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Abstract

We consider families of Siegel eigenforms of genus 2 and finite slope, defined as local
pieces of an eigenvariety and equipped with a suitable integral structure. Under some
assumptions on the residual image, we show that the image of the Galois representation
associated with a family is big, in the sense that a Lie algebra attached to it contains
a congruence subalgebra of non-zero level. We call the Galois level of the family the
largest such level. We show that it is trivial when the residual representation has full
image. When the residual representation is a symmetric cube, the zero locus defined by
the Galois level of the family admits an automorphic description: it is the locus of points
that arise from overconvergent eigenforms for GL2, via a p-adic Langlands lift attached
to the symmetric cube representation. Our proof goes via the comparison of the Galois
level with a ‘fortuitous’ congruence ideal. Some of the p-adic lifts are interpolated by
a morphism of rigid analytic spaces from an eigencurve for GL2 to an eigenvariety for
GSp4, while the remainder appear as isolated points on the eigenvariety.

1. Introduction

Drawing inspiration from earlier work of Hida and Lang, the paper [CIT16] studied the image
of the Galois representations associated with p-adic families of modular forms, more precisely
eigenforms of finite slope for the action of a Hecke algebra unramified outside of a fixed tame
level. Such a family is defined by equipping a local piece of the eigencurve of the given tame level
with an integral structure. A result of [CIT16] states that the Galois representation attached to
a family has big image in the following sense: there is a ring B and a Lie subalgebra G of gl2(B)
attached to Im ρ, in a meaningful way, such that G contains l · sl2(B) for a non-zero ideal l of B.
This can be seen as an analogue, for a p-adic family, of a classical result of Ribet and Momose on
the image of the p-adic Galois representation attached to a classical eigenform [Rib75, Mom81].
We call the Galois level of the family the largest ideal l with the above property. The arguments
in [CIT16] rely heavily on the work of Hida and Lang for ordinary families [Hid15, Lan16], in
particular on the study by Lang of the conjugate self-twists of the Galois representations attached
to families. A new ingredient in the positive slope case is relative Sen theory, that replaces
ordinarity in some crucial steps. Another result of [CIT16] is an automorphic description of
the Galois level of a family: the geometric points of its zero locus are the p-adic CM points
of the family. This is also a generalization of a theorem of Hida in the ordinary case. The proof
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Galois level and congruences for symplectic groups

goes via the comparison of the Galois level with a fortuitous congruence ideal, that encodes the
information on the CM specializations of the family. We call this ideal ‘fortuitous’ because, in
contrast to what happens in the ordinary case, the CM specializations of a non-CM family do
not correspond to congruences with CM families, that do not exist when the slope is positive.

In this paper we find analogous results for p-adic families of Siegel modular forms of genus
2 and finite slope. We think that our work in this setting shows that the big image properties
of Galois representations and their relations to congruences are part of a picture that can be
extended to more general reductive groups. We remark that Hida and Tilouine already have some
results for ordinary p-adic families of GSp4-eigenforms that are residually of ‘twisted Yoshida
type’ [HT15]. Their arguments rely on the Galois ordinarity of the families and on R = T
results, both of which are not available when the slope is positive. They obtain congruences
between families that are lifts from GL2/F , for a quadratic field F , and families that are not;
their congruence ideals are then traditional and not fortuitous. In light of the results of the
present paper, we think that fortuitous congruences should be regarded as general phenomena,
that appear whenever we consider families of eigenforms for a reductive group that arise as p-adic
Langlands lifts from a group of smaller rank.

The paper can be divided in two parts. In the first part (§§ 1–8), we define two-parameter
families of GSp4-eigenforms of finite slope and we attach Galois representations to them; we then
prove that the image of these representations is big in a Lie theoretic sense, assuming that the
residual representation is either of full image or a symmetric cube. In the second part (§§ 9–11),
we prove that the size of the Galois representation attached to a two-parameter family is related
to the congruences of the family with lifts of eigenforms for a smaller group, constructed via
a p-adic Langlands transfer. In the first half, we need to solve many technical problems when
passing from genus 1 to genus 2, whereas the second half is substantially different from its genus
1 counterpart. We present our results and arguments in more detail in the following.

Fix a prime p and an integer M not divisible by p. Let HM2 be an abstract Hecke algebra
unramified outside Mp and of Iwahoric level at p. In their paper [AIP15], Andreatta, Iovita
and Pilloni constructed a rigid analytic object D2, that we call the GSp4-eigenvariety, and
a map from HM2 to the ring of analytic functions on D2, interpolating the systems of Hecke
eigenvalues associated with the p-stabilized Siegel modular forms of genus 2 and tame level M .
The eigenvariety D2 is equipped with a map to the two-dimensional weight spaceW2, that is the
rigid analytic space associated with the formal scheme Spf Zp[[(Z×p )2]] by Berthelot’s construction
[deJ95, § 7]. For our purposes, it is important that families be defined integrally, so we cannot
work globally on irreducible components of the eigenvariety. We consider instead an admissible
domain Dh on D2 consisting of the points of slope bounded by a rational number h and of weight
in a wide open disc in the weight space. If the radius of this disc is sufficiently small with respect
to h, the restriction of the weight map to Dh is a finite map thanks to a result of Bellaïche
(Proposition 4.1). A suitably chosen integral structure on the weight disc induces an integral
structure on Dh. This means that we can define a local profinite ring I◦ and a map HM2 → I◦
that interpolates the systems of Hecke eigenvalues of the classical eigenforms appearing in Dh.
An argument by Chenevier gives a Galois pseudocharacter on Dh, that we lift to a representation
ρ : GQ→ GSp4(I◦) (Lemma 4.7). We define the ‘conjugate self-twists’ of ρ as automorphisms of
I◦ that induce an isomorphism of ρ with one of its twists by a Dirichlet character (Definition 5.1).
We write I◦0 for the subring of elements of I◦ fixed by all the conjugate self-twists. We define a
certain completion B of I◦0[1/p] and a Lie subalgebra Lie(Im ρ) of gsp4(B) attached to Im ρ (see
§ 7.1). We assume that ρ is Zp-regular (Definition 3.10) and that the residual representation ρ is
either full or of symmetric cube type (Definition 3.11). Our first main result is the following.
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Theorem 1.1 (Theorem 8.1). There exists a non-zero ideal l of B such that l·sp4(B)⊂ Lie(Im ρ).

We call the Galois level of the family the largest ideal l satisfying the inclusion of Theorem 1.1.
We give here a summary of the proof of Theorem 1.1. We first show that, under our assumptions
on ρ, there exists a classical weight such that ρ specializes to a representation with big image at all
points of this weight appearing on the family (Theorem 3.12). Here we need the recent classicality
result contained in [BPS16, Theorem 5.3.1]. Another essential ingredient is a result of Pink
(Theorem 3.13) that we use to show that the representation associated with a GSp4-eigenform
that is not a lift from a smaller group has big image with respect to the ring fixed by its conjugate
self-twists. This is an analogue of the result of Ribet and Momose for GL2-eigenforms. We prove
some results that are needed in the second part of the paper (in the proof of Theorem 1.2) and
that yield as a corollary the fact that a form which is not a lift satisfies the assumptions of Pink’s
theorem (Corollary 3.9).

Once a classical weight with the desired properties is chosen, we follow a strategy of Lang to
obtain some information on the image of ρ. As a first step we need to show that a big image result
holds for the product of the specializations of ρ of a given weight, rather than just for a single
one (Proposition 6.10). The argument here relies on Goursat’s lemma and on the classification of
subnormal subgroups of symplectic groups by Tazhetdinov. Afterwards, we use the result of the
first step to construct some non-trivial unipotent elements in the image of ρ. To do this, we need
to prove an analogue of [Lan16, Theorem 3.1] that allows us to lift the conjugate self-twists of
the specializations of ρ at our chosen weight to conjugate self-twists of ρ itself. The arguments
of Lang about the lifting of the conjugate self-twists to automorphisms of a suitable deformation
ring can be translated into the genus 2 case with little effort, but descending to a conjugate
self-twist of the family requires some specific ingredients. Precisely, we prove that we can twist a
family of GSp4-eigenforms by a Dirichlet character to obtain a new family (Lemma 5.8) and we
rely on the étaleness of the eigenvariety above our chosen weight.

In § 7, we show how the relative Sen theory of [CIT16, § 5] can be extended to the group
GSp4, to associate a Sen operator with ρ. The eigenvalues of this operator are given explicitly
by the interpolation of the Hodge–Tate weights of the classical specializations of the family
(Proposition 7.12). The exponential of the Sen operator induces by conjugation a structure of
Zp[[T1, T2]]-Lie algebra on Lie(Im ρ), so that the special elements we constructed generate a
non-trivial congruence subalgebra. This proves Theorem 1.1.

When ρ has full image, the Galois level of the family is trivial (Corollary 11.5), so the main
focus of the rest of the paper is the case where ρ is a symmetric cube. We can give two definitions
of a symmetric cube locus on the eigenvariety: an automorphic definition, as the locus of points
whose system of Hecke eigenvalues is obtained from that of an overconvergent GL2-eigenform via
a symmetric cube morphism of Hecke algebras; and a Galois definition, as the locus of points
whose Galois representation is the symmetric cube of that associated with an overconvergent
GL2-eigenform. An important result is the following.

Theorem 1.2 (Theorem 10.1). The automorphic and Galois definitions of the symmetric cube
locus are equivalent.

Theorem 1.2 plays an essential role in describing the Galois level of the family by automorphic
means. Note that this result and its role in our work are completely new with respect to the genus
1 case: there the only possible congruences are of CM type and it is trivial to see that a point
of small Galois image, contained in the normalizer of a torus, is a p-adic CM point (see [CIT16,
Remark 3.11]).
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The proof of Theorem 1.2 goes via the theory of (ϕ,Γ)-modules. It is known from the work
of Kisin and Emerton that a two-dimensional p-adic representation of GQ is associated with an
overconvergent GL2-eigenform, up to a twist, if and only if it is trianguline. Thanks to the recent
work of Kedlaya, Pottharst and Xiao on triangulations over eigenvarieties, we know that the ‘only
if’ part also holds for overconvergent GSp4-eigenforms (Theorem 3.2). We combine their results
with some arguments of Di Matteo [DiM13b] that relate the triangulinity of a representation to
that of its symmetric cube, giving the desired result. As a corollary we deduce that if a p-old
point of symmetric cube type of DM2 is classical, then it is obtained from a classical point of an
eigencurve for GL2, via the classical Langlands lift attached to the symmetric cube representation
by Kim and Shahidi [KS02].

We study further the symmetric cube locus and show that it is Zariski-closed with zero-
and one-dimensional irreducible components. The one-dimensional part of the locus can be
constructed as the image of a morphism from an eigencurve for GL2, of a suitable tame level,
to DM2 . This morphism is obtained by interpolating p-adically the classical symmetric cube
Langlands lift, via an argument that goes back to Chenevier’s work on the p-adic Jacquet–
Langlands correspondence [Che05] and is now quite standard. We assume the existence of this
morphism (Proposition 9.11) and refer to [Con16, §§ 3.6–3.9] for a construction of the morphism
that relies on the results of [BC09, § 7.2.3].

The zero-dimensional components of the symmetric cube locus are given by isolated p-adic
Langlands lifts, that cannot be interpolated owing to the fact that their slopes do not vary
analytically. The appearance of such points is related to the existence of more than one crystalline
period for the corresponding Galois representation (Proposition 3.4).

Restricting once again our attention to a local piece of the eigencurve describing a family,
we define a symmetric cube congruence ideal that measures the locus of symmetric cube
specializations of the family (Definition 11.1). We call it a fortuitous congruence ideal: since
there are no two-parameter families of symmetric cube type, the congruences detected by this
ideal are symmetric cube specializations of a family that is not globally a symmetric cube. Thanks
to Theorem 1.2, that serves as a bridge between the automorphic and Galois sides, we can relate
the congruence ideal with the Galois level of the family.

Theorem 1.3 (Theorem 11.4). The sets of prime divisors of the Galois level and of the
symmetric cube congruence ideal coincide outside of a finite and explicit bad locus.

We think that the results of this paper can be generalized by allowing for different residual
representations, hence different types of congruences, or by replacing GSp4 by other reductive
groups for which an eigenvariety has been constructed. We hope to come back to this problem in
a later work.

Notation. We fix some notation and conventions. In the text, p will always denote a prime
number strictly larger than three. Most arguments work for every odd p; we specify when this
is not sufficient. We choose algebraic closures Q and Qp of Q and Qp, respectively. If K is a
finite extension of Q or Qp, we denote by GK its absolute Galois group. We equip GK with its
profinite topology. We denote by OK the ring of integers of K. If K is local, we denote by mK

the maximal ideal of OK . For every prime p, we fix an embedding ιp : Q ↪→ Qp, identifying GQp
with a decomposition group of GQ. We fix a valuation vp on Qp normalized so that vp(p) = 1. It
defines a norm given by | · | = p−vp(·). We denote by Cp the completion of Qp with respect to this
norm.
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All rigid analytic spaces will be considered in the sense of Tate (see [BGR84, Part C]). Let
K/Qp be a field extension and let X be a rigid analytic space over K. We denote by O(X)
the K-algebra of rigid analytic functions on X, and by O(X)◦ the OK-subalgebra of functions
of norm bounded by 1 (we often say ‘functions bounded by 1’ meaning that they are bounded
in norm). When f : X → Y is a map of rigid analytic spaces, we denote by f∗ : O(Y )→ O(X)
the map induced by f . There is a Grothendieck topology on X, called the Tate topology; we
refer to [BGR84, Proposition 9.1.4/2] for the definition of its admissible open sets and admissible
coverings. There is a notion of irreducible components for X; see [Con99] for the details. We say
that X is equidimensional of dimension d if all its irreducible components have dimension d.

We say that X is wide open if there exists an admissible covering {Xi}i∈N of X by affinoid
domains Xi such that, for every i, Xi ⊂ Xi+1 and the map O(Xi+1)→ O(Xi) induced by the
previous inclusion is compact.

Let S be any subset of X(Cp). We say that S is:

(i) a discrete subset of X(Cp) if S ∩A is a finite set for any open affinoid A ⊂ X(Cp);
(ii) a Zariski-dense subset of X(Cp) if, for every f ∈ O(X) vanishing at every point of S, f is

identically zero;
(iii) an accumulation subset of X(Cp) if for every x ∈ S there exists a basis B of affinoid

neighborhoods of x in X such that for every A ∈ B the set S ∩ A(Cp) is Zariski-dense
in A (this term is borrowed from [BC09, § 3.3.1]).

We denote by Ad the d-dimensional rigid analytic affine space over Qp. Given a point
x ∈ Ad(Cp) and r ∈ pQ, we denote by Bd(x, r) the d-dimensional closed disc of centre x and
radius r. It is an affinoid domain defined over Cp. We denote by Bd(x, r

−) the d-dimensional
wide open disc of centre x and radius r, defined as the rigid analytic space over Cp given by the
increasing union of the d-dimensional affinoid discs of centre x and radii {ri}i∈N with ri < r and
limi 7→+∞ ri = r.

For every n > 1 we denote by 1n the n × n unit matrix. Let g > 1 be an integer and let s
be the g × g antidiagonal unit matrix (δi,n−i(i, j))16i,j6g. Let Jg be the 2g × 2g matrix

( 0 s
−s 0

)
.

We denote by GSp2g the algebraic group of symplectic similitudes for Jg, defined over Z; for
every ring R the R-points of this group are given by

GSp2g(R) = {A ∈ GL4(R) | ∃ ν(A) ∈ R× s.t. tAJA = ν(A)J}.

The map A→ ν(A) defines a character ν : GSp4(R)→ R×. We refer to ν as the similitude factor
and we set Sp2g(R) = {A ∈ GSp2g(R) | ν(A) = 1}.

We denote by Bg the Borel subgroup of GSp2g such that for every ring R the R-points of
Bg are the upper triangular matrices in GSp2g(R). We let Tg be the maximal torus such that
for every ring R the R-points of Tg are the diagonal matrices in GSp2g(R). We write Ug for the
unipotent radical of Bg. We have Bg = TgUg. We will always speak of weights and roots for GSp2g

with respect to the previous choice of Borel subgroup and torus. For every root α, we denote by
Uα the corresponding one-parameter unipotent subgroup of GSp2g. For every prime `, we write
Ig,` for the Iwahori subgroup of GSp2g(Q`) corresponding to our choice of Borel subgroup, and
we define some compact open subgroups of GSp2g(AQ) by:

(i) Γ(g)(`n) = {h ∈ GSp2g(Ẑ) |h` ∼= 12g (mod `n)};

(ii) Γ
(g)
1 (`n) = {h ∈ GSp2g(Ẑ) |h` (mod `n) ∈ Ug(Z/`nZ)};

(iii) Γ
(g)
0 (`n) = {h ∈ GSp2g(Ẑ) |h` (mod `n) ∈ Bg(Z/`nZ)}.
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Let N be an arbitrary positive integer. Write N =
∏
i `
ni
i for some distinct primes `i and some

ni ∈ N. For a positive integer N factoring as
∏
i `
ni
i , we set Γ

(g)
? (N) =

⋂
i Γ

(g)
? (`nii ) for ? = ∅, 0, 1.

For g = 1, we will omit the upper index (1).

List of notation
In addition to the notation described above, we give the references to the pages where the following
notation is introduced.

Wg,W◦g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
Λg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
HNpg ,HNg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
DNg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
DN,hg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .791
A◦ri , Ari = A◦ri [p

−1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
Bg,h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
Λg,h,Λh := Λ2,h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
DNg,h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
Tg,h,Th := T2,h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
I◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .793
I◦Tr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
I◦0, I0 = I◦0[p−1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
I◦ri,0, Iri,0 = I◦ri,0[p−1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
Hri , Hri,p,KHri ,p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
Br . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
Gr,G

loc
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .808

φr, φ
′
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811

ΦBr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
lθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
λNp : HNp2 → H

Np
1 , λ1 : HN2 → HN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817

ι : W◦1 →W◦2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
ISym3 ,DM

2,Sym3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
cθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .825

2. Preliminaries on eigenvarieties

In this section, we define the basic objects we are going to work with: weight spaces, Hecke
algebras and eigenvarieties. We recall some of their properties.

2.1 The weight spaces
We choose once and for all u = 1+p as a generator of Z×p . This choice determines an isomorphism
Z×p ∼= (Z/(p− 1)Z)× Zp. Let g be a positive integer. Consider the Iwasawa algebra Zp[[(Z×p )g]].
A construction by Berthelot [deJ95, § 7] attaches to the formal scheme Spf Zp[[(Z×p )g]] a rigid
analytic space that we denote byWg .If A is a Qp-algebra, the A-points ofWg are the continuous
characters (Z×p )g → A×. Denote by (Z/(p − 1)Z)∧,g the group of characters of (Z/(p − 1)Z)g.
The following map gives an isomorphism fromWg to a disjoint union of g-dimensional open discs
Bg(0, 1

−) indexed by (Z/(p− 1)Z)∧,g:
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ηg : Wg → (Z/(p− 1)Z)∧,g ×Bg(0, 1−),

κ 7→ (κ|(Z/(p−1)Z)g , (κ(u, 1, . . . , 1)− 1, κ(1, u, 1, . . . , 1)− 1, . . . , κ(1, . . . , 1, u)− 1)).

