r} A_{\ell}(S)$. In particular, if S is a ${ }^{*}$-ideal then B is a ${ }^{*}$-ideal and B is the left annihilator of the ${ }^{*}$-ideal $A=A_{r}(B)$. Let us gather together all such proper ${ }^{*}$-ideals B into the set $\mathfrak{B}=\left\{B: B=A_{\ell}(A)\right.$ for ${ }^{*}$-ideal $A=A_{r}(B)$ with $\left.B \neq R\right\}$.

Since $B \cap J$ is a quadratic ideal of J for all $B \in \mathfrak{B}$, if J satisfies $A C C$ on quadratic ideals \mathfrak{B} contains elements B_{i} such that $B_{i} \cap J$ is not a proper subset of $B \cap J$ regardless of the choice of $B \in \mathfrak{B}$. That is, $\varnothing \neq \beta_{1}=\left\{B_{i} \in \mathfrak{B}: B_{i} \cap J\right.$ is maximal\}.

On the other hand, if J satisfies $D C C$ on quadratic ideals, \mathfrak{B} contains elements B_{i} such that $A_{i} \cap J$ is minimal where $A_{i}=A_{r}\left(B_{i}\right)$. That is, $\varnothing \neq \beta_{2}=$ $\left\{B_{i} \in \mathfrak{B}: A_{i} \cap J\right.$ is minimal where $\left.A_{i}=A_{r}\left(B_{i}\right)\right\}$.

Now define

$$
\beta= \begin{cases}\beta_{1} & \text { if } J \text { satisfies } A C C \\ \beta_{2} & \text { if } J \text { satisfies } D C C\end{cases}
$$

Lemma 2. Let R be a semiprime ring with * and J an ample quadratic Jordan subring of H satisfying either ACC or DCC on quadratic ideals. Then if β is as
above then
(i) $B_{i} \in \beta$ is a^{*}-prime ideal (i.e. R / B_{i} is $a{ }^{*}$-prime ring);
(ii) if B_{i} and B_{j} are distinct elements of β then $B_{i} \nsubseteq B_{j}$ but $A_{\ell}\left(B_{i}\right) \subseteq B_{j}$;
(iii) β is a finite set;
(iv) the elements of β intersect at zero.

Proof. (i) Let C and D be nonzero *-ideals of R such that $C D \subseteq B_{i} \in \beta$. Let $A_{i}=A_{r}\left(B_{i}\right)$.

First suppose that J satisfies $A C C$ on quadratic ideals. If $D A_{i}=0$, then $D \subseteq B_{i}$. Therefore, we may assume that $A_{i} D+D A_{i} \neq 0$. By Lemma 1 (i), $B_{i} \cup C \subseteq A_{\ell}\left(A_{i} D+D A_{i}\right)$ and $A_{\ell}\left(A_{i} D+D A_{i}\right) \neq R$ be semi-primeness of R. But $B_{i} \cap J \subseteq A_{\ell}\left(A_{i} D+D A_{i}\right) \cap J$ and by maximality of $B_{i} \cap J$ we must have $B_{i} \cap J=$ $A_{\ell}\left(A_{i} D+D A_{i}\right) \cap J$ and hence $C \cap J \subseteq B_{i} \cap J$. Thus $\left(A_{i} C+C A_{i}\right) \cap J \subseteq A_{i} \cap B_{i}=$ 0 , by semi-primeness, and hence, by Lemma 1 (ii), $C A_{i}=0$ so that $C \subseteq B$.

Now suppose J satisfies $D C C$ on quadratic ideals. If either $\left(A_{i} D+D A_{i}\right) \cap J$ or $\left(A_{i} C+C A_{i}\right) \cap J$ is zero, then we are done by Lemma 1 (ii). Thus we assume that neither is zero. By the minimality of $A_{i} \cap J$ we have

$$
\begin{aligned}
& 0 \neq\left(A_{i} D+D A_{i}\right) \cap J \subseteq A_{r}\left(C+B_{i}\right) \cap J=A_{i} \cap J \\
& 0 \neq\left(A_{i} C+C A_{i}\right) \cap J \subseteq A_{r}\left(D+B_{i}\right) \cap J=A_{i} \cap J
\end{aligned}
$$