We denote by W◦g the connected component of Wg that maps to 0 ∈ (Z/(p − 1)Z)g. We write
Λg for the algebra Zp[[T1, T2, . . . , Tg]] of formal series in g variables over Zp. It is the ring of rigid
analytic functions bounded by 1 on a connected component of the weight space. The weight space
Wg carries a universal character κWg : Z×p → Zp[[(Z×p )g]]×.

We call arithmetic primes the primes of Λg of the form Pk = (1 + T1 − uk1 , 1 + T2 − uk2 , . . . ,
1 + Tg − ukg) for a g-tuple of integers k = (k1, k2, . . . , kg) (in the usual definition an auxiliary
character can appear, but we will never need it). We say that a Qp-point κ : Z×p → Q×p of W◦g is
classical if it is the specialization of the universal character of Wg at Pk, for some k ∈ Zg.

2.2 The abstract Hecke algebras
Let ` be a prime. Let G be a Z-subgroup scheme of GSp2g and let K ⊂ G(Q`) be a compact
open subgroup. For γ ∈ G(Q`) we denote by 1([KγK]) the characteristic function of the double
coset [KγK]. Let H(G(Q`),K) be the Q-algebra generated by the functions 1([KγK]) for
γ ∈ G(Q`), equipped with the convolution product. We call spherical (or unramified) Hecke
algebra of GSp2g at ` the Q-algebra H(GSp2g(Q`),GSp2g(Z`)). It is generated by the elements
T

(g)
`,i = 1([GSp2g(Z`) diag(1i, `12g−2i, `

21i) GSp2g(Z`)]), for i = 0, 1, . . . g, and (T
(g)
`,0 )−1.

The Hecke algebra H(Tg(Q`), Tg(Z`)) carries a natural action of the Weyl group Wg = Sg n
(Z/2Z)g of GSp2g, where Sg is the group of permutations of {1, 2, . . . , g}: on an element
diag(νt1, . . . , νtg, t

−1
g , . . . , t−1

1 ) of the torus, Sg acts by permuting the ti and the non-trivial
element in each Z/2Z sends ti to t−1

i . We denote the action of w ∈Wg on t ∈ T (Q`) by t 7→ w.t.
Via the twisted Satake transform, the algebra H(Tg(Q`), Tg(Z`)) obtains a structure of Galois
extension of H(GSp2g(Q`),GSp2g(Z`)). Its Galois group is Wg.

For i = 0, 1, . . . , g, let t(g)`,i = 1([diag(1i, `12g−2i, `
21i)Tg(Z`)]). Note that t(g)`,0 = S

Tg
GSp2g

(T g`,0).
The set (t

(g)
`,i )i=1,...,g generates the extension H(Tg(Q`), Tg(Z`)) over H(GSp2g(Q`),GSp2g(Z`)).

We call an element γ ∈ Tg(Z`) dilating if vp(α(γ)) 6 0 for every positive root α. Let Tg(Z`)−
be the subset of Tg(Z`) consisting of dilating elements and let H(Tg(Q`), Tg(Z`))− be the Q-
subalgebra of H(Tg(Q`), Tg(Z`)) generated by the functions 1([γTg(Z`)]) with γ ∈ Tg(Q`)

−. The
functions 1([γTg(Z`)]) with γ ∈ Tg(Q`)

− also form a basis of H(Tg(Q`), Tg(Z`))− as a Q-vector
space.

Let H(GSp2g(Q`), Ig,`)
− be the subalgebra of H(GSp2g(Q`), Ig,`) generated by the functions

1([Ig,`γIg,`]) with γ ∈ T (Z`)−. We call H(GSp2g(Q`), Ig,`)
− the dilating Iwahori–Hecke algebra

at `. It is generated by the elements U (g)
`,i = 1([Ig,` diag(1i, `12g−2i, `

21i)Ig,`]), for i = 0, 1, . . . , g,

and (U
(g)
`,0 )−1.

We define a morphism of Q-algebras ιTgIg,` : H(GSp2g(Q`), Ig,`)
−
→ H(Tg(Q`), Tg(Z`))− by

sending 1(Ig,`γIg,`) to 1(Tg(Z`)γTg(Z`)) for every γ ∈ T (Z`)−. The map ιTgIg,` is an isomorphism;
this can be proved as [BC09, Proposition 6.4.1].

Let p be a prime and N be a positive integer such that (N, p) = 1. Set

HNpg =
⊗

Q,`-Np

H(GSp2g(Q`),GSp2g(Z`)) (1)

HNg = HNpg ⊗Q H(GSp2g(Qp), Ig,p)
−. (2)
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We call HNg the abstract Hecke algebra spherical outside N and Iwahoric dilating at p. With an
abuse of notation, we will consider the elements of one of the local algebras as elements of HNg
by tensoring with 1 at all the other primes.

2.2.1 The Hecke polynomials. We record here some explicit formulas for the minimal
polynomials Pmin(t

(g)
`,i ;X) of the elements t(g)`,i over H(GSp2g(Q`),GSp2g(Z`)) when g is 1 or 2.

For g = 1, the element t
(1)
`,1 = 1([diag(1, `)T1(Z`)]) generates the degree two extension

H(T1(Q`), T1(Z`)) of H(GL2(Q`),GL2(Z`)). Let w be the only non-trivial element of the Weyl
group of GL2. The minimal polynomial of t(1)

`,1 is Pmin(t
(1)
`,1)(X) = (X − t

(1)
`,1)(X − (t

(1)
`,1)w).

An explicit calculation gives

Pmin(t
(1)
`,1 ;X) = (X − t(1)

`,1)(X − (t
(1)
`,1)w) = X2 − T (1)

` X + `T
(1)
`,0 . (3)

For g = 2, the degree eight extension H(T2(Q`), T2(Z`)) over H(GSp4(Q`),GSp4(Z`)) is
generated by t(2)

`,1 = 1([diag(1, `, `, `2)T2(Z`)]) and t(2)
`,2 = 1([diag(1, 1, `, `)T2(Z`)]). Each of them

has an orbit of order four under the action of the Weyl group. If t = diag(νt1, νt2, t
−1
1 , t−1

2 ) is
an element of the torus we denote by w0, w1, w2 the generators of the Weyl group satisfying
tw0 = diag(νt2, νt1, t

−1
2 , t−1

1 ), tw1 = diag(νt−1
1 , νt2, t1, t

−1
2 ), tw2 = diag(νt1, νt

−1
2 , t−1

1 , t2). Note
that t(2)

`,2 is invariant under w0. The calculation in the proof of [And87, Lemma 3.3.35] gives

Pmin(t
(2)
`,2 ;X) = (X − t(2)

`,2)(X − (t
(2)
`,2)w1)(X − (t

(2)
`,2)w2)(X − (t

(2)
`,2)w1w2)

= X4 − T (2)
`,2 X

3 + ((T
(2)
`,2 )2 − T (2)

`,1 − `
2T

(2)
`,0 )X2 − `3T (2)

`,2 T
(2)
`,0 X + `6(T

(2)
`,0 )2. (4)

2.2.2 Normalized systems of Hecke eigenvalues. Let f be a classical GSp2g-eigenform of
level Γ1(N)∩Γ0(p) and weight k = (k1, k2, . . . , kg). Let χ : HNg → Qp be the system of Hecke
eigenvalues associated with f .

Definition 2.1. For g ∈ {1, 2}, let χnorm : HNg → Qp be the character defined by:

– χnorm|HNpg = χ|HNpg ;

– χnorm(U
(g)
p,i ) = p−

∑g−i
j=1(kj−j) for i = 1, 2, . . . , g (where the exponent of p is 0 for i = g).

We call χnorm the normalized system of Hecke eigenvalues associated with f .

2.3 The cuspidal GSp2g-eigenvariety
Let g be a positive integer. Let p be an odd prime and N a positive integer such that (N, p) = 1.
Let HNg be the abstract Hecke algebra for GSp2g, spherical outside N and Iwahoric dilating
at p. Let Wg be the g-dimensional weight space. For every affinoid A = SpmR ⊂ Wg and
every sufficiently large rational number w, Andreatta, Iovita and Pilloni [AIP15, § 8.2] defined
a Banach R-module Mg(A,w) of w-overconvergent cuspidal GSp2g-modular forms of weight κA
and tame level Γ1(N). For each pair (A,w) there is an action φgA,w : HNg → EndR,contMg(A,w).

Set U (g)
p =

∏g
i=1 U

(g)
p,g . It is shown in [AIP15, § 8.1] that (Wg,HNg , (Mg(A,w))A,w, (φ

g)A,w, U
(g)
p )

is an eigenvariety datum in the sense of [Buz07, § 5]. Buzzard’s ‘eigenvariety machine’ [Buz07,
Construction 5.7] produces from this datum a rigid analytic variety over Qp, equidimensional of
dimension g. We call it the GSp2g-eigenvariety of tame level N and we denote it by DNg . It is
equipped with a weight morphism wg : DNg →Wg and a homomorphism ψg : HNg → O(DNg ), that
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interpolates the normalized systems of Hecke eigenvalues of classical cuspidal GSp2g-eigenforms
of tame level Γ1(N). The images of the elements T (g)

i,` and U (g)
i,p , 1 6 i 6 g, belong to O(DNg )◦.

When g = 1 we call DN1 the eigencurve. It was constructed by Coleman and Mazur in [CM98]
for N = 1 and p > 2, building on earlier ideas of Coleman. Their construction was extended to
all N and p by Buzzard in [Buz07].

We call a point x ∈ DNg (Cp) classical if the evaluation of ψg at x is the Hecke eigensystem a
classical GSp2g-eigenform f of level Γ1(N)∩Γ0(p) and weight wg(x). In this case, wg(x) is clearly
a classical weight.

There is a slope function sl : DNg (Cp)→ R+ defined as the p-adic valuation of ψg(U
(g)
p,g ). Let

x be a Qp-point of DNg of weight k = (k1, k2, . . . , kg) ∈ Zg, so that k1 > k2 > · · · > kg. We recall
the following result.

Proposition 2.2 (Coleman [Col96, Theorem 6.1] when g = 1; Bijakowski, Pilloni and Stroh
[BPS16, Theorem 5.3.1, see also Remark 1 in the Introduction] when g > 1). If sl(x) < kg −
g(g + 1)/2, then the point x is classical.

2.3.1 The non-CM eigencurve. We say that a classical point of DN1 is a CM point if it
corresponds to a classical CM modular form. We say that an irreducible component of DN1 is a
CM component if all its classical specializations are CM points.

Remark 2.3. By [Hid15, Proposition 5.1], if an ordinary irreducible component of the eigencurve
contains a classical CM eigenform of weight k > 2, then the component is CM. In contrast, the
CM classical points of the positive slope eigencurve form a discrete set. This is a consequence
of [CIT16, Corollary 3.6], where it is shown that the eigencurve D+,6h contains a finite number of
CM classical points.

Let DN,G1 be the Zariski-closure in DN1 of the set of non-CM classical points. We call DN,G1

the non-CM eigencurve. The upper index G stands for ‘general’, because CM components are
exceptional among the irreducible components of DN1 .

Remark 2.4. It follows from Remark 2.3 that DN,G1 is the union of all the non-CM irreducible
components of DN1 . In particular, DN,G1 is equidimensional of dimension 1 and it contains the
positive slope eigencurve. Moreover the set of non-CM classical points is a Zariski-dense and
accumulation subset of DN,G1 .

2.4 The Galois pseudocharacters on the eigenvarieties
In this section, p is a fixed prime, M is a positive integer prime to p and g is 1 or 2. For
a point x ∈ DMg (Cp), we denote by evx : O(DMg ) → Cp both the evaluation at x and the
map GSp2g(O(DMg )) → GSp2g(Cp) induced by evx. Recall that the GSp2g-eigenvariety DMg is
endowed with a morphism ψg : HMg → O(DMg ) that interpolates the normalized systems of Hecke
eigenvalues associated with the cuspidal GSp2g-eigenforms of level Γ1(N)∩Γ0(p). Also recall that
the images of T (g)

i,` and U (g)
i,p , 1 6 i 6 g, are elements of O(DMg )◦. Let Scl denote the set of classical

Qp-points of DMg . For x ∈ Scl let ψx = evx ◦ψg. Let fx be the classical GSp2g-eigenform having
system of Hecke eigenvalues ψx. Let ρx : GQ → GSp2g(Qp) be the p-adic Galois representation
attached to fx and let Tx be the pseudocharacter defined as the trace of ρx. When x varies,
the traces Tx can be interpolated by a pseudocharacter with values in O(DMg )◦. This is stated
precisely in the following proposition.
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For every ring R, we implicitly extend a character of the Hecke algebra HMg → R× to a
morphism of polynomial algebras HMg [X]→ R[X] by applying it to the coefficients. Recall that
we fixed an embedding GQ` ↪→ GQ for every prime `, hence an embedding of the inertia subgroup
I` in GQ. As usual Frob` denotes a lift of the Frobenius at ` to GQ` .

Proposition 2.5. There exists a pseudocharacter Tg : GQ→ O(DMg ) of dimension 2g with the

following properties:

(i) for every prime ` not dividing Np and every h ∈ I`, we have Tg(h) = 2, where 2 ∈ O(DMg )

denotes the function constantly equal to 2;

(ii) for every prime ` not dividing Np, we have Pchar(Tg)(Frob`;X) = ψg(Pmin(t
(g)
`,g ;X));

(iii) for every x ∈ Scl, we have evx ◦Tg = Tx.

Proof. The pseudocharacter Tg is constructed via the interpolation argument of [Che04,
Proposition 7.1.1]. Its properties are a consequence of those of the classical representations. See
[Con16, Theorem 3.5.10] for a detailed proof of the proposition. 2

Remark 2.6. (i) Let x ∈ DMg (Qp). Consider the 2g-dimensional pseudocharacter Tx : GQ → Qp

defined by Tx = evx ◦Tg. By a well-known theorem of Taylor (see [Tay91]) there exists a Galois
representation ρx : GQ → GL4(Qp) satisfying Tx = Tr(ρx). We show in § 4.2 that, when ρx is
absolutely irreducible, ρx is isomorphic to a representation GQ→ GSp4(Qp).

(ii) When x varies in a connected component of DMg , the residual representation ρx : GQ →

GSp2g(Qp) is independent of x. We call it the residual representation associated with the
component.

3. Image of Galois representations attached to GSp4-eigenforms

Let N be a positive integer and let p be a prime not dividing N . Let F be an overconvergent
GSp2g-eigenform of level Γ1(N). Let ρF,p : GQ→ GSp2g(Qp) be the p-adic Galois representation
associated with F . It is defined over a p-adic field K. Under the technical condition of
‘Zp-regularity’ of ρF,p and an assumption on the associated residual representation, we prove
that the image of ρF,p is ‘big’ when g = 2 and F is a classical eigenform that is not a lift of
a GL2-eigenform (Theorem 3.12). On our way towards this result, we prove a theorem that is
needed in § 10 (Theorem 3.8).

3.1 Trianguline parameters of overconvergent GSp4-eigenforms
We refer to [Ber02, Col08] for the definitions and results that we need from the theory of (ϕ,Γ)-
modules and trianguline representations. Let F be as in the beginning of the section. Part (i) of
the following theorem is a classical result of Faltings [Fal89]. Part (ii) is a combination of [Kis03,
Theorem 6.3] and [Col08, Proposition 4.3], as Berger observed in [Ber11, § 4.3].

Theorem 3.1.

(i) If F is a classical eigenform of cohomological weight, then ρF,p|GQp is crystalline.

(ii) If g = 1 and the slope of F is finite, then ρF,p|GQp is trianguline.
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If g = 2, an analogue of Theorem 3.1(ii) for ρF,p can be deduced from the work of Kedlaya,
Pottharst and Xiao [KPX14]. Moreover, the results of [KPX14] allow us to write the parameters
of the triangulation of ρF,p in terms of a Hecke polynomial, as for classical points. Recall that we
are working on an eigenvariety DM2 with a fixed residual Galois representation ρ. Suppose that
ρ is irreducible. By lifting pseudocharacters to representations and considering the associated
(ϕ,Γ)-modules we can define a family of (ϕ,Γ)-modules over DM2 in the sense of [KPX14, § 2.1].
For x ∈ DM2 (Cp), let ρx : GQ → GL4(Qp) and ψx : HN2 → Qp be the Galois representation
and the system of Hecke eigenvalues, respectively, attached to x. Let Mx be the (ϕ,Γ)-module
over Qp attached to ρx. Denote by evx the evaluation of rigid analytic functions on DM2 at x.
We identify the weight of x with a character (κ1(x), κ2(x)) : (Z×p )2

→ C×p . Let id : Z×p → Z×p be
the identity. Let δi, 1 6 i 6 4 be the characters Z×p → O(DM2 )× defined by

δ1|Z×p = 1, δ1(p) = ψx(U
(2)
p,2 ); δ2|Z×p = κ1/id, δ2(p) = ψx((U

(2)
p,2 )w1);

δ3|Z×p = κ2/id
2, δ3(p) = ψx((U

(2)
p,2 )w2); δ4|Z×p = κ1κ2(p)/id3, δ4(p) = ψx((U

(2)
p,2 )w1w2).

For x ∈ DM2 (Cp), let δi,x = evx ◦ δi : Q×p → Qp.

Proposition 3.2.

(i) For every x ∈ DM2 (Cp), the (ϕ,Γ)-module Mx is trianguline.

(ii) There exists a Zariski-open rigid analytic subspace D̃M2 of DM2 such that for every
x ∈ DM2 (Cp) the (ϕ,Γ)-module Mx is triangulable with parameters evx ◦ δi : Q×p → Qp.

Proof. The first statement follows immediately from [KPX14, Corollary 6.3.13]. The second
follows from [KPX14, Theorem 6.3.10] after checking that the functions δi, 1 6 i 6 4, interpolate
the parameters of the triangulations at the classical points. This is true because the parameters
of the filtration correspond to the eigenvalues of the crystalline Frobenius at a crystalline point
by [Col08, Proposition 1.8] (that restates a result of Berger), and these are identified with the
roots of Pmin(U

(2)
p,2 ) by [Urb05, Théorème 1]. 2

Now let N be a positive integer prime to p and let M = N3. Let F be an overconvergent
GSp4-eigenform corresponding to a point of D̃M2 . Suppose that there is a GL2-eigenform f of level
N such that ρF,p ∼= Sym3 ρf,p, with the usual notation. Let χF : HN2 → Qp and χf : HN1 → Qp be
the systems of Hecke eigenvalues of the two forms. For 1 6 i 6 8, define χst,i

2 as in Proposition 9.7
by replacing χst

1 by χf .

Proposition 3.3. There exists i ∈ {1, 2, . . . , 8} such that χF = χst,i
2 .

Proof. The proof is completely analogous to that of Proposition 9.7, once we replace Dcris(ρf,p)
andDcris(ρf,p) by the (ϕ,Γ)-modules Drig(ρf,p) andDrig(ρF,p), respectively, and we use the result
of Proposition 3.2. 2

Let F be a finite slope overconvergent GSp4-eigenform of tame level M .

Proposition 3.4. There are at most 2 dimQp
Dcris(ρF,p) points of DM2 whose associated Galois

representation is isomorphic to ρF,p.
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Proof. The accumulation and Zariski-dense set Z of classical points of DM2 satisfies the
assumptions (CRYS) and (HT) of [BC09, § 3.3.2]. Then [BC09, Theorem 3.3.3] implies that,
for every Cp-point x of DM2 , ψx(U

(2)
p,2 ) is an eigenvalue of the crystalline Frobenius acting on

Dcris(ρx). There are exactly two characters of the Iwahori–Hecke algebra giving the same value
for ψx(U

(2)
p,2 ), hence the desired result. 2

Now let f be a finite slope overconvergent GL2-eigenform of tame level N .

Corollary 3.5. There are at most 2 dimQp
Dcris(ρ) points of DM2 whose associated Galois

representation is isomorphic to Sym3 ρf,p.

3.2 Representations with symmetric cube of automorphic origin
Let V be a two-dimensional representation of GQ over a p-adic field. We recall a special case of
a result of Di Matteo.

Proposition 3.6 [DiM13a, Theorem 2.4.2]. If the representation Sym3 V is de Rham, then V
is the twist by a character of a de Rham representation.

When ‘de Rham’ is replaced by ‘trianguline’, the techniques of [DiM13b] can be modified to
prove the following result.

Proposition 3.7. If the representation Sym3 V is trianguline, then V is either trianguline or
the twist by a character of a de Rham representation.

We refer to [Con16, Proposition 3.10.25] for the proof. We only remark here that to obtain
triangulinity, rather than potential triangulinity, we need a result of Berger and Chenevier [BC10,
Théorème A].

Given a two-dimensional modulo p representation τ of GQ, we list here for future reference
some assumptions that we need in applying the results of [Eme14]. Here χ denotes the modulo p
cyclotomic character:

τ |Q(ζp) is absolutely irreducible
τ is not equivalent to a twist by a character of

(
1 ∗
0 1

)
or
(1 ∗

0 χ

)
.

(∗τ )

For convenience we also restate the symmetric cube of the above assumptions, for a four-
dimensional modulo p representation τ of GQ:

τ |Q(ζp) is not the symmetric cube of a non-absolutely irreducible representation
τ is not equivalent to a twist by a character of Sym3

(
1 ∗
0 1

)
or Sym3

(1 ∗
0 χ

)
.

(∗∗τ )

We will always replace the subscript τ with the representation we are making the above
assumptions on.

Let ρ1 : GQ→ GL2(Qp) and ρ2 : GQ→ GSp4(Qp) be two continuous representations. We will
deduce the following theorem from the two previous propositions.

Theorem 3.8. Suppose that:

(1) ρ2
∼= Sym3 ρ1;

(2) ρ2 is odd and unramified outside a finite set of primes;

(3) the residual representation ρ1 associated with ρ1 satisfies assumptions (∗ρ1
).
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Then the following conclusions hold.

(i) If ρ2 is associated with an overconvergent cuspidal GSp4-eigenform, then ρ1 is associated
with an overconvergent cuspidal GL2-eigenform.

(ii) If ρ2 is associated with a classical cuspidal GSp4-eigenform, then ρ1 is associated with a
classical cuspidal GL2-eigenform.

Proof. Suppose that ρ2 is associated with an overconvergent cuspidal GSp4-eigenform F . Now ρ2

is trianguline by Proposition 3.2(i), so Proposition 3.7 implies that the representation ρ1 is either
trianguline or the twist by a character of a de Rham representation. Thanks to assumptions (2)
and (3) we can apply [Eme14, Theorem 1.2.4(2)] to deduce that ρ1 is a twist of a representation
associated with a cuspidal overconvergent GL2-eigenform. A study of the Hodge–Tate–Sen weights
of ρ1 and ρ2 shows that the twist occurring here can be taken to be trivial, giving conclusion (i).

We prove conclusion (ii). Since ρ2 is associated with a classical cuspidal GSp4-eigenform, it is
a de Rham representation. Then Proposition 3.6 implies that ρ1 is also a de Rham representation
up to a twist by a character. As in the previous paragraph, we conclude that ρ1 is attached to
a classical cuspidal GL2-eigenform from [Eme14, Theorem 1.2.4(1)] and a study of the Hodge–
Tate–Sen weights of ρ1 and ρ2. 2

Corollary 3.9. If ρ1, ρ2 satisfy the assumptions of Theorem 3.8 and ρ2 is associated with a
classical cuspidal GSp4-eigenform F , then there exists a GL2-eigenform f such that F is the
symmetric cube lift Sym3 f given by Corollary 9.2.

Proof. The representation ρ1 is attached to a classical cuspidal GL2-eigenform f by
Theorem 3.8(ii). Then ρ2 is the p-adic Galois representation attached to the form Sym3 f .
We conclude that F = Sym3 f . 2

3.3 A big image result for classical GSp4-eigenforms
In the following definitions, let E be a finite extension of Qp. Let R be a local ring with maximal
ideal mR and residue field F. Let τ : GE → GSp4(R) be a representation. Let PGSp4(R) =
GSp4(R)/R×, whereR× is identified with the subgroup of scalar matrices. We denote by τ : GE→
GSp4(F) the reduction of τ modulo mR. Recall that T2 is the torus consisting of diagonal matrices
in GSp4. We give a notion of Zp-regularity of τ , analogous to that in [HT15, Lemma 4.5(2)].

Definition 3.10. We say that τ is Zp-regular if there exists d ∈ Im τ ∩T2(Zp) with the following
property: if α and α′ are two distinct roots of GSp4, then α(d) 6= α′(d) (mod mR). If d has
this property we call it a Zp-regular element.

From now on we focus on representations that are either ‘residually full’ or ‘residually of
symmetric cube type’, in the sense of the following definition. Note that these two types
of representations appear in [Pil12, § 5.8] as examples of those for which Pilloni can construct a
sequence of Taylor–Wiles primes.

Definition 3.11. We say that τ is:

(i) residually full if there exists a non-trivial subfield F′ of F and an element g ∈ GSp4(F) such
that

Sp4(F′) ⊂ g(Im τ)g−1 ⊂ GSp4(F′);
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(ii) residually of symmetric cube type if there exist a non-trivial subfield F′ of F and an element
g ∈ GSp4(F) such that

Sym3 SL2(F′) ⊂ g(Im τ)g−1 ⊂ Sym3 GL2(F′).

We also say that τ is full in case (i) and of symmetric cube type in case (ii).

We write sp4(K) for the Lie algebra of Sp4(K) and Ad: GSp4(K)→ End(sp4(K)) for the
adjoint representation. Let F and ρF,p : GQ → GSp4(OK) be as in the beginning of the section.
Let E be the subfield of K generated over Qp by the set {Tr(Ad(ρ(g)))}g∈GQ . Let OE be the
ring of integers of E. For a GL2-eigenform f , we denote by ρf,p the associated p-adic Galois
representation. We will prove the following result.

Theorem 3.12. Assume that ρF,p is Zp-regular and that one of the following two conditions is
satisfied:

(i) ρF,p is residually full;

(ii) F is not a p-stabilization of the symmetric cube lift of a GL2-eigenform, defined by
Corollary 9.2, and ρF,p satisfies the assumptions (∗∗ρF,p).

Then the image of ρF,p contains a principal congruence subgroup of Sp4(OE).

For use in the proof of Theorem 3.12 we state a result of Pink.

Theorem 3.13 [Pin98, Theorem 0.7]. Let L be a local field and let H be an absolutely simple
connected adjoint group over L. Let Γ be a compact Zariski-dense subgroup of H(L). Suppose
that the adjoint representation of Γ is irreducible. Then there exists a closed subfield E of L and
a model HE of H over E such that Γ is an open subgroup of HE(E).

We also need the following lemma, that results from an application of Theorem 5.12. We refer
to [Con16, Lemma 3.11.5] for a detailed proof.

Lemma 3.14. Let G be a profinite group and let G1 be a normal open subgroup of G. Let L be
a field. Let τ : G → GSp4(L) be a continuous representation. Suppose that:

(i) there exists a representation τ ′1 : G1→ GL2(L) such that τ |G1
∼= Sym3 τ ′1;

(ii) the image of τ ′1 contains a principal congruence subgroup of SL2(L);

(iii) there exists a character η : G → L× such that det τ ∼= η6.

Then there exists a finite extension ι : L ↪→ L′ and a representation τ ′ : G → GL2(L′) such that
ι◦ τ ∼= Sym3 τ ′.

The rest of the section is devoted to the proof of Theorem 3.12. Let (Im ρF,p)
′ be the derived

subgroup of Im ρF,p and let G = (Im ρF,p) ∩ Sp4(K). We denote by G the Zariski-closure of G
in Sp4(K). As in [HT15, § 3], we will show first that under the hypotheses of Theorem 3.12 we
have G = Sp4(K), and second that G is p-adically open in G. We will replace the ordinarity
assumption in [HT15, § 3] by that of Zp-regularity. Let G

◦ denote the connected component of
the identity in G.

Let H be any connected, Zariski-closed subgroup of Sp4, defined over K. As in [HT15, § 3.4],
we have six possibilities for the isomorphism class of H over K:
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(i) H ∼= Sp4;
(ii) H ∼= SL2×SL2;

(iii) H ∼= SL2 embedded in a Klingen parabolic subgroup;
(iv) H ∼= SL2 embedded in a Siegel parabolic subgroup;
(v) H ∼= SL2 embedded via the symmetric cube representation SL2→ Sp4 (in this case we write

H ∼= Sym3 SL2);
(vi) H ∼= {1}.

We show that only choice (i) is possible for H = G
◦.

Lemma 3.15. If condition (i) or (ii) in Theorem 3.12 holds, then G
◦ ∼= Sp4.

Proof. Let mK be the maximal ideal of OK and let FK = OK/mK . The group (Im ρF,p)
′ is

contained in G◦(OK). By reducing modulo mK we obtain that the derived subgroup (Im ρF,p)
′ of

Im ρF,p is contained in G◦(FK). If ρF,p is residually full, then the only choice for the isomorphism
class of G◦ is G◦ ∼= Sp4. If ρF,p is residually of symmetric cube type, then either G◦ ∼= Sp4 or
G
◦ ∼= Sym3 SL2.
Suppose that G◦ ∼= Sym3 SL2. We show that there exists a GL2-eigenform f such that

ρF,p ∼= Sym3 ρf,p. This will contradict the second part of condition (ii) of Theorem 3.12, concluding
the proof of Lemma 3.15. As G◦(K) is of finite index in G(K), Lemma 3.14 implies that G(K) ⊂
Sym3 SL2(K), so Im ρF,p ⊂ Sym3 GL2(K). Hence, there exists a representation ρ′ satisfying
ρF,p ∼= Sym3 ρ′. As ρF,p is associated with a GSp4-eigenform, Corollary 3.9 implies that ρ′ is
associated with a GL2-eigenform f . 2

We equip all groups with their p-adic topology. The proof of Theorem 3.12 is completed by
the following proposition.

Proposition 3.16. Suppose that G ∼= Sp4(K). Then the group G contains an open subgroup
of Sp4(E).

Proof. Consider the image Gad of G under the projection Sp4(K)→ PGSp4(K). It is a compact
subgroup of PGSp4(K). Since G ∼= Sp4(K), the group Gad is Zariski-dense in PGSp4(K). By
Theorem 3.13 there is a model H of PGSp4 over E such that Gad is an open subgroup of H(E).
By the assumption of Zp-regularity of ρ, there is a diagonal element d with pairwise distinct
eigenvalues. The group H(E) must contain the centralizer of d in PGSp4(E), which is a split
torus in PGSp4(E). As H is split and H ×E K ∼= PGSp4/K , H is a split form of PGSp4 over E.
Then H must be isomorphic to PGSp4 over E by unicity of the quasi-split form of a reductive
group. Hence, Gad is an open subgroup of PGSp4(E). As the map Sp4(K) → PGSp4(K) has
degree 2 and G ∩ Sp4(E) surjects onto Gad ∩ PGSp4(E), G must contain an open subgroup of
Sp4(E). In particular, G contains a principal congruence subgroup of Sp4(OE). 2

Theorem 3.12 states that, when ρF,p is either full or of symmetric cube type, the image of ρF,p
is large if and only if F is not a lift of an eigenform from a smaller group, the only possible such
lift under these assumptions being associated with the symmetric cube representation of GL2.
We think that a similar result should hold under more general assumptions on the residual
representation, and that it would follow from Pink’s theorem together with an analogue of
Corollary 3.9 for the other possible Langlands lifts to GSp4.
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4. Finite slope families of GSp2g-eigenforms

In this section, we define families of finite slope GSp2g-eigenforms of level Γ1(N)∩Γ0(p),
extending the definitions given in [CIT16, § 3.1] for g = 1. Our goal is to define such families
integrally. In the following sections, we only use families of genus 1 or 2, but we can give the
definitions for general genus with no extra effort.

Let p be a prime number and let N be a positive integer prime to p. For g > 1 let DN,hg

be the GSp2g-eigenvariety of tame level Γ1(N). Let h ∈ Q+,×. As the slope sl : DNg (Cp) → R>0

is the valuation of a rigid analytic function on DNg , the locus of Cp-points x ∈ DNg satisfying
sl(x) 6 h admits a structure of rigid analytic subvariety of DNg . We denote it by DN,hg . We write
whg for the restriction of the weight map to DN,hg . Recall that we always identify the g-dimensional
weight space Wg with a disjoint union of open discs of centre 0 and radius 1. A standard way
to obtain an integral structure on an admissible domain of an eigenvariety is to pull back the
integral structure on the weight space via the weight map. The restriction of the weight map
to DN,hg is not, in general, finite if h > 0, but it becomes finite when restricted to a sufficiently
small admissible domain in DN,hg . This is assured by a result of Bellaïche that we recall in the
following proposition. For every affinoid subdomain V of W◦g , let D

N,h
g,V = DN,hg ×W◦g V and let

whg,V = whg |DN,hg,V
: DN,hg,V → V .

Proposition 4.1 (Bellaïche [Bel12]).

(i) For every κ ∈ W◦g (Qp) there exists an affinoid neighborhood Vh,κ of κ in W◦g such that the

map whg,Vh,κ is finite.

(ii) When h varies in Q+,× and κ varies in W◦g , the set {(whg,Vh,κ)−1(Vh,κ)}h,κ is an admissible

affinoid covering of DNg .

In Bellaïche’s terminology, a pair (Vh,κ, h) such that Vh,κ has the property described in part (i)
is called an adapted pair. Part (i) of Proposition 4.1 follows from the fact that the characteristic
power series of U (2)

p acting on modules of overconvergent eigenforms is strictly convergent, in
particular from the calculation in [Bel12, Proposition II.1.12] and the fact that the map from
the eigenvariety to the spectral variety is finite. Part (ii) follows from part (i) together with
the admissibility of Buzzard’s covering of the spectral variety [Buz07, Theorem 4.6] and the
construction of the eigenvariety (see [Bel12, Theorem II.3.3]).

Remark 4.2. (i) By Proposition 4.1 there exists a radius rh,κ ∈ pQ such that

wh
g,Bg(κ,r−h,κ)

: DN,h
g,Bg(κ,r−h,κ)

→ Bg(κ, r
−
h,κ)

is a finite morphism. By the results of Hida theory for GSp2g, we can take r0,κ = 1 for every κ.
(ii) We would like to have an estimate for rh,κ independent of κ and with the property

that rh,κ → 1 for h → 0, to recover the ordinary case in this limit. This is not available at
the moment for the group GSp2g. An estimate of the analogue of this radius is known for the
eigenvarieties associated with unitary groups compact at infinity by the work of Chenevier [Che04,
Théorème 5.3.1].
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4.1 Families defined over Zp

For our purpose of studying the images of Galois representations, we will need to have our
finite slope families defined over Zp. For this reason we specialize to families over weight discs for
which we can construct a Zp-model. For simplicity we only work on the connected componentW◦g .
Recall that we defined coordinates T1, T2, . . . , Tg onW◦g . Let κ be a point ofW◦g with coordinates
(κ1, κ2, . . . , κg) in Zgp; for instance, we can take as κ the arithmetic prime Pk for some k ∈ Zg.
Let rh,κ be the largest radius in pQ such that the map wκ,Bg(κ,r−h,κ) : DN,h

g,Bg(κ,r−h,κ)
→ Bg(κ, r

−
h,κ) is

finite. Such a radius is non-zero thanks to Remark 4.2(i). Let sh be a rational number satisfying
rh = psh . We define a model for Bg(κ, r−h ) over Qp by adapting Berthelot’s construction for the
wide open unit disc (see [deJ95, § 7]). Write sh = b/a for some a, b ∈ N. For i > 1, let si = sh+1/2i

and ri = p−si . Set

A◦ri = Zp〈t1, t2, . . . , tg, Xi〉/(t2
ia
j − pa+2ibXi)j=1,2,...,g

and Ari = A◦ri [p
−1]. Set Bi = SpmAri . Then Bi is a Qp-model of the disc of centre κ and radius ri.

We define morphisms A◦ri+1
→ A◦ri by

Xi+1 7→ paX2
i ,

tj 7→ tj for j = 1, 2, . . . , g.

They induce compact maps Ari+1 → Ari which give open immersions Bi ↪→ Bi+1. We define
Bg,h = lim−→i

Bi where the limit is taken with respect to the above immersions. Let Λg,h =O(Bg,h)◦.
Then Λg,h = lim

←−iO(SpmBi)
◦ = lim
←−iA

◦
ri . We call Λg,h the genus g, h-adapted Iwasawa algebra;

we leave its dependence on κ implicit. We define t1, t2, . . . , tg ∈ Λg,h as the projective limits of
the variables t1, t2, . . . , tg, respectively, of A◦ri .

There is a map of Zp-algebras ι∗g,h : Λg→ Λg,h defined by Tj 7→ tj +κj for j = 1, 2, . . . , g. The
inclusion ιg,h : Bg,h ↪→ W◦g induced by ι∗g,h makes Bg,h into a Qp-model of Bg(κ, r−h ), endowed
with the integral structure defined by Λg,h.

Let ηh be an element of Qp satisfying vp(ηh) = sh. Let Kh = Qp(ηh) and let Oh be the ring of
integers of Kh. The algebra Λg,h is not a ring of formal series over Zp, but there is an isomorphism
Λg,h ⊗Zp Oh ∼= Oh[[t1, t2, . . . , tg]].