Thus $A_{i} \cap J \subseteq A_{r}\left(C+D+B_{i}\right)$ and hence $Q=\left(A_{i} D+D A_{i}\right) \cap J$ is nonzero, by Lemma 1 (ii), and is such that $J U_{Q}=0$, contrary to the semi-primeness of J given to us by [3, Theorem 2].
(ii) follows from the ${ }^{*}$-primeness of the elements B_{i} of β. (See [2, Lemma 4]).
(iii) follows by showing that $\sum A_{i}$ is a direct sum and using the chain condition on J in the presence of $0 \neq(N \cup T) \cap A_{i} \subseteq J$. (See [2, Lemma 5]).
(iv) Let $\left\{B_{1}, \ldots, B_{k}\right\}=\beta$ in accordance with (iii) and corresponding to each $B_{i} \in \beta$, let $A_{i}=A_{r}\left(B_{i}\right)$. Let $I=\bigcap_{1}^{k} B_{i}$ and suppose $I \neq 0$. Then $I A_{i}=0$ for $1 \leq i \leq k$ and by Lemma 1 (i), we have $A_{i} I=0$ so that $A_{i} \subseteq A_{\ell}(I)$ for each i. $A_{\ell}(I) \neq 0$ by the semi-primeness of R.

Assume that J satisfies $A C C$ on quadratic ideals. Then there is some $j=1, \ldots, k$ such that $A_{\ell}(I) \cap J \subseteq B_{j} \cap J$. Set $Q=A_{j} \cap J \subseteq B_{j} \cap J$ and obtain the contradiction $J U_{Q}=0$.

Finally, assume that J satisfies $D C C$. Since $A_{i} I=0$ for each $i=1, \ldots, k$, $I \subseteq A_{r}\left(\sum_{i}^{k} A_{i}\right)$. By the minimality of the $A_{i} \cap J$'s there is some $1 \leq j \leq k$ such that $A_{r}(I) \cap J \supseteq A_{j} \cap J$. Set $Q=A_{j} \cap J$ and obtain $J U_{Q}=0$.

Proof of Theorem 1. By Lemma 2, R / B_{i} is an involution prime ring for each $B_{i} \in \beta$ where the involution on R / B_{i} is determined by applying ${ }^{*}$ to the representative of the coset. The homomorphic image of J in R / B_{i} is closed ample quadratic Jordan subring of $H\left(R / B_{i}\right)$ which satisfies either ACC or DCC
accordingly as J does. That is, R / B_{i} satisfies the hypothesis of [6, Theorem 2] and hence R / B_{i} is ${ }^{*}$-prime Goldie. Thus R is semiprime Goldie. The last sentence of Theorem 1 follows from Theorem 2 after arguing, as Montgomery did in the proof of [5, Corollary 2], that regular elements of J are regular in R.

Before closing we point out that the open question (stated in the closing remarks of [5]) as to the necessity of the common multiple property of a Jordan ring J to have a ring of quotients may be answered negatively by considering the Jordan plus structure of the left Ore domain that is not a right Ore domain. However, the sufficiency of the common multiple property for J to have a ring of quotients remains open.

References

1. D. J. Britten, On Prime Jordan Rings $H(R)$ with Chain Conditions, J. Algebra, 27 (1973), 414-421.
2. - On Semiprime Jordan Rings $H(R)$ with ACC, Proc. Amer. Math. Soc., 45 (1974), 175-178.
3. T. S. Erickson and S. Montgomery, The Prime Radical in Special Jordan Rings, Trans. Amer. Math. Soc., 156 (1971), 155-164.
4. N. Jacobson, Structure of Rings, 2nd ed., Amer. Math. Soc. Colloq. Publ., Vol. 37, Amer. Math. Soc., Providence, R.I., 1968.
5. Susan Montgomery, Rings of Quotients for a Class of Special Jordan Rings, J. Algebra, 31 (1974), 154-165.
6. -_, Chain Condition on Symmetric Elements, Proc. Amer. Math. Soc. 46 (1974), 325-331.

Department of Mathematics
University of Windsor, Windsor, Ontario, Canada

[^0]: Received by the editors June 2, 1975.
 ${ }^{(1)}$ Prepared while the author was at the 1974 SRI at the University of Calgary and held NRC Grant A-8471. Revised while the author was at the 1975 SRI at Dalhousie University.