We say that a prime of Λg,h is arithmetic if it lies over an arithmetic prime of Λg. By an
abuse of notation we will write again Pk for an arithmetic prime of Λg,h lying over the arithmetic
prime Pk of Λg.

Remark 4.3. Let k = (k1, k2, . . . , kg) be a cohomological weight for GSp2g. There exists a prime
P of Λg,h lying over the prime Pk of Λg if and only if the classical weight k belongs to the disc
Bg(0, r

−
h ); otherwise, we have PkΛg = Λg. This happens if and only if vp(ki) > −vp(rh) − 1 for

i = 1, 2, . . . , g, as we can see via a simple calculation.

Let DNg,h be the rigid analytic space fitting in the following Cartesian diagram.

DNg,h //

��

DN,hg

whg

��
Bg,h

ιg,h //W◦g

(5)
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The rigid analytic space DNg,his a model of DN,h
g,Bg(κ,r−h,κ)

over a p-adic field, but it is not necessarily

defined over Qp since the map ιg,h may not be. We say that a Cp-point of DNg,h is classical if it is
a classical point of DN,h

g,Bg(κ,r−h,κ)
.

Let Tg,h = O(DNg,h)◦. We call Tg,h the genus g, h-adapted Hecke algebra; we leave its
dependence on κ implicit again. The weight map induces a morphism wg,h : DNg,h → Bg,h, hence
a morphism w∗g,h : Λg,h → Tg,h. Thanks to our choice of rh, w∗g,h gives Tg,h a structure of finite
Λg,h-algebra. The DNg,h→ D

N,h
g appearing in the diagram induces a map O(DN,hg )◦→ Tg,h, that

we compose with ψg : HNg → O(DN,hg )◦ to obtain a morphism ψg,h : HNg → Tg,h.
For a prime P of Tg,h, we denote by evP : Tg,h → Zp the evaluation at P. We say that P is

a classical point of SpecTg,h if evP ◦ψg,h : HNg → Zp is the system of Hecke eigenvalues attached
to a classical GSp2g-eigenform. These systems of eigenvalues also appear at classical points of
DNg,h.

Definition 4.4. We call the family of GSp2g-eigenforms of slope bounded by h an irreducible
component I of DNg,h, equipped with the integral structure defined by Tg,h.

We will usually refer to an I as in Definition 4.4 simply as a finite slope family. Let I◦ = O(I).
Then I◦ is a finite Λg,h-algebra that is also profinite and local. The component I is determined by
the surjective morphism θ : Tg,h� I◦. We sometimes refer to θ as a finite slope family. The family
I is equipped with maps wθ : I → Bg,h and ψθ : HNg → I◦ induced by wg,h and ψg,h, respectively.
Here ◦ denotes the fact that we are working with integral objects. When introducing relative Sen
theory in § 7, we will need to invert p and we will drop the ◦ from all rings.

Proposition 2.2 implies that every family I contains at least a classical point. By the
accumulation property of classical point and the irreducibility of I, the classical points are
a Zariski-dense subset of I. Hence, the set of classical points of Spec I◦ is Zariski-dense in
Spec I◦. Every classical point of Spec I◦ lies over an arithmetic prime of Spec Λg,h. For a family
θ : Tg,h→ I◦, we give the following.

Definition 4.5. We call an arithmetic prime Pk ⊂ Λg,h non-critical for I◦ if:

(i) every point of Spec I◦ lying over Pk is classical;
(ii) the map w∗g,Bg,h : Λg,h→ I◦ is étale at every point of Spec I◦ lying over Pk.

We call Pk critical for I◦ if it is not non-critical. We also say that a classical weight k is critical
or non-critical for I◦ if the arithmetic prime Pk has that property.

Remark 4.6. (i) By Proposition 2.2, if k is a classical weight belonging to Bg,h and h < kg −
g(g + 1)/2 then k satisfies condition (i) of Definition 4.5. We do not know of a simple assumption
on the weight that guarantees that the second condition is also satisfied.

(ii) The set of non-critical arithmetic primes is Zariski-dense in Λg,h. This follows from part (i)
of the remark and the fact that the locus of étaleness of the morphism Λg,h→ I◦ is Zariski-open
in I◦.

4.2 The Galois representation associated with a finite slope family
Let κ be a point of W◦g with Zp-coordinates. Let T2,h be the genus 2, h-adapted Hecke
algebra of centre κ. As before, we will leave the dependence on κ implicit. For simplicity, let
Λh = Λ2,h, Th = T2,h. We implicitly replace Th by one of its local components. Let θ : Th→ I◦ be
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a finite slope family of GSp4-eigenforms. Let FTh be the residue field of Th. The pseudocharacter
T2 : GQ → O(DN2 )◦ induces pseudocharacters TTh : GQ → Th and TTh : GQ → FTh . By [Rou96,
Corollary 5.2] the pseudocharacter TTh is associated with a representation ρTh : GQ→ GL4(Fp),
unique up to isomorphism. We call ρTh the residual Galois representation associated with Th.
We assume from now on that

the representation ρTh is absolutely irreducible.

By the compactness of GQ there exists a finite extension F′ of FTh such that ρTh is defined
on F′. Let W (FTh) and W (F′) be the rings of Witt vectors of FTh and F′, respectively. Let
T′h = Th⊗W (FTh )W (F′). We consider TTh as a pseudocharacter GQ→ T′h via the natural inclusion
Th ↪→ T′h. Then TTh satisfies the hypotheses of [Rou96, Corollary 5.2], so there exists a
representation ρT′h : GQ→ GL4(T′h) such that TrρT ′h = TTh . By Proposition 2.5, for every prime
` not dividing Np we have

Tr(TTh)(Frob`) = ψ2(T
(2)
`,2 )|DM,h2,Bh

. (6)

In particular, Tr(TTh)(Frob`) is an element of Th. As Th is complete, Chebotarev’s theorem
implies that TTh(g) is an element of Th for every g ∈ GQ. By a theorem of Carayol [Car94,
Théorème 1] there exists a representation ρTh : GQ→ GL4(Th) that is isomorphic to ρTh over T′h.

The morphism θ : Th → I◦ induces a morphism GL4(Th) → GL4(I◦) that we still denote
by θ. Let ρI◦ : GQ → GL4(I◦) be the representation defined by ρI◦ = θ◦ ρTh . Recall that we set
ψθ = θ(ψ2|DM,h2,Bh

) : HM2 → I◦. Let

I◦Tr = Λh[{Tr(ρθ(g))}g∈GQ ].

As Λh ⊂ I◦Tr ⊂ I◦, the ring I◦Tr is a finite Λh-algebra. In particular, I◦Tr is complete. We keep our
usual notation for the reduction modulo an ideal P of I◦Tr. We say that a point P of Spec I◦Tr is
classical if it lies under a classical point of Spec I◦.

By Proposition 2.5 we have Pchar(Tr(ρI◦))(Frob`) = ψθ(Pmin(t
(2)
`,2 ;X)), so we deduce that

I◦Tr = Λh[{Tr(ρθ(g))}g∈GQ ]. As the traces of ρI◦ belong to I◦Tr, another application of Carayol’s
theorem [Car94, Théorème 1] provides us with a representation

ρθ : GQ→ GL4(I◦Tr)

that is isomorphic to ρI◦ over I◦. Thanks to the following lemma we can attach to θ a symplectic
representation.

Lemma 4.7. There exists a non-degenerate symplectic bilinear form on (I◦Tr)
4 that is preserved

up to a scalar by the image of ρθ.

Proof. The argument of the proof is similar to that in [GT05, Lemma 4.3.3] and [Pil12,
Proposition 6.4]. We show that ρθ is essentially self-dual by interpolating the characters
that appear in the essential self-duality conditions at the classical specializations. We deduce that
Im ρθ preserves a bilinear form on (I◦Tr)

4 up to a scalar. Such a form is non-degenerate by
the irreducibility of ρθ and it is symplectic because its specialization at a classical point is
symplectic. 2
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Thanks to the lemma, up to replacing ρθ by a conjugate representation, we can suppose that
it takes values in GSp4(I◦Tr). We call ρθ : GQ → GSp4(I◦Tr) the Galois representation associated
with the family θ : Th → I◦Tr. In the following, we work mainly with this representation, so we
denote it simply by ρ. We write F for the residue field of I◦Tr and ρ : GQ → GSp4(F) for the
residual representation associated with ρ.

Remark 4.8. Let ε be the Nebentypus of the family θ. By interpolating the determinants of the
classical specializations of ρ, we obtain

det ρ(g) = ε(g)(u−3(1 + T1)(1 + T2))2 log(χ(g))/log(u) ∈ Λ2,h

for every g ∈ GQ.

5. Conjugate self-twists of Galois representations attached to finite slope families

Given a ring R, we denote by Q(R) its total ring of fractions and by Rnorm its normalization.
Now let R be an integral domain. For every homomorphism σ : R→ R and every γ ∈ GSp4(R),
we define γσ ∈ GSp4(R) by applying σ to each coefficient of the matrix γ. This way σ induces a
group automorphism [·]σ : G(R)→ G(R) for every algebraic subgroup G ⊂ GSp4 defined over R.
For such a G and any representation ρ : GQ→ G(R), we define a representation ρσ : GQ→ G(R)
by setting ρσ(g) = (ρ(g))σ for every g ∈ GQ.

Let S be a subring of R. We say that a homomorphism σ : R→ R is a homomorphism of R
over S if the restriction of σ to S is the identity. The following definition is inspired by [Rib85,
§ 3] and [Lan16, Definition 2.1].

Definition 5.1. Let ρ : GQ → GSp4(R) be a representation. We call conjugate self-twist
for ρ over S an automorphism σ of R over S such that there is a finite-order character
ησ : GQ→ R× and an isomorphism of representations over R:

ρσ ∼= ησ ⊗ ρ. (7)

We list some basic facts about conjugate self-twists. The proofs are straightforward.

Proposition 5.2. Let ρ : GQ→ GSp4(R) be a representation.

(i) The conjugate self-twists for ρ over S form a group.

(ii) Suppose that the identity of R is not a conjugate self-twist for ρ over S. Then for every
conjugate self-twist σ the character ησ satisfying the equivalence (7) is uniquely determined.

(iii) Under the same hypotheses as part (ii), the association σ 7→ ησ defines a cocycle on the
group of conjugate self-twists with values in R×.

(iv) Let S[Tr Ad ρ] denote the ring generated over S by the set {Tr(Ad(ρ)(g))}g∈GQ . Then every
element of S[Tr Ad ρ] is fixed by all conjugate self-twists for ρ over S.

Let θ : Th→ I◦ be a family of GSp4-eigenforms as defined in § 4. Let ρ : GQ→ GSp4(I◦Tr) be
the Galois representation associated with θ. Recall that I◦Tr is generated over Λh by the traces of ρ.
We always assume that ρ is absolutely irreducible. Let Γ be the group of conjugate self-twists for
ρ over Λh. We omit the reference to Λh from now on and we just speak of the conjugate self-twists
for ρ.

Remark 5.3. An argument completely analogous to that of [Lan16, Proposition 7.1] proves that
the only possible prime factors of the order of Γ are 2 and 3.

We denote by I◦0the subring (I◦Tr)
Γ of I◦Tr consisting of the elements fixed by every σ ∈ Γ.
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5.1 Lifting conjugate self-twists from classical points to families
Keep the notation as above. Let Pk ⊂ Λh be any non-critical arithmetic prime, as in
Definition 4.5. The representation ρ can be reduced modulo PkI◦Tr to a representation ρPk : GQ→

GSp4(I◦Tr/PkI◦Tr). Let σ̃ ∈ Γ and let η̃ : GQ → (I◦Tr)
× be the character associated with σ̃. The

automorphism σ̃ induces a ring automorphism σ̃Pk of I◦Tr/PkI◦Tr. The character η̃ : GQ → I◦Tr

induces a character η̃Pk : GQ→ (I◦Tr/PkI◦Tr)
×, satisfying

ρ
σ̃Pk
Pk
∼= η̃Pk ⊗ ρPk . (8)

As Pk is non-critical, I◦ is étale over Λh at Pk, so I◦Tr is also étale over Λh at Pk. In
particular, Pk is a product of distinct primes in I◦Tr; denote them by P1,P2, . . . ,Pd. As
σ̃Pk is an automorphism of I◦Tr/PkI◦Tr

∼=
∏d
i=1 I◦Tr/Pi, there is a permutation s of the set

{1, 2, . . . , d} and isomorphisms σ̃Pi : I◦Tr/Pi → I◦Tr/Ps(i) for i = 1, 2, . . . , d such that σ̃|I◦Tr/Pi

factors through σ̃Pi . The character η̃σ̃Pk can be written as a product
∏d
i=1 η̃Pi for some characters

η̃Pi : GQ→ (I◦Tr/Pi)
×. From the equivalence (8), we deduce that

ρ
σ̃Pi
Pi
∼= η̃Ps(i) ⊗ ρPs(i) .

The goal of this subsection is to prove that if we are given, for a single value of i, data s(i), σ̃Pi
and η̃Pi satisfying the isomorphism above, then there exists an element of Γ giving rise to
σ̃Pi and η̃Psi via reduction modulo Pk. This result is an analogue of [Lan16, Theorem 3.1].
We state it precisely in the following proposition.

Proposition 5.4. Let i, j ∈ {1, 2, . . . , d}. Let σ : I◦Tr/Pi → I◦Tr/Pj be a ring isomorphism and
let ησ : GQ→ (I◦Tr/Pj)

× be a character satisfying

ρσPi
∼= ησ ⊗ ρPj . (9)

Then there exists σ̃ ∈ Γ with associated character η̃ : GQ→ (I◦Tr)
× such that, via the construction

of the previous paragraph, s(i) = j, σ̃Pi = σ and η̃Pj = ησ.

To prove the proposition, we first lift σ to an automorphism Σ of a deformation ring for ρ
and then we show that Σ descends to a conjugate self-twist for ρ. This strategy is the same as
that of the proof of [Lan16, Theorem 3.1], but there are various complications that have to be
taken care of. We refer to [Con16, § 4.4] for the technical lemmas that generalize Lang’s result,
and we report here only the core elements of the proof.

Before proving Proposition 5.4 we give a corollary. Let P ∈ {P1,P2, . . . ,Pd}. Let ρP : GQ→

GSp4(I◦Tr/P) be the reduction of ρ modulo P and let ΓP be the group of conjugate self-twists
for ρP over Zp. Let Γ(P) = {σ ∈ Γ |σ(P) = P}. The reduction of the elements of Γ(P) modulo
P defines a morphism of groups Γ(P) → ΓP. Choosing Pi = Pj = P in Proposition 5.4 gives
the following result.

Corollary 5.5. The morphism Γ(P)→ ΓP is surjective.

5.1.1 Lifting conjugate self-twists to the deformation ring. We keep the notation of the
beginning of this section. We write η = ησ for simplicity. Let QNp denote the maximal extension
of Q unramified outside Np and set GNpQ = Gal(QNp/Q). Then we can and do consider ρ and η
as representations of GNpQ by Proposition 2.5 and (9).
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Recall that we denote by mI◦Tr
the maximal ideal of I◦Tr and by F the residue field I◦Tr/mTr◦ .

Let W be the ring of Witt vectors of F. The residual representation ρ : GNpQ → GL4(F) is
absolutely irreducible by assumption. By the results of [Maz89], the problem of deforming ρ to a
representation with coefficients in a Noetherian W -algebra is represented by a universal couple
(Rρ, ρ

univ) consisting of a NoetherianW -algebra Rρ and a representation ρuniv : GNpQ → GL4(Rρ).
By the universal property of Rρ, there exists a unique morphism ofW -algebras αI : Rρ→ I◦Tr

satisfying ρ ∼= αI◦ ρuniv. Let evi : I◦Tr → I◦Tr/Pi and evj : I◦Tr → I◦Tr/Pj be the two projections.
The following proposition follows from arguments completely analogous to those of [Lan16, § 3.1].
The details of the proof can be found in [Con16, § 4.4.1].

Proposition 5.6.

(i) The automorphism σ of F is trivial.

(ii) There is an isomorphism ρ ∼= η ⊗ ρ.

(iii) There exists an automorphism Σ of Rρ such that:

(a) Σ is a lift of σ in the sense that σ◦ evi ◦ αI = evj ◦ αI◦Σ;

(b) Σ◦ ρuniv = η◦ ρuniv.

We set ρΣ = αI◦Σ◦ ρuniv. Recall that ρ is the Galois representation associated with the
finite slope family θ. Our next step consists of showing that ρΣ is associated with a family of
GSp4-eigenforms of a suitable tame level and slope bounded by h. Note that equality (b) in
Proposition 5.6(iii) implies ρΣ ∼= η ⊗ ρ, so it is sufficient to show that the representation η ⊗ ρ is
associated with a family with the prescribed properties.

5.1.2 Twisting families by finite-order characters. We show that the twist of the Galois
representation associated with a family of GSp4-eigenforms is again associated with such a family.
We deduce this by the analogous result for a single classical Siegel eigenform, proved in [Con16,
§ 4.5].

Let f be a cuspidal GSp4-eigenform of weight (k1, k2) and level Γ1(M) and let ρf,p : GQ →

GSp4(Qp) be the p-adic Galois representation attached to f . Let η : GQ→ Q×p be a character of
finite order m0 prime to p. We see η as a Dirichlet character when convenient.

Proposition 5.7 [Con16, Corollary 4.5.5]. Let M ′ = lcm(m0,M)2. Let x be a classical p-old

point of DM2 having weight (k1, k2), slope h and associated Galois representation ρx. Then there

exists a classical p-old point xη of DM ′2 having weight (k1, k2), slope h and associated Galois

representation ρxη = η ⊗ ρx.

We remark that the proof relies on the calculations made by Andrianov in [And09, § 1]. He
only considers the case k1 = k2, but his work is easily adapted to vector-valued forms.

Now consider the family θ : Th → I◦ fixed in the beginning of the section. For every p-old
classical point x of θ, let xη be the point of the eigenvariety DM

′
2 provided by Proposition 5.7. Let

r′h be a radius adapted to h for the eigenvariety DM ′2 . Let Λ′h be the genus 2, h-adapted Iwasawa
algebra for DM ′2 and let T′h be the genus 2, h-adapted Hecke algebra of level M ′. Note that
r′h 6 rh, so there is a natural map ιh : Λh→ Λ′h. All tensor products with Λ′h over Λh will be taken
with respect to ιh. We can see ρθ as an I◦Tr ⊗̂Λh Λ′h-valued representation via I◦Tr → I◦Tr ⊗̂Λh Λ′h,

a 7→ a⊗ 1. We do this implicitly in the following.
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Lemma 5.8. There exists a finite Λ′h-algebra J◦, a family θ′ : T′h → J◦ and an isomorphism
α : I◦Tr ⊗̂Λh Λ′h → J◦Tr such that the representation ρθ′ : GQ → GSp4(J◦Tr) associated with θ′

satisfies ρθ′ ∼= η ⊗ (α◦ ρθ).

Remark 5.9. With the notation of the proof of Lemma 5.8, all points of the set S′η belong to the
family θ′, because of the unicity of a point of DM ′2 given its associated Galois representation and
slope.

By combining Lemma 5.8 and Proposition 5.6(iii) we obtain the following.

Corollary 5.10. There exists a finite Λ′h-algebra J◦, a family θ′ : T′h→ J◦ and an isomorphism
α : I◦Tr ⊗̂Λh Λ′h → J◦Tr such that the representation ρθ′ : GQ → GSp4(J◦Tr) associated with θ′

satisfies ρθ′ ∼= α◦Σ◦ ρuniv.

5.1.3 Descending to a conjugate self-twist of the family. We show that the automorphism
Σ of Rρ defined in the previous subsection induces a conjugate self-twist for ρ. This will prove
Proposition 5.4. Our argument is an analogue for GSp4 of that in the end of the proof of [Lan16,
Theorem 3.1]; it also appears in similar forms in [Fis02, Proposition 3.12] and [DG12, Proposition
A.3]. Here the non-criticality of the prime Pk plays an important role.

Proof of Proposition 5.4. Let ρ : GQ → GSp4(F) be the residual representation associated with
ρ. Let Rρ be the universal deformation ring associated with ρ and let ρuniv be the corresponding
universal deformation. As before let αI : Rρ → I◦Tr be the unique morphism of W -algebras
αI : Rρ→ I◦Tr satisfying ρ ∼= αI◦ ρuniv.

Consider the morphism of W -algebras αΣ
I = αI◦Σ: Rρ→ I◦Tr. We show that there exists an

automorphism σ̃ : I◦Tr→ I◦Tr fitting in the following commutative diagram.

Rρ
αI //

Σ
��

I◦Tr

σ̃
��

Rρ
αΣ
I // I◦Tr

(10)

We use the notation of the discussion preceding Lemma 5.8. Consider the morphism
θ ⊗ 1: Th ⊗̂Λh Λ′h → I◦ ⊗̂Λh Λ′h. For every Λh-algebra A we denote again by ιh the map A →
A ⊗̂Λh Λ′h, a 7→ a⊗1. The natural inclusion DM2 ↪→ DM ′2 induces a surjection sh : T′h→ Th ⊗̂Λh Λ′h.
We define a family of tame level Γ1(M ′) and slope bounded by h by

θM
′

= (θ ⊗ 1)◦ sh : T′h→ I◦ ⊗̂Λh Λ′h.

The Galois representation associated with θM
′ is ρθM′ = ιh◦ ρ : GQ → GSp4(I◦Tr ⊗̂Λh Λ′h). Let

θ′ : T′h → J◦ be the family given by Corollary 5.10. We identify I◦Tr ⊗̂Λh Λ′h with J◦Tr via the
isomorphism α given by the same corollary; in particular, the Galois representation associated
with θ′ is ρθ′ = ρΣ : GQ→ GSp4(I◦Tr ⊗̂Λh Λ′h).

Recall that we are working under the assumptions of Proposition 5.4. In particular, we are
given two primes Pi and Pj of I◦Tr, an isomorphism σ : I◦Tr/Pi → I◦Tr/Pj and a character
ησ : GQ → (I◦Tr/Pj)

× such that ρσPi
∼= ησ ⊗ ρPj . Let P′i be the image of Pi via the map

ιh : I◦Tr→ I◦Tr ⊗̂Λh Λ′h. The specialization of ρθM′ atP
′
i is ρPi . Let f

′ be an eigenform corresponding
toP′i. By Remark 5.9, there is a point of the family θ′ corresponding to the twist of f by η; letP′i,η

798

https://doi.org/10.1112/S0010437X19007048 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007048


Galois level and congruences for symplectic groups

be the prime of I◦Tr ⊗̂Λh Λ′h defining this point. The specialization of ρθ′ at P′i,η is η⊗ ρPi , which
is isomorphic to ρσPi by assumption. Let f ′η be an eigenform corresponding to the prime P′i,η. The
forms f ′ and f ′η have the same slope by Proposition 5.7 and their associated representations are
obtained from one another via Galois conjugation (given by the isomorphism σ). Hence, f ′ and
f ′η define the same point of the eigenvariety DM ′2 . Such a point belongs to both the families θM ′

and θ′. As Pk is non-critical, T′h is étale at every point lying over Pk, so the families θM ′ and θ′

must coincide. This means that there is an isomorphism

σ̃′ : I◦Tr ⊗̂Λh Λ′h
∼−→ I◦Tr ⊗̂Λh Λ′h

such that ρθ′ = σ̃′◦ ρM ′ . The isomorphism σ̃′ induces by restriction an isomorphism
Λ′h[Tr(ρM

′
)]→ Λ′h[Tr(ρθ′)]. Note that Λ′h[Tr(ρM

′
)] = ιh(I◦Tr) and

Λ′h[Tr(ρθ′)] = Λ′h[Tr(σ̃′◦ ρM ′)] = σ̃′(Λ′h[Tr(ρM
′
)])

= σ̃′(Λ′h[Tr(ιh◦ ρ)]) = σ̃′(ιh(Λh[Trρ])) = σ̃′(ιh(I◦Tr)).

In particular, σ̃′ induces by restriction an isomorphism ιh(I◦Tr)
∼= ιh(I◦Tr). As ιh is injective, we

can identify σ̃′ with an isomorphism σ̃ : I◦Tr→ I◦Tr. By construction, σ̃ fits in diagram (10). 2

5.2 Rings of conjugate self-twists for representations attached to classical eigenforms
Let f be a classical GSp4-eigenform and ρf,p : GQ→ GSp4(Qp) the p-adic Galois representation
associated with f . Up to replacing ρf,p with a conjugate we can suppose that it has coefficients
in the ring of integers OK of a p-adic field K. Suppose that f satisfies the hypotheses of
Theorem 3.12, i.e. that ρf,p is of Sym3 type, but f is not the symmetric cube lift of a GL2-
eigenform. Let Γf be the group of conjugate self-twists for ρ over Zp and let OΓf

K be the subring
of elements of OK fixed by Γf . As in § 3.3, we define another subring of OK by OE = Zp[Tr(Ad ρ)].
We prove the following.

Proposition 5.11. There is an equality OΓf
K = OE .

Before proving Proposition 5.11, we recall a result of O’Meara about isomorphisms of
congruence subgroups. We denote by PSp2g and PGSp2g the projective symplectic groups
of genus g. The following is a rewriting of [OMe78, Theorem 5.6.4] for the situation we are
interested in.

Theorem 5.12. Let F and F1 be two fields. Let ∆ and ∆1 be subgroups of PGSp2g(F ) and
PGSp2g(F1), respectively, satisfying ΓPSp2g(F )(a) ⊂ ∆ and ΓPSp2g(F1)(a) ⊂ ∆1. Let Θ: ∆ →
∆1 be an isomorphism of groups. Then there exists an automorphism σ of F and an element
γ ∈ PGSp2g(F1) satisfying

Θx = γxσγ−1

for every x ∈ ∆.

We fix some notation. Let End(sp4(K)) be the K-vector space of K-linear maps sp4(K)→
sp4(K) and let GL(sp4(K)) be the subgroup consisting of the bijective ones. Let Aut(gsp4(K)) be
the subgroup of GL(sp4(K)) consisting of the Lie algebra automorphisms of sp4(K). Let πAd

be the natural projection GSp4(OK)→ PGSp4(OK) and let Ad: PGSp4(K) ↪→ GL(sp4(K)) be
the injective group morphism defined by the adjoint representation. As sp4 admits no outer
automorphisms, Ad induces an isomorphism PGSp4(K) ∼= Aut(sp4(K)). For simplicity, we write
ρ = ρf,p in the following proof (but recall that in the other sections ρ is the Galois representation
attached to a family).
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Proof of Proposition 5.11. The inclusion OE ⊂ O
Γf
K follows from Proposition 5.2(5). We prove

that OΓf
K ⊂ OE . As O

Γf
K and OE are normal, it is sufficient to show that an automorphism of

OK over OE leaves OΓf
K fixed. Consider such an automorphism σ. As OE is fixed by σ, we have

(Tr(Ad ρ)(g))σ = Tr(Ad ρ(g)) for every g ∈ GQ, hence Tr(Ad ρσ(g)) = Tr(Ad ρ(g)). The equality
of traces induces an isomorphism Ad ρσ ∼= Ad ρ of representations of GQ with values in GL(sp4).
This means that there exists φ ∈ GL(sp4(K)) satisfying

Ad ρσ = φ◦ Ad ρ◦φ−1. (11)

We show that φ is actually an inner automorphism of sp4(K).
Clearly Ad induces an isomorphism πAd(Im ρ) ∼= Im Ad ρ. For every x ∈ GL(sp4(K)), we

denote by Θx the automorphism of GL(sp4(K)) given by conjugation by x. In particular,
we write (11) as Ad ρσ = Θφ(Ad ρ). By combining Theorems 3.12 and 5.12, we show that we
can replace φ by an element φ′ ∈ Aut(sp4(K)) still satisfying Ad ρσ = Θφ′(Ad ρ(φ′)).

We identify PGSp4(OE) with a subgroup of PGSp4(OΓf
K ) via the inclusion OE ⊂ O

Γf
K given

in the beginning of the proof. Consider the group ∆ = (πAd Im ρ) ∩ PGSp4(OE) ⊂ PGSp4(OK)
and its isomorphic image Ad(∆) ⊂ GL(sp4). As f satisfies the hypotheses of Theorem 3.12,
Im ρ contains a congruence subgroup ΓOE (a) of GSp4(OE) of some level a ⊂ OE . It follows that
πAd Im ρ contains the projective congruence subgroup PΓOE (a) of PGSp4(OE), so ∆ also contains
PΓOE (a). In particular, ∆ satisfies the hypotheses of Theorem 5.12. As Ad ρσ = Θφ(Ad ρ),
we have an equality (Ad(∆))σ = Θφ(Ad(∆)), where we identify both sides with subgroups
of PGSp4(OE). Now σ acts as the identity on PGSp4(OE), so the previous equality reduces
to Ad(∆) = Θφ(Ad(∆)). Let Θ = Ad−1◦Θφ◦ Ad: ∆ → ∆. As Ad is an isomorphism, the
composition Θ is an automorphism. Moreover, it satisfies

Θφ(Ad(δ)) = Ad(Θ(δ)) (12)

for every δ ∈ ∆. By Theorem 5.12 applied to F = F1 = K, ∆1 = ∆ and Θ: ∆→ ∆, there exists
an automorphism τ of K and an element γ ∈ GSp4(K) such that Θ(δ) = γδτγ−1 for every δ ∈ ∆.
We see from (12) that τ is trivial. It follows that Θφ(y) = Ad(γ)◦ y◦ Ad(γ)−1 for all y ∈ Ad(∆).
By K-linearity, we can extend Θφ and ΘAd(γ) to identical automorphisms of the K-span of
Ad(∆) in End(sp4(K)). As ∆ contains the projective congruence subgroup PΓOE (a), its K-span
contains Ad(GSp4(K)); in particular, it contains the image of Ad ρ. Hence, Θφ and ΘAd(γ) agree
on Ad ρ, which means that (11) implies Ad ρσ = ΘAd(γ)(Ad ρ). Then, by the definition of ΘAd(γ),
we have Ad ρσ = Ad(γ)◦ Ad ρ◦ (Ad(γ))−1 = Ad(γργ−1). We deduce that there exists a character
ησ : GQ → O×K satisfying ρσ(g) = ησ(g)γρ(g)γ−1 for every g ∈ GQ, hence that ρσ ∼= ησ ⊗ ρ. We
conclude that σ is a conjugate self-twist for ρ. In particular, σ acts as the identity on OΓf

K , as
desired. 2

Remark 5.13. Let ρ : GQ→ GSp4(I◦Tr) be the big Galois representation associated with a family
θ : Th→ I◦. We can define a ring Λh[Tr(Ad ρ)] analogous to the ring OE defined above. We have
an inclusion Λh[Tr(Ad ρ)] ⊂ I◦0 given by Proposition 5.2(5). However, the proof of the inclusion
OΓf
K ⊂ OE in Proposition 5.11 relied on the fact that Im ρf,p contains a congruence subgroup of

GSp4(OE). As we do not know if an analogue for ρ is true, we do not know whether an equality
between the normalizations of Λh[Tr(Ad ρ)] and I◦0 holds.

Suppose that the GSp4-eigenform f appears in a finite slope family θ : Th → I◦. Let P be
the prime of I◦Tr associated with f and suppose that P ∩ Λh is a non-critical arithmetic prime
Pk. Let P0 = P ∩ I◦0. The following is an analogue of [Lan16, Proposition 6.2], that results from
a straightforward application of Corollary 5.5.
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Proposition 5.14. There is an inclusion I◦0/P0 ⊂ O
Γf
K .

The results of this section admit the following corollary.

Corollary 5.15. Let ρ ∼= GQ→ GSp4(I◦Tr) be the representation associated with the family θ.
Let P be a prime of I◦Tr corresponding to a classical eigenform f that is not a symmetric cube
lift of a GL2-eigenform. Let P0 = P∩ I◦0. Then the image of ρP : GQ→ GSp4(I◦Tr/P) contains a
non-trivial congruence subgroup of GSp4(I◦0/P0).

Proof. As before, letOE = Zp[Tr Ad ρP]. By Theorem 3.12, the image of ρP contains a congruence
subgroup of GSp4(OE). By combining Propositions 5.11 and 5.14, we obtain I◦0/P0 ⊂ OE , hence
the corollary. 2

6. Constructing bases of lattices in unipotent subgroups

In this section, we show that the image of the Galois representation associated with a family of
GSp4-eigenforms contains a ‘sufficiently large’ set of unipotent elements.

6.1 An approximation argument
We recall a simple generalization of the approximation argument presented in the proof of [HT15,
Lemma 4.5]. We refer to [Con16, § 4.7] for the details of the proof, because there is an imprecision
in the argument of [HT15]. In particular, [HT15, Lemma 4.6] does not give the inclusion (4.3)
in [Con16, § 4.7]; it needs to be replaced by [Con16, Lemma 4.7.2]. Let G be a reductive group
defined over Z. Let T and B be a torus and a Borel subgroup of G, respectively. Let ∆ be the
set of roots associated with (G, T ).

Proposition 6.1 [Con16, Proposition 4.7.1]. Let A be a profinite local ring of residual
characteristic p endowed with its profinite topology. Let G be a compact subgroup of the
level p principal congruence subgroup ΓG(A)(p) of G(A). Suppose that:

(i) the ring A is complete with respect to the p-adic topology;

(ii) the group G is normalized by a diagonal Zp-regular element of G(A).

Let α be a root of G. For every ideal Q of A, let πQ : G(A)→G(A/Q) be the natural projection,
inducing a map πQ,α : Uα(A)→ Uα(A/Q). Then πQ(G) ∩ Uα(A/Q) = πQ(G ∩ Uα(A)).

We give a simple corollary.

Corollary 6.2. Let ρ : GQ → GSp4(I◦Tr) be the Galois representation associated with a finite
slope family θ : Th→ I◦. For every root α of GSp4, the group Im ρ ∩ Uα(I◦Tr) is non-trivial.

Proof. Let P be a prime of I◦ corresponding to a classical eigenform f that is not the symmetric
cube lift of a GL2-eigenform. Let OE = Zp[Tr(Ad ρP)]. By Theorem 3.12 Im ρP contains a non-
trivial congruence subgroup of Sp4(OE). In particular, Im ρP∩Uα(I◦Tr/P) is non-trivial for every
root α. Now we apply Proposition 6.1 to G = GSp4, T = T2, B = B2 A = I◦Tr, G = Im ρ and
Q = P. We obtain that the projection Im ρ∩Uα(I◦Tr)→ Im ρP∩Uα(I◦Tr/P) is surjective for every
α. In particular, Im ρ ∩ Uα(I◦Tr) must be non-trivial for every α. 2

6.2 A representation with image fixed by the conjugate self-twists
Let θ : Th → I◦ be a finite slope family with associated representation ρ : GQ → GSp4(I◦Tr).
As before, we assume ρ is residually irreducible and Zp-regular. Let Γ be the group of conjugate
self-twist of ρ and let I◦0 be the subring of I◦Tr consisting of the elements fixed by Γ. By restricting
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the domain of ρ and replacing it with a suitable conjugate representation, we obtain a Zp-regular
representation with coefficients in I◦0. This is the content of the next proposition.

We write ησ for the finite-order Galois character associated with σ ∈ Γ. Let H0 =
⋂
σ∈Γ ker ησ.

As Γ is finite H0 is open and normal in GQ. Note that Tr(ρ(H0)) ⊂ GSp4(I◦0). If ρ|H0 is
irreducible, then by Carayol’s theorem [Car94, Théorème 1] there exists g ∈ GL4(I◦Tr) such that
the representation ρg = gρg−1 satisfies Im ρg|H0 ⊂ GL4(I◦0). The hypothesis of irreducibility of
ρ|H0 can probably be checked in the residually full or symmetric cube cases, but it would be too
restrictive if we wanted to generalize our work to other interesting cases (for instance, to lifts
from GL2/F with F/Q real quadratic or from GL1/F with F/Q CM of degree 4). For this reason
we do not make the above assumption and we follow instead the approach of [CIT16, Proposition
4.14], that comes in part from the proof of [Lan16, Theorem 7.5].

Proposition 6.3. There exists an element g ∈ GSp4(I◦Tr) such that:

(i) gρg−1(H0) ⊂ GSp4(I0);

(ii) gρg−1(H0) contains a diagonal Zp-regular element.

Proof. Let V be a free, rank-four I◦Tr-module. The choice of a basis of V determines an
isomorphism GL4(I◦Tr)

∼= Aut(V ), hence an action of ρ on V . Let d be a Zp-regular element
contained in Im ρ. We denote by {ei}i=1,...,4 a symplectic basis of V such that d is diagonal. Until
further notice, we work in this basis.

By definition of conjugate self-twist, for each σ ∈ Γ there is an equivalence ρσ ∼= ησ ⊗ ρ. This
means that there exists a matrix Cσ ∈ GSp4(I◦Tr) such that

ρσ(g) = ησCσρ(g)C−1
σ . (13)

Recall that we write mI◦Tr
for the maximal ideal of I◦Tr and F for the residue field of I◦Tr. Let Cσ

be the image of Cσ under the natural projection GSp4(I◦Tr)→ GSp4(F). We prove the following
lemma.

Lemma 6.4. For every σ ∈ Γ the matrix Cσ is diagonal and the matrix Cσ is scalar.

Proof. Let α be any root of GSp4 and uα be a non-trivial element of Im ρ ∩ Uα(I◦Tr). Such a uα

exists thanks to Corollary 6.2. Let gα be an element of GQ such that ρ(gα) = uα. By evaluating
(13) at gα we obtain CσuαC−1

σ = (uα)σ, which is again an element of Uα(I◦Tr). We deduce that
Cσ normalizes Uα(Q(I◦Tr)). This holds for every root α, so Cσ normalizes the Borel subgroups of
upper and lower triangular matrices in GSp4(Q(I◦Tr)). As a Borel subgroup is its own normalizer,
we conclude that Cσ is diagonal.

By Proposition 5.6(i) the action of Γ on I◦Tr induces the trivial action of Γ on F. By evaluating
(13) at gα and modulo mI◦Tr

, we obtain, with the obvious notation, Cσuα(Cσ)−1 = (uα)σ = uα.
As Cσ is diagonal and uα ∈ Uα(F), the left-hand side is α(Cσ)uα. We deduce that α(Cσ) = 1.
As this holds for every root α, we conclude that Cσ is scalar. 2

We write C for the map Γ → GSp4(I◦Tr) defined by C(σ) = Cσ. We show that C can be
modified into a 1-cocycle that still satisfies (13). For every σ ∈ Γ and every i, 1 6 i 6 4, let (Cσ)i
denote the scalar matrix whose entries coincide with ith diagonal entry of Cσ. Define a map
C ′i : Γ→ GSp4(I◦Tr) by C

′
i(σ) = (Cσ)−1

i Cσ. A simple check using (13) and the cocycle identity for
the elements ησ (Proposition 5.2(iii)) shows that C ′i is a 1-cocycle.
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Set C ′σ = C ′i(σ). We have

ρσ(g) = ησCσρ(g)C−1
σ = ησC

′
σρ(g)(C ′σ)−1. (14)

By Lemma 6.4 Cσ is scalar, so we obtain C ′σ = (Cσ)−1
i Cσ = 14 with the obvious notation.

Recall that {ei}i=1,...,4 is our chosen basis of the free I◦Tr-module V , on whichGQ acts via ρ. For
every v ∈ V , we write as v =

∑4
i=1 λi(v)ei its unique decomposition in the basis (ei)i=1,...,4, with

λi(v) ∈ I◦Tr for 1 6 i 6 4. For every v ∈ V and every σ ∈ Γ, we set v[σ] = (C ′σ)−1
∑4

i=1 λi(v)σei.
This defines an action of Γ on V because C ′σ is a 1-cocycle. Let V [Γ] denote the set of elements of
V fixed by Γ. The action of Γ is clearly I◦0-linear, so V [Γ] has a structure of I◦0-submodule of V .

Let v ∈ V [Γ] and h ∈ H0. Then ρ(h)v is also in V [Γ], as we see by a direct calculation using
(14). We deduce that the action of GQ on V via ρ induces an action of H0 on V [Γ]. We will
conclude the proof of the proposition after having studied the structure of V [Γ].

Lemma 6.5. The I◦0-submodule V [Γ] of V is free of rank four and its I◦Tr-span is V .

Proof. Choose i ∈ {1, . . . , 4}. We construct a non-zero, Γ-invariant element wi ∈ I◦Trei. The
submodule I◦Trei is stable under Γ because C ′σ is diagonal. The action of Γ on I◦Trei induces
an action of Γ on the one-dimensional F-vector space I◦Trei ⊗I◦Tr

F. Recall that the conjugate
self-twists induce the identity on F by Proposition 5.6(i) and that the matrix C ′σ is trivial for
every σ ∈ Γ, so Γ acts trivially on I◦Trei ⊗I◦Tr

F.
For x ∈ I◦Trei, we let x be the image of x via the natural projection I◦Trei → I◦Trei ⊗I◦Tr

F.
Choose any vi ∈ I◦Trei such that vi 6= 0. Let wi =

∑
σ∈Γ v

[σ]
i . Clearly wi is invariant under the

action of Γ. We show that wi 6= 0. Then wi =
∑

σ∈Γ v
[σ]
i =

∑
σ∈Γ vi = card(Γ) · vi because Γ acts

trivially on I◦Trei ⊗I◦Tr
F. By Remark 5.3, the only possible prime factors of card(Γ) are 2 and 3.

As we supposed that p > 5, we have card(Γ) 6= 0 in F. We deduce that wi = card(Γ)vi 6= 0 in F,
so wi 6= 0.

Note that {wi}i=1,...,4 is an I◦Tr-basis of V because wi 6= 0 for every i. In particular, the
I◦0-span of the set {wi}i=1,...,4 is a free, rank-four I◦0-submodule of V . As V [Γ] has a structure of
I◦0-module and wi ∈ V [Γ] for every i, there is an inclusion

∑4
i=1 I◦0wi ⊂ V [Γ]. We show that this is

an equality. Let v ∈ V [Γ]. Write v =
∑4

i=1 λiwi for some λi ∈ I◦Tr. Then, for every σ ∈ Γ, we have
v = v[σ] =

∑4
i=1 λ

σ
i w

[σ]
i =

∑4
i=1 λ

σ
i wi. As {wi}i=1,...,4 is an I◦Tr-basis of V , we must have λi = λσi for

every i. This holds for every σ, so we obtain λi ∈ I◦0 for every i. Hence, v =
∑4

i=1 λiwi ∈
∑4

i=1 I◦0wi.
The second assertion of the lemma follows immediately from the fact that the set {wi}i=1,...,4

is contained in V [Γ] and is an I◦Tr-basis of V . 2

Now let h ∈ H0. Let {wi}i=1,...,4 be an I◦0-basis of V [Γ] satisfying wi ∈ I◦Trei, such as that
provided by the lemma. As I◦Tr · V [Γ] = V , {wi}i=1,...,4 is also an I◦Tr-basis of V . Moreover,
{wi}i=1,...,4 is a symplectic basis of V , because wi ∈ I◦Trei for every i and {ei} is a symplectic
basis. By construction, the basis {wi}i=1,...,4 has the two properties we desire. 2

From now on we always work with a Zp-regular conjugate of ρ satisfying ρ(H0) ⊂ GSp4(I◦0).

6.3 Lifting unipotent elements
We give a definition and a lemma that will be important in the following. Let B ↪→ A be an
integral extension of Noetherian integral domains. We call an A-lattice in B an A-submodule of
B generated by the elements of a basis of Q(B) over Q(A).
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Lemma 6.6 [Lan16, Lemma 4.10]. Every A-lattice in B contains a non-zero ideal of B.
Conversely, every non-zero ideal of B contains an A-lattice in B.

Let θ : Th → I◦ be a finite slope family of GSp4-eigenforms and let ρ : GQ → GSp4(I◦Tr) be
the representation associated with θ. For every root α, we identify the unipotent group Uα(I◦0)
with I◦0 and Im ρ ∩ Uα(I◦0) with a Zp-submodule of I◦0. The goal of this section is to show that,
for every α, Im ρ ∩ Uα contains a basis of a Λh-lattice in I◦0. Our strategy is similar to that of
[CIT16, § 4.9], which in turn is inspired by [HT15] and [Lan16]. We proceed in two main steps,
by showing that:

(i) there exists a non-critical arithmetic prime Pk ⊂ Λh such that Im ρPkI◦0 ∩ U
α(I◦0/PkI◦0)

contains a basis of a Λh/Pk-lattice in I◦0/PkI◦0;
(ii) the natural morphism Im ρ ∩ Uα(I◦0)→ Im ρPkI◦0 ∩ U

α(I◦0/PkI◦0) is surjective, so we can lift
a basis as in point (i) to a basis of a Λh-lattice in I◦0.

Part (i) is proved via Theorem 3.12 and a result about the lifting of conjugate self-twists from
ρPkI◦0 to ρ (Proposition 5.4). Part (ii) will result from an application of Proposition 6.1.

We start by stating that we can choose an arithmetic prime with special properties. The
following lemma follows from a simple Zariski-density argument, relying on the fact that
the weights of the symmetric cube lifts are contained in a two-dimensional (that is, one-parameter)
subscheme of Spec Λh.

Lemma 6.7. Suppose that ρ is either full or of symmetric cube type. Then there exists an
arithmetic prime Pk of Λh such that:

(i) Pk is non-critical for I◦ in the sense of Definition 4.5;

(ii) for every prime P ⊂ I◦ lying above Pk, the classical eigenform corresponding to P is not
the symmetric cube lift of a GL2-eigenform.

Let m0 denote the maximal ideal of I◦0. Let H = {g ∈ H0 | ρ(g) ≡ 1 (mod m0)}, that is a
normal open subgroup of H0. We define a representation ρ0 : H → Sp4(I◦0) by setting

ρ0 = ρ|H ⊗ det(ρ|H)−1/2.

Here the square root is defined via the usual power series, that converges on ρ(H). Even though
our results are all stated for the representation ρ, in an intermediate step we will need to work
with ρ0 and its reduction modulo a prime ideal of I◦0. We now show how it will be possible to
transfer our results back to ρ0.

For the rest of this section, we fix an arithmetic prime Pk of Λh satisfying conditions (i) and
(ii) in Lemma 6.7. By the étaleness condition in Definition 4.5, PkI◦ is an intersection of distinct
primes of I◦, so PkI◦0 is an intersection of distinct primes of I◦0. Let Q1,Q2, . . . ,Qd be the prime
divisors of PkI◦0. Let I be either PkI◦0 or Qi for some i ∈ {1, 2, . . . , d}.

Lemma 6.8. The group ρ(H) contains a non-trivial congruence subgroup of Sp4(I◦0/I) if and
only if the group ρ0(H) does.

Proof. The lemma is proved in the same way as [CIT16, Proposition 4.22], by replacing
Tazhetdinov’s result on subnormal subgroups of symplectic groups of genus 1 with his result
in genus 2 [Taz85, Theorem]. 2
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The following is a consequence of Proposition 5.15 and Lemma 6.8, together with our choice
of Pk.

Lemma 6.9. Let Q be a prime of I◦0 lying over Pk. Then the image of ρ0,Q contains a non-trivial

congruence subgroup of Sp4(I◦0/Q).

Proof. By Proposition 5.15, the image of ρQ contains a non-trivial congruence subgroup of
Sp4(I◦0/Q). As H is a finite index subgroup of GQ, the same is true if we replace ρQ by ρQ|H .
Now the conclusion follows from Lemma 6.8 applied to I = Q. 2

6.4 Big image in a product
Lifting the congruence subgroup of Lemma 6.9 to I◦ does not provide the information we need
on the image of ρ0. We need the following fullness result for ρPk .

Proposition 6.10. The image of the representation ρPk contains a non-trivial congruence

subgroup of Sp4(I◦0/PkI◦0).

6.5 Unipotent subgroups and fullness
Recall that for a root α of GSp4, we denote by Uα the corresponding one-parameter unipotent
subgroup of GSp4 and by uα the corresponding nilpotent subalgebra of gsp4(R). For an ideal a
of R, we call ‘congruence subalgebra of level a’ of sp4(R) the Lie algebra a · sp4(R). The following
lemma admits two versions, for Lie algebras and for groups, that can be proved via a computation
with Lie brackets and commutators, respectively.

Lemma 6.11. Let R be an integral domain. Let G be a Lie subalgebra of sp4(R) and let G be a

subgroup of Sp4(R). The following are equivalent:

(1) the Lie algebra G contains a congruence Lie subalgebra (the group G contains a congruence

subgroup, respectively) of level a non-zero ideal a of R;

(2) for every root α of Sp4, the nilpotent Lie algebra G ∩ uα(R) (the unipotent subgroup

G∩Uα(R), respectively) contains a non-zero ideal aα of R via the identification uα(R) ∼= R

(G ∩ Uα(R) ∼= R, respectively).

Moreover:

(i) if condition (1) is satisfied for an ideal a, then condition (2) is satisfied if we choose aα = a

for every α;

(ii) if condition (2) is satisfied for a set of ideals {aα}α, then condition (1) is satisfied for the

ideal a =
∏
α a

α, where the product is over all roots α of Sp4.

Remark 6.12. In both versions of Lemma 6.11, if there is an ideal a′ of R such that the choice
aα = a′ for every α satisfies condition (2), then the choice a = (a′)2 satisfies condition (1).

By applying Proposition 6.10 and Lemma 6.11 to R = I◦0/PkI◦0 and G = Im ρ0,Pk we obtain
the following corollary.

Corollary 6.13. For every root α of GSp4 the group Im ρPk ∩Uα(I◦0/PkI◦0) contains the image

of an ideal of I◦0/PkI◦0.
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6.6 Lifting the congruence subgroup
If α is a root of GSp4, G is a group, R is a ring and τ : G → GSp4(R) is a representation,
let Uα(τ) = τ(G) ∩ Uα(R). We always identify Uα(R) with R, hence Uα(τ) with an additive
subgroup of R.

Recall that ρ : H0 → GSp4(I◦0) is the representation associated with a finite slope family
θ : Th→ I◦ and that ρPk is the reduction of ρ modulo PkI◦0. We use Corollary 6.13 together with
Proposition 6.1 to obtain a result on the unipotent subgroups of the image of ρ.

Proposition 6.14. For every root α of GSp4, the group Uα(ρ) contains a basis of a Λh-lattice
in I◦0.

Proof. Let πk : I◦0 → I◦0/PkI◦0 be the natural projection. We denote also by πk the induced
map GSp4(I◦0) → GSp4(I◦0/PkI◦0). For a root α of GSp4, let παk : Uα(I◦0) → Uα(I◦0/PkI◦0) be
the projection induced by πk. Let G = Im ρ ∩ ΓGSp4(I◦0)(p) and GPk = πk(G). The choices
A = I◦0, G = GSp4, T = T2, B = B2, G = Im ρ ∩ ΓGSp4(I◦0)(p) and Q = Pk satisfy the
hypotheses of Proposition 6.1, hence παk induces a surjection G∩Uα(I◦0)→ Gk∩Uα(I◦0/PkI◦0). Let
Gα = G ∩ Uα(I◦0) and Gαk = Gk ∩ Uα(I◦0/PkI◦0). As usual, we identify them with Zp-submodules
of I◦0 and I◦0/PkI◦0, respectively.

By Corollary 6.13 there exists a non-zero ideal ak of I◦0/PkI◦0 such that ak ⊂ Im ρPk ∩
Uα(I◦0/PkI◦0). Set bk = pak. Then bk ⊂ Gαk . By the result of the previous paragraph, the map
Gα→ Gαk induced by παk is surjective, so we can choose a subset A of Gα that surjects onto bk.
Let M be the Λh-span of A in I◦0. Let b be the pre-image of bk via παk : I◦0 → I◦0/PkI◦0. Clearly
A ⊂ b, so M is a Λh-submodule of b. Moreover, M/PkM = bk by the definition of A. As Λ is
local, Nakayama’s lemma implies that the inclusion M ↪→ b is an equality. In particular, the
Λh-span of Gα contains an ideal of I◦0. By Lemma 6.6, this implies that Gα contains a basis of a
Λh-lattice in I◦0. 2

7. Relative Sen theory

Let θ : Th → I◦ be a finite slope family. We keep the notation of the previous sections. Recall
that the image of the family in the connected component of unity of the weight space is a disc
B2(κ, rh,κ) adapted to the slope h. To guarantee the convergence of a certain exponential series
(see § 7.4), from now on we make the following assumption:

B2(κ, rh,κ) ⊂ B2(0, p−1/p−1). (exp)

In § 4, we defined a family of radii {ri}i>1 and we let Ari be the ring of rigid analytic
functions bounded by 1 on B2(0, ri). For every i > 1, there is a natural injection ιri : Λh→ Ari .
Set I◦ri,0 = I◦0 ⊗̂Λh A

◦
ri . We endow I◦ri,0 with its p-adic topology.

Remark 7.1. (i) The ring I◦0 admits two inequivalent topologies: the profinite topology and the
p-adic topology. The representation ρ is continuous with respect to the profinite topology on I◦0,
but it is not necessarily continuous with respect to the p-adic topology.

(ii) As I◦0 is a finite Λh-algebra,I◦ri,0 is a finite A◦ri-algebra. There is an injective ring morphism
ι′ri : I

◦
0 ↪→ I◦ri,0 sending f to f ⊗ 1. This map is continuous with respect to the profinite topology

on I◦0 and the p-adic topology on I◦ri,0: this can be seen by looking at the definition of A◦ri in § 4.1
(for g = 2) and remarking that the p-adic valuation of the variables t1, t2 is positive over any disc
of radius strictly smaller than 1.
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We associated with θ a representation ρ|H0 : H0→ GSp4(I◦0) that is continuous with respect
to the profinite topologies on both its domain and target. By Remark 7.1(i), ρ|H0 needs not be
continuous with respect to the p-adic topology on GSp4(I◦0). This poses a problem when trying
to apply Sen theory. For this reason, we introduce for every i the representation ρri : H0 →

GSp4(I◦ri,0) defined by ρri = ι′ri◦ ρ|H0 . We deduce from the continuity of ι′ri that ρri is continuous
with respect to the profinite topology on H0 and the p-adic topology on I◦ri,0. It is clear from the
definition that the image of ρri is independent of i as a topological group.

There is a good notion of Lie algebra for a pro-p group that is topologically of finite
type. For this reason, we further restrict H0 so that the image of ρri is a pro-p group. Let
Hr1 = {g ∈ H0 | ρr1(g) ∼= 14 (mod p)} and set Hri = Hr1 for every i > 1. The subgroup
{M ∈ GSp4(I◦r1,0) |M ∼= 14 (mod p)} is of finite index in GSp4(I◦r1,0). Note that this depends
on the fact that we extended the coefficients to Ir1,0, because {M ∈ GSp4(I◦0) |M ∼= 14 (mod p)}
is not of finite index in GSp4(I0). We deduce that Hr1 is a normal open subgroup of GQ. Let
KHri

be the subfield of Q fixed by Hri . It is a finite Galois extension of Q.
Recall that we fixed an embedding GQp ↪→ GQ, identifying GQp with a decomposition

subgroup of GQ at p. Let Hri,p = Hri ∩ GQp . Let KHri ,p
be the subfield of Qp fixed by Hri,p.

The field KHri ,p
will play a role when we apply Sen theory. For every i, let Gri = ρri(Hri) and

Gloc
ri = ρri(Hri,p).

Remark 7.2. The topological Lie groups Gr and Gloc
r are independent of r, in the following sense.

For positive integers i, j with i 6 j, let ιrirj : Irj ,0 → Iri,0 be the natural morphism induced by
the restriction of analytic functions Arj → Ari . As Hri = Hrj = Hr1 by definition, ιrirj induces
isomorphisms ιrirj : Grj

∼−→ Gri and ιrirj : Gloc
rj

∼−→ Gloc
ri .

7.1 Big Lie algebras
As before, let r be a radius among the ri, i ∈ N>0. We will associate with ρr(Hr) a Lie algebra
that will give the context in which to apply Sen’s results. Our methods require that we work with
Qp-Lie algebras, so we define the rings Ar = A◦r [p

−1] and Ir,0 = I◦r,0[p−1].
Let a be a height-two ideal of Ir,0. The quotient Ir,0/a is a finite-dimensional Qp-algebra. Let

πa : Ir,0→ Ir,0/a be the natural projection. We still denote by πa the induced map GSp4(Ir,0)→
GSp4(Ir,0/a). Consider the subgroups Gr,a = πa(Gr) and Gloc

r,a = πa(G
loc
r ) of GSp4(Ir,0/a). They

are both pro-p groups and they are topologically of finite type because GSp4(Ir,0/a) is. It
makes sense to consider the logarithm of an element of Gr,a because this group is contained in
{M ∈ GSp4(Ir,0/a) |M ∼= 14 (mod p)}.

We attach to Gr,a and Gloc
r,a the Qp-vector subspaces Gr,a and Gloc

r,aof gsp4(Ir,0/a) defined by

Gr,a = Qp · logGr,a and Gloc
r,a = Qp · logGloc

r,a .

The Qp-Lie algebra structure of gsp4(Ir,0/a) restricts to a Qp-Lie algebra structure on Gr,a and
Gloc
r,a . These two Lie algebras are finite-dimensional over Qp because gsp4(Ir,0/a) is.

Remark 7.3. The Lie algebras Gr,a and Gloc
r,a are independent of r, in a sense analogous to that

of Remark 7.2.

Recall that there is a natural injection Λ2 ↪→ Λh, hence an injection Λ2[p−1] ↪→ Λh[p−1]. For
every k = (k1, k2), the ideal PkΛh[p−1] is either prime in Λh[p−1] or equal to Λh[p−1]. We define
the set of ‘bad’ ideals Sbad

Λ of Λ2[p−1] as

Sbad
Λ = {(1 + T1 − u), (1 + T2 − u2), (1 + T2 − u(1 + T1)), ((1 + T1)(1 + T2)− u3)}.
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Then we define the set of bad prime ideals of Λh[p−1] as

Sbad = {P prime of Λh[p−1] |P ∩ Λ2[p−1] ∈ Sbad
Λ }.

We will take care to define rings where the images of the ideals in Sbad consist of invertible
elements. The reason for this will be clear in Proposition 7.13. Let S2 be the set of ideals a of Ir,0
of height two such that a is prime to P for every P ∈ Sbad. Let S′2 be the subset of prime ideals
in S2. We define the ring

Br = lim
←−
a∈S2

Ir,0/a,

where the limit of finite-dimensional Qp-Banach spaces is taken with respect to the natural
transition maps Ir,0/a1 → Ir,0/a2 defined for every inclusion of ideals a1 ⊂ a2. We equip Ir,0/a
with the p-adic topology for every a and Br with the projective limit topology. There is a natural
injection ιBr : Ir,0 ↪→ Br with dense image.

Now consider the sets

Sbad
A = {P ∩Ar |P ∈ Sbad}, S2,A = {a ∩Ar | a ∈ S2}, S′2,A = {a ∩Ar, | a ∈ S′2}.

For later use, we define a ring
Br = lim

←−
a∈S2,A

Ar/a,

where the limit of finite-dimensional Qp-Banach spaces is taken with respect to the natural
transition maps Ar/a1 → Ar/a2 defined for every inclusion of ideals a1 ⊂ a2. We equip Ar/a

with the p-adic topology for every a and Br with the projective limit topology. There is a natural
injection ιBr : Ar ↪→ Br with dense image. The natural inclusion Br ↪→ Br gives Br a structure
of finite Br-algebra, as we can deduce from the fact that Ir,0 is a finite Ar-algebra.

Remark 7.4. For every P ∈ Sbad we have P ·Br = Br, because the limit defining Br is over ideals
prime to P . In the same way, we have P ·Br = Br for every P ∈ Sbad

A .

We attach to the groups Gr and Gloc
r two Qp-Lie subalgebras of gsp4(Br). Let

Gr = lim
←−
a∈S2

Gr,a and Gloc
r = lim

←−
a∈S2

Gloc
r,a ,

where Gr,a and Gloc
r,a are the Lie algebras we attached to Gr,a and Gloc

r,a . The Qp-Lie algebra
structures on Gr,a and Gloc

r,a induce Qp-Lie algebra structures on Gr and Gloc
r . We endow Gr and

Gloc
r with the p-adic topology induced by that on gsp4(Br).
When we introduce the Sen operators, we will have to extend the scalars of the various rings

and Lie algebras to Cp. We denote this operation by adding a lower index Cp to the objects
previously defined. We still endow all the rings with their p-adic topology. Clearly Ir,0,Cp has a
structure of finite Ar,Cp-algebra and Br,Cp has a structure of finite Br,Cp-algebra.

Remark 7.5. The Qp-Lie algebras Gr and Gloc
r do not have a priori any Br or Br-module

structure. As a crucial step in our arguments we will use Sen theory to induce a Br,Cp-vector
space (hence a Br,Cp-Lie algebra) structure on suitable subalgebras of Gr,Cp .
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7.2 The Sen operator associated with a p-adic Galois representation
Let L be a p-adic field and let R be a Banach L-algebra. Let K be another p-adic field, m be
a positive integer and τ : Gal(K/K)→ GLm(R) be a continuous representation. We recall the
construction of the Sen operator associated with τ , following [Sen93].

We fix embeddings of K and L in Qp. The constructions that follow will depend on these
choices. We suppose that the Galois closure LGal of L over Qp is contained in K. If this is
not the case, we restrict τ to the open subgroup Gal(K/KLGal) ⊂ Gal(K/K). We denote by
χ : Gal(L/L)→ Z×p the p-adic cyclotomic character. Let L∞ be a totally ramified Zp-extension
of L. Let γ be a topological generator of Γ = Gal(L∞/L). For a positive integer n, let Γn ⊂ Γ

be the subgroup generated by γpn and Ln = L
〈γpn 〉
∞ be the subfield of L∞ fixed by Γn. We have

L∞ =
⋃
n Ln. Let L

′
n = LnK and G′n = Gal(L/L′n).

Write Rm for the R-module over which Gal(K/K) acts via τ . We define an action of
Gal(K/K) on Rm ⊗̂LCp by letting σ ∈ Gal(K/K) send x ⊗ y to τ(σ)(x) ⊗ σ(y). Then by
[Sen93], there exists a matrix M ∈ GLm

(
R⊗̂LCp

)
, an integer n > 0 and a representation

δ : Γn→ GLm(R⊗L L′n) such that for all σ ∈ G′n we have

M−1τ(σ)σ(M) = δ(σ). (15)

Definition 7.6. The Sen operator associated with τ is the element

φ = lim
σ→1

log(δ(σ))

log(χ(σ))

of Mm(R⊗̂LCp).

The limit in the definitions always exists and is independent of the choice of δ and M .
Now suppose thatR = L and that τ is a Hodge–Tate representation with Hodge–Tate weights

h1, h2, . . . , hm. Let φ be the Sen operator associated with τ ; it is an element of Mm(Cp). The
following theorem is a consequence of the results of [Sen80].

Theorem 7.7. The characteristic polynomial of φ is
∏m
i=1(X − hi).

We restrict now to the case L=R= Qp, so that τ is a continuous representation Gal(K/K)→
GLm(Qp). Define a Qp-Lie algebra g ⊂Mm(Qp) by g = Qp · log(τ(Gal(K/K))). We say that g is
the Lie algebra of τ(Gal(K/K)). Let φ be the Sen operator associated with τ .

Theorem 7.8 [Sen73, Theorem 1]. The Sen operator φ is an element of g ⊗̂Qp Cp.

Remark 7.9. The proof of Theorem 7.8 relies on the fact that τ(Gal(K/K)) is a finite-dimensional
Lie group. It is doubtful that this proof can be generalized to the relative case.

7.3 The relative Sen operator associated with ρr
Fix a radius r in the set {ri}i∈N>0 . Consider as usual the representation ρr : H0 → GSp4(Ir,0).
We defined earlier a p-adic field KHr,p. Write GKHr,p for its absolute Galois group. We look at the
restriction ρr|GKHr,p : GKHr,p → GSp4(Ir,0) as a representation with values in GL4(Ir,0). Recall
that Gloc

r is the Lie algebra associated with the image of ρr|GKHr,p . The goal of this section is to
prove an analogue of Theorem 7.8 for this representation, i.e. to attach to ρr|GKHr,p a ‘Br-Sen
operator’ belonging to Gloc

r,Cp . We start by constructing various Sen operators via Definition 7.6.
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(i) The Qp-algebra Ir,0 is complete for the p-adic topology. We associate with ρr|GKHr,p a
Sen operator φr ∈ M4(Ir,0,Cp).

(ii) Let a ∈ S2. Then Ir,0/a is a finite-dimensional Qp-algebra. As usual write πa : Ir,0→ Ir,0/a
for the natural projection. Denote by ρr,a the representation πa◦ ρr|GKHr,p : GKHr,p→GL4(Ir,0/a).
We associate with ρr,a a Sen operator φr,a ∈ M4((Ir,0/a) ⊗̂Qp Cp).

(iii) Let a ∈ S2. Let d be the Qp-dimension of Ir,0/a. Let k be a positive integer. An Ir,0/a-linear
endomorphism of (Ir,0/a)k defines a Qp-linear endomorphism of the underlying Qp-vector space
Qkd
p . This gives natural maps αQp : Mk(Ir,0/a)→ Mkd(Qp) and α×Qp : GLk(Ir,0/a)→ GLkd(Qp)

(we leave the dependence of these morphisms on k implicit). Choose k = 4 and consider
the representation ρ

Qp
r,a = α×Qp◦ ρr,a : GQ → GL4d(Qp). We associate with ρ

Qp
r,a a Sen operator

φ
Qp
r,a ∈ M4d(Cp).

The operators constructed in constructions (i), (ii) and (iii) are related by the following
lemma. We write πa,Cp = πa⊗1: Ir,0,Cp → Ir,0,Cp/aIr,0,Cp . As above, we let d be the Qp-dimension
of Ir,0/a. For every positive integer k, we set αCp = αQp ⊗1: Mk(Ir,0,Cp/aIr,0,Cp)→Mkd(Cp) and
α×Cp = α×Qp ⊗ 1: GLk(Ir,0,Cp/aIr,0,Cp)→ GLkd(Cp).

Lemma 7.10. For every a ∈ S2, the following relations hold:

(i) φr,a = πa,Cp(φr);

(ii) φ
Qp
r,a = αCp(φr,a).

Proof. This can be checked directly from the construction of the Sen operator presented in
§ 7.2. 2

Recall that there is a natural inclusion ι′Br,Cp : Ir,0,Cp ↪→ Br,Cp . We define the Br-Sen operator
attached to ρr|GKHr,p as

φBr = ι′Br,Cp(φr).

By definition, φBr is an element of M4(Br,Cp). Since Br,Cp = lim
←−a∈S2

Ir,0/a, it is clear that
φBr = lim

←−a∈S2
πa,Cp(φr). Then Lemma 7.10(i) implies that

φBr = lim
←−
a∈S2

φr,a. (16)

Note that Theorem 7.8 can be applied only to representations with coefficients in Qp, hence to
construction (iii) above. However, we can use Lemma 7.10(ii) to show the following.

Proposition 7.11. The operator φBr belongs to the Lie algebra Gloc
r,Cp . In particular, it belongs

to Gr,Cp .

Proof. For every a ∈ S2, let da be the degree of the extension Ir,0/a over Qp. Let G
loc,Qp
r,a be the Qp-

Lie subalgebra of M4da(Qp) associated with the image of ρQpr,a , defined byG
loc,Qp
r,a = Qp·log(Im ρ

Qp
r,a).

Let Gloc,Qp
r,a,Cp = G

loc,Qp
r,a ⊗̂Qp Cp. As Im ρ

Qp
r,a = α×Qp(Im ρr,a), we can write

G
loc,Qp
r,a,Cp = αCp(G

loc
r,a,Cp). (17)
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The representation ρQpr,a satisfies the assumptions of Theorem 7.8, so the Sen operator φQpr,0,a
belongs to G

loc,Qp
r,a,Cp . By Lemma 7.10(ii) φQpr,a = αCp(φr,a). Then (17) and the injectivity of αCp give

φr,a ∈ Gloc
r,a,Cp . (18)

As Gloc
r,Cp = lim

←−a∈S2
Gloc
r,a,Cp , (16) and (18) imply that φBr ∈ Gloc

r,Cp . 2

7.4 The exponential of the Sen operator
We use the work of the previous section to construct an element of GL4(Br) that has some specific
eigenvalues and normalizes the Lie algebra Gloc

r,Cp . Such an element will be used in § 8 to induce a
Br,Cp-module structure on some subalgebra of Gr,Cp , thus replacing the matrix ‘ρ(σ)’ of [HT15]
that is not available in the non-ordinary setting.

Let φr ∈M4(Ir,0,Cp)be the Sen operator defined in the previous section. We rescale it to define
an element φ′r = log(u)φr, where u = 1 + p. Let (T1, T2) be the images in Ar of the coordinate
functions on the weight space. The logarithms and the exponentials in the following proposition
are defined via the usual power series, that converge because of the assumption (exp) we made
in the beginning of § 7.

Lemma 7.12. The eigenvalues of φ′r are 0, log(u−2(1 + T2)), log(u−1(1 + T1)) and log(u−3(1 +

T1)(1 + T2)). In particular, the exponential series defines an element exp(φ′r) ∈ GL4(Ir,0,Cp), of

eigenvalues 1, u−2(1 + T2), u−1(1 + T1) and u−3(1 + T1)(1 + T2).

Proof. The p-adic Galois representation ρf associated with a classical eigenform f of weight
(k1, k2) is Hodge–Tate with Hodge–Tate weights (0, k2 − 2, k1 − 1, k1 + k2 − 3). By Theorem 7.7
these weights are the eigenvalues of the Sen operator φf associated with ρf . By Lemma 7.10(i),
the eigenvalues of φr interpolate those of the operators φf when f varies in the set of classical
points of Ar. As such points form a Zariski-dense subset of SpecAr, the interpolation is unique
and can be easily computed. The lemma follows from this. 2

Let ΦBr = ιBr,Cp (exp(φ′r,0)). By definition, ΦBr is an element of GL4(Br,Cp). We show that it
has the two properties we need. We define a matrix CT1,T2 ∈ GSp4(Br,Cp) by

CT1,T2 = diag
(
u−3(1 + T1)(1 + T2), u−1(1 + T1), u−2(1 + T2), 1

)
.

Proposition 7.13.

(i) There exists γ ∈ GSp4(Br,Cp) satisfying ΦBr = γCT1,T2γ
−1.

(ii) The element ΦBr normalizes the Lie algebra Gr,Cp .

Proof. The matrices ΦBr and CT1,T2 have the same eigenvalues by Lemma 7.12. Hence, there
exists γ ∈ GL4(Br,Cp) satisfying the equality of part (i) if and only if the difference between any
two of the eigenvalues of ΦBr is invertible in Br. We check by a direct calculation that each of
these differences belongs to an ideal of the form P ·Br with P ∈ Sbad, hence it is invertible in Br by
Remark 7.4. As both ΦBr and CT1,T2 are elements of GSp4(Br,Cp), we can take γ ∈ GSp4(Br,Cp).

Part (ii) follows from Proposition 7.11. 2
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8. Existence of a Galois level in the residual symmetric cube and full cases

We have all the ingredients we need to state and prove our first main theorem. Let h ∈ Q+,×.
Let Th be a local component of the h-adapted Hecke algebra of genus 2 and level Γ1(M) ∩
Γ0(p). Suppose that condition (exp) of § 7 is satisfied and that the residual Galois representation
ρTh associated with Th is either full or of symmetric cube type in the sense of Definition 3.11.
Let θ : Th → I◦ be a family, i.e. the morphism of finite Λh-algebras describing an irreducible
component of Th. Let ρ : GQ→GSp4(I◦Tr) be the Galois representation associated with θ. Suppose
that ρ is Zp-regular in the sense of Definition 3.10. For every radius r in the set {ri}i∈N>0 defined
in § 4, let Gr be the Lie algebra that we attached to Im ρ in § 7.1.

Theorem 8.1. There exists a non-zero ideal l of I0 such that

l · sp4(Br) ⊂ Gr (19)

for every r ∈ {ri}i∈N>0 .

Let ∆ be the set of roots of GSp4 with respect to our choice of maximal torus. Recall that
for α ∈ ∆ we denote by uα the nilpotent subalgebra of gsp4 corresponding to α. Let r be a radius
in the set {ri}i>1. We set Uαr = Gr ∩ uα(Br) and Uαr,Cp = Gr,Cp ∩ uα(Br,Cp), which coincides with
Uαr ⊗̂Qp Cp. Via the isomorphisms uα(Br) ∼= Br and uα(Br,Cp) ∼= Br,Cp , we see Uαr as a Qp-vector
subspace of Br and Uαr,Cp as a Cp-vector subspace of Br,Cp .

Recall that Uα denotes the one-parameter unipotent subgroup of GSp4 associated with the
root α. Let Hr be the normal open subgroup of GQ defined in the beginning of § 7. Note that
Proposition 6.14 holds with ρ|H0 replaced by ρ|Hr because Hr is open in GQ. Let Uα(ρ|Hr) =
Uα(I◦0)∩ρ(Hr) and Uα(ρr) = Uα∩ρr(Hr). Via the isomorphisms Uα(I0) ∼= I0 and Uα(Ir,0) ∼= Ir,0
we identify Uα(ρ|H0) and Uα(ρr) with Zp-submodules of I0 and Ir,0, respectively. Note that the
injection I◦0 ↪→ I◦r,0 induces an isomorphism of Zp-modules Uα(ρ|H0) ∼= Uα(ρr).

We define a nilpotent subalgebra of gsp4(Ir,0) by UαIr,0 = Qp · log(Uα(ρr)). We identify UαIr,0
with a Qp-vector subspace of Ir,0. Note that the natural injection ιBr : Ir,0 ↪→ Br induces an
injection UαIr,0 ↪→ Uαr for every α.

Lemma 8.2. For every α ∈ ∆ and every r, there exists a non-zero ideal lα of I0, independent of
r, such that the Br-span of Uαr contains lαBr.

Proof. Let d be the dimension of Q(I◦0) over Q(Λh). Let α ∈∆. By Proposition 6.14 the unipotent
subgroup Uα(ρ|Hr) contains a basis E = {ei}i=1,...,d of a Λh-lattice in I◦0. Lemma 6.6 implies that
the Λh[p−1]-span of E contains a non-zero ideal lα of I0. Consider the map ια : Uα(I0)→ uα(Br)
given by the composition

Uα(I0) ↪→ Uα(Ir,0)
log−−→ uα(Ir,0) ↪→ uα(Br),

where all the maps have been introduced above. Note that ια(Uα(ρ|H0)) ⊂ Uαr . Let EBr = ια(E).
As ια is a morphism of I0-modules we have

Br · Uαr ⊃ Br · EBr = Br · (Λh[p−1] · EBr) = Br · ια(Λh[p−1] · E) ⊃ Br · ια(lα) = lαBr.

By construction and by Remark 7.2, the ideal lα can be chosen independently of r. 2
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Let γ be an element of GSp4(Br,Cp) such that ΦBr = γCT1,T2γ
−1; it exists by Proposition

7.13(i). Let Gγ
r,Cp = γ−1Gr,Cpγ. For each α ∈ ∆, let Uγ,αr,Cp = uα(Br,Cp) ∩ Gγ

r,Cp . We prove the
following lemma by an argument similar to that of [HT15, Theorem 4.8].

Lemma 8.3. For every α ∈ ∆, the Lie algebra Uγ,αr,Cp is a Br,Cp-submodule of Br,Cp .

Proof. By Proposition 7.13(ii), the operator ΦBr normalizes Gr,Cp , hence CT1,T2 normalizes Gγ
r,Cp .

Let α1 and α2 be the roots sending diag(t1, t2, νt
−1
2 , νt−1

1 ) ∈ T2 to t1/t2 and ν−1t22, respectively.
With respect to our choice of Borel subgroup, the set of positive roots of GSp4 is {α1, α2, α1 +α2,
2α1 + α2}. Conjugation by CT1,T2 on the Cp-vector space uα1(Br,Cp) induces multiplication by
α1(CT1,T2) = u−2(1 + T2). As u−2 ∈ Z×p and Uγ,α1

r,Cp is stable under Ad(CT1,T2), multiplication
by 1 + T2 on uα1(Br,Cp) leaves Uγ,α1

r,Cp stable. Now we compute

(1 + T2) · Uγ,α1+α2

r,Cp = (1 + T2) · [Uγ,α1

r,Cp ,U
γ,α2

r,Cp ] = [(1 + T2) · Uγ,α1

r,Cp ,U
γ,α2

r,Cp ] ⊂ [Uγ,α1

r,Cp ,U
γ,α2

r,Cp ] = Uγ,α1+α2

r,Cp ,

where the inclusion (1 + T2) · Uγ,α1

r,Cp ⊂ Uγ,α1

r,Cp is the result of the previous sentence. Similarly,
conjugation by CT1,T2 on the Cp-vector space uα2(Br,Cp) induces multiplication by α2(CT1,T2) =
u · (1 + T1)/(1 + T2). As u ∈ Z×p and Uγ,α2

r,Cp is stable under Ad(CT1,T2), multiplication by 1 + T2

on uα2(Br,Cp) leaves Uγ,α2

r,Cp stable. The same calculation as above shows that multiplication by
(1 + T1)/(1 + T2) on uα1+α2(Br,Cp) leaves U

γ,α1+α2

r,Cp stable. We deduce that multiplication by 1+T1

also leaves Uγ,α1+α2

r,Cp stable. As Uγ,α1+α2

r,Cp is a Cp-vector space, the Cp[T1, T2]-module structure on
uα1+α2(Br,Cp) induces a Cp[T1, T2]-module structure on Uγ,α1+α2

r,Cp . With respect to the p-adic
topology Uγ,α1+α2

r,Cp is complete and Cp[T1, T2] is dense in Br,Cp , so the Br,Cp-module structure on
uα1+α2(Br,Cp) induces a Br,Cp-module structure on Uγ,α1+α2

r,Cp .
If β is any root, we can write

Br,Cp · U
γ,β
r,Cp = Br,Cp · [U

γ,α1+α2

r,Cp ,Uγ,β−α1−α2

r,Cp ]

⊂ [Br,Cp · U
γ,α1+α2

r,Cp ,Uγ,β−α1−α2

r,Cp ] ⊂ [Uγ,α1+α2

r,Cp ,Uγ,β−α1−α2

r,Cp ] = Uγ,βr,Cp ,

where the inclusion Br,Cp · U
γ,α1+α2

r,Cp ⊂ Uγ,α1+α2

r,Cp is the result of the previous paragraph. 2

Proof of Theorem 8.1. Let EBr ⊂ Uαr be the set defined in the proof of Lemma 8.2. Let
EBr,Cp = {e ⊗ 1 | e ∈ EBr} ⊂ Uαr,Cp . Consider the Lie subalgebra Br,Cp · Gr,Cp of gsp4(Br,Cp).
For every α ∈ ∆ we have Br,Cp · Gr,Cp ∩ uα(Br,Cp) = Br,Cp · Uαr . By Lemma 8.2 there exists
an ideal lα of I0, independent of r, such that lα · Br,Cp ⊂ Br,Cp · Uαr . Let l0 =

∏
α∈∆ lα. Then

Lemma 6.11 gives an inclusion

l0 · sp4(Br,Cp) ⊂ Br,Cp ·Gr,Cp . (20)

As before, let γ be an element of GSp4(Br,Cp) satisfying ΦBr = γCT1,T2γ
−1. The Lie algebra

l0 ·sp4(Br,Cp) is stable under Ad(γ−1), so (20) implies that l0 ·sp4(Br,Cp) = γ−1(l0 ·sp4(Br,Cp))γ ⊂
γ−1(Br,Cp ·Gr)γ = Br,Cp · γ−1Grγ = Br,Cp ·G

γ
r . We deduce that, for every α ∈ ∆,

l0 · uα(Br,Cp) = uα(Br,Cp) ∩ l0 · sp4(Br,Cp) ⊂ uα(Br,Cp) ∩Br,Cp ·G
γ
r,Cp

= Br,Cp · (uα(Br,Cp) ∩Gγ
r,Cp) = Br,Cp · U

γ,α
r,Cp . (21)
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By Lemma 8.3 Uα,γr,Cp is a Br,Cp-submodule of ur(Br,Cp), so Br,Cp ·U
γ,α
r,Cp = Uγ,αr,Cp . Hence, (21) gives

l0 · uα(Br,Cp) ⊂ Uγ,αr,Cp (22)

for every α. Set l1 = l20. By Lemma 6.11 and Remark 6.12, applied to the Lie algebra Gr,Cp and
the set of ideals {l1Br}α∈∆, (22) implies that l1 · sp4(Br,Cp) ⊂ Gγ

r,Cp . Observe that the left-hand
side of the last equation is stable under Ad(γ), so we can write

l1 · sp4(Br,Cp) = γ(l1 · sp4(Br,Cp))γ−1 ⊂ γGγ
r,Cpγ

−1 = Gr,Cp . (23)

The same argument as in the end of the proof of [CIT16, Theorem 6.2] shows that the
extension of scalars to Cp in (23) is unnecessary, up to restricting the ideal l1. This amounts
essentially to consider the inclusion l1 ·Br,Cp ⊂ Uαr,Cp modulo an ideal a of Ir,0, for every root α, and
rewrite it in terms of well-chosen Qp-bases for the Qp-structures of the two sides. The projective
limit over a then gives the inclusion l1 ·Br ⊂ Uαr . For l = l21, Lemma 6.11 and Corollary 6.12 give

l · sp4(Br) ⊂ Gr.

By definition, we have l = l21 = l40 =
(∏

α∈∆ lα
)4. For every α the ideal lα provided by

Lemma 8.2 is independent of r, so l is also independent of r. This concludes the proof of
Theorem 8.1. 2

Definition 8.4. We call Galois level of θ and denote by lθthe largest ideal of I0 satisfying the
inclusion (19).

8.1 The Galois level of ordinary families
We explain how, for an ordinary family of GSp4-eigenforms, we can use our arguments to prove
a stronger result than Theorem 8.1. Let M be a positive integer. Let Tord be a local component
of the big ordinary cuspidal Hecke algebra of level Γ1(M) ∩ Γ0(p) for GSp4; it is a finite and
flat Λ2-algebra. With the terminology of § 4 we consider Tord as the genus 2, 0-adapted Hecke
algebra of the given level. Suppose that the residual representation ρTord associated with Tord is
absolutely irreducible and of Sym3 type in the sense of Definition 3.11. Let θ : Tord

→ I◦ be a
family, i.e. the morphism of finite Λ2 algebras describing an irreducible component of Tord. By
taking h = 0 and rh = 1 in the construction in § 4 we obtain Th = Tord. Note that all of our
arguments and constructions are valid for this algebra; none of them relied on the fact that the
slope of the family was positive.

We keep all the notation we introduced for the family θ. Let ρ : GQ→ GSp4(I◦Tr) be the Galois
representation associated with θ. Suppose that ρ is Zp-regular in the sense of Definition 3.10. Then
we have the following.

Theorem 8.5. There exists a non-zero ideal l of I◦0 and an element g of GSp4(I◦0) such that

gΓI◦0(l)g−1 ⊂ Im ρ. (24)

The main difference with respect to the proof of Theorem 8.1 is that relative Sen theory is not
necessary anymore, because the exponential of the Sen operator defined in § 7.4 is replaced by an
element provided by the ordinarity of ρ. This is the reason why we do not need the Lie-theoretic
constructions and we obtain a group-theoretic result. Note that this also makes the inversion of
p unnecessary. Theorem 8.5 is an analogue of [Lan16, Theorem 2.4], which deals with ordinary
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families of GL2-eigenforms, and a generalization to the case where I◦ 6= Λ2 of [HT15, Theorem
4.8] for n = 2 and families of residual symmetric cube type.

We only sketch the proof of the theorem, pointing out the differences with respect to that of
Theorem 8.1.

Proof. Let u = 1+p, let χ be the p-adic cyclotomic character and, for σ ∈ I◦,×0 , let ur(σ) : GQp →

I◦,×0 be the unramified character sending a lift of the Frobenius automorphism to σ. By Hida
theory, the ordinarity of θ implies the ordinarity of the Galois representation ρ, in the sense
that the restriction of ρ to a decomposition group at p is a conjugate of an upper triangular
representation with diagonal entries given by

(χ−3 · ((1 + T1)(1 + T2))log(χ)/log(u) ur(α), χ−1 · (1 + T1)log(χ)/log(u) ur(β), χ−2

· (1 + T2)log(χ)/log(u) ur(γ),ur(δ))

for some α, β, γ, δ ∈ I◦,×0 . Consider a conjugate of ρ that has the form displayed above. Up
to conjugation by an upper triangular matrix, we can suppose that Im ρ contains a diagonal
Zp-regular element. By Proposition 6.3, we can further replace the representation with a conjugate
by a diagonal matrix such that ρ(H0) ⊂ GSp4(I◦0). This is true because the basis we start with
in the proof of Proposition 6.3 is replaced by a collinear one.

We work from now on with the last one of the conjugates of the original ρ mentioned in the
previous paragraph; this choice gives the element g appearing in Theorem 8.5. It is clear from
the form of ρ that there exists an element σ in the inertia subgroup at p such that ρ(σ) = CT1,T2 ,
where CT1,T2 is the matrix defined in § 7.4. Hence, Im ρ is stable under AdCT1,T2 . The same
argument as in Lemma 8.3, with the nilpotent algebra Uγ,αr,Cp replaced by the unipotent subgroup
Uα(Im ρ) and the extension of rings Br ⊂ Br replaced by Λ2 ⊂ I◦0, gives Uα(Im ρ) a structure of
Λ2-module for every root α of Sp4. By Proposition 6.14, Uα(Im ρ) contains a basis of a Λ2-lattice
in I◦0 for every α. Hence, by Lemma 6.6, Uα(Im ρ) contains a non-zero ideal of I◦0 for every α. By
Lemma 6.11 the group Im ρ contains a non-trivial congruence subgroup of Sp4(I◦0). 2

9. The symmetric cube morphisms of Hecke algebras

Let Sym3 : GL2→GSp4 be the morphism of group schemes over Z defined by the symmetric cube
representation of GL2. If R is a ring, we still denote by Sym3 the morphism GL2(R)→ GSp4(R)

induced by the morphism of group schemes. For every representation ρ of a group with values in
GL2(R), we set Sym3 ρ = Sym3 ◦ ρ.

Kim and Shahidi [KS02, Theorem B] proved the existence of a Langlands functoriality transfer
from GL2 to GL4 associated with Sym3 : GL2(C)→ GL4(C). Thanks to an unpublished result
by Jacquet, Piatetski-Shapiro and Shalika [KS02, Theorem 9.1], this transfer descends to GSp4.
If π is an automorphic representation of GL2, then the automorphic representation Π = Sym3 π

of GSp4 given by the above construction is globally generic. In particular, it does not correspond
to a holomorphic modular form for GSp4. However, Ramakrishnan and Shahidi showed that,
when π is associated with a modular form, the component at infinity Π∞ of Π can be replaced
by a holomorphic representation Πhol

∞ such that Πf ⊗ Πhol
∞ belongs to the L-packet of Π. This

is the content of [RS07, Theorem A′], that we recall below. Note that in [RS07, Theorem A′],
the theorem is stated only for π associated with a form f of level Γ0(N) and even weight k > 2,
but Ramakrishnan pointed out that the proof also works when f has level Γ1(N) and arbitrary
weight k > 2.
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Let π be the automorphic representation of GL2(AQ) associated with a cuspidal, non-CM
eigenform f of weight k > 2 and level Γ1(N) for some N > 1. Let p be a prime not dividing N
and let ρf,p be the p-adic Galois representation attached to f .

If K is a compact open subgroup of GSp4(Ẑ), we call the level of K the smallest integer
M such that K contains the principal congruence subgroup of GSp4(Ẑ) of level M . Given an
automorphic representation Π of GSp4(AQ), we call the level of Π the smallest integer M such
that the finite component of Π admits an invariant vector by a compact open subgroup of GSp4(Ẑ)
of level M .

Theorem 9.1 (See [RS07, Theorem A′]). There exists a cuspidal automorphic representation
Πhol =

⊗
v Πhol

v of GSp4(AQ), satisfying:

(i) Πhol
∞ is in the holomorphic discrete series;

(ii) L(s,Πhol) = L(s, π,Sym3);

(iii) Πhol is unramified at primes not dividing N ;

(iv) Πhol admits an invariant vector by a compact open subgroup K of GSp4(AQ) of level
N(Sym3 ρf,p).

A simple computation of Hodge–Tate weights gives the following corollary.

Corollary 9.2. Let f be a cuspidal, non-CM GL2-eigenform of weight k > 2. For every prime
`, let ρf,` be the `-adic Galois representation associated with f . There exists a cuspidal GSp4-
eigenform F of weight (2k − 1, k + 1) with associated `-adic Galois representation Sym3 ρf,` for
every prime `. For every prime p not dividing N , the level of F is a divisor of the prime-to-p
conductor of Sym3 ρf,p.

We denote by Sym3 f the cuspidal Siegel eigenform given by the corollary. Let N(f) and
N(Sym3 f) be the levels of f and Sym3 f , respectively. We give an upper bound for N(Sym3 f)
in terms of N(f). Let N(f) =

∏d
i=1 `

ai
i be the decomposition of N(f) in powers of distinct prime

factors. For i ∈ {1, 2, . . . , d} set

a′i =

{
1 if f is Steinberg at `i and ai = 1,

3ai otherwise.

We define M(f) =
∏d
i=1 `

a′i
i .

Corollary 9.3. We have N(Sym3 f) |M(f). In particular, N(Sym3 f) | N(f)3.

Proof. At places where the automorphic representation π giving rise to f is Steinberg and Iwahori-
spherical, we look at regular unipotent elements in the image of an inertia subgroup at p to check
that the symmetric cube of π is also Iwahori-spherical. At the other places, we give a bound on
the conductor of the local Galois representation via Livné’s formula [Liv89, Proposition 1.1] and
apply Theorem 9.1(iv). 2

Borrowing the terminology of [Lud14, § 4.3], we say that Γ
(1)
1 (N) and Γ

(2)
1 (N3) are compatible

levels for the symmetric cube transfer for all N ∈ N.
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9.1 Constructing the morphisms of Hecke algebras
As usual, we fix an integer N > 1 and a prime p not dividing N . We work with the abstract Hecke
algebras HN1 , HN2 spherical outside N and Iwahoric dilating at p. Let M = N3. If f is a non-CM
GL2-eigenform of level Γ1(N), we denote by Sym3 f the classical, cuspidal GSp4-eigenform of level
Γ1(M) given by Corollary 9.2. In the following, we define some morphisms of Hecke algebras that
allow to recover the system of Hecke eigenvalues of the p-stabilizations of Sym3 f in terms of that
of a p-stabilization of f . If χ is a system of Hecke eigenvalues, we write χ` for its local component
at the prime `.

Definition 9.4. For every prime ` - Np, let

λ` : H(GSp4(Q`),GSp4(Z`))→ H(GL2(Q`),GL2(Z`))

be the morphism defined by

T
(2)
`,0 7→ (T

(1)
`,0 )3,

T
(2)
`,1 7→ −(T

(1)
`,1 )6 + (4`− 2)T

(1)
`,0 (T

(1)
`,1 )4 + (6`− 4`2)(T

(1)
`,0 )2(T

(1)
`,1 )2 − 3`2(T

(1)
`,0 )3,

T
(2)
`,2 7→ (T

(1)
`,1 )3 − 2`T

(1)
`,1 T

(1)
`,0 .

Let λNp : HNp2 → H
Np
1 be the morphism defined by λNp =

⊗
`-Np λ`.

Definition 9.5. For i ∈ {1, 2, . . . , 8} we define morphisms

λi,p : H(T2(Qp), T2(Zp))−→ H(T1(Qp), T1(Zp)).

For i ∈ {1, 2, 3, 4}, the morphism λi,p is defined on a set of generators of H(T2(Qp), T2(Zp))− as
follows:

(1) λ1,p maps t
(2)
p,0 7→ (t

(1)
p,0)3, t

(2)
p,1 7→ t

(1)
p,0(t

(1)
p,1)4, t

(2)
p,2 7→ (t

(1)
p,1)3;

(2) λ2,p maps t
(2)
p,0 7→ (t

(1)
p,0)3, t

(2)
p,1 7→ (t

(1)
p,0)2(t

(1)
p,1)2, t

(2)
p,2 7→ (t

(1)
p,1)3;

(3) λ3,p maps t
(2)
p,0 7→ (t

(1)
p,0)3, t

(2)
p,1 7→ t

(1)
p,0(t

(1)
p,1)4, t

(2)
p,2 7→ t

(1)
p,0t

(1)
p,1;

(4) λ4,p maps t
(2)
p,0 7→ (t

(1)
p,0)3, t

(2)
p,1 7→ (t

(1)
p,0)4(t

(1)
p,1)−2, t

(2)
p,2 7→ t

(1)
p,0t

(1)
p,1.

For i ∈ {5, 6, 7, 8}, the morphism λi,p : H(T2(Qp), T2(Zp))→ H(T1(Qp), T1(Zp)) is given by

λi,p = δ◦λi−4,p,

where δ is the automorphism ofH(T1(Qp), T1(Zp)) defined on a set of generators of the subalgebra
H(T1(Qp), T1(Zp))− by

δ(t
(1)
p,0) = t

(1)
p,0, δ(t

(1)
p,1) = t

(1)
p,0(t

(1)
p,1)−1 (25)

and extended in the unique way.

Let f be as in the beginning of the section and let f st be one of its p-stabilizations. Let
χ1,p : H(GL2(Qp),GL2(Zp))→ Qp and χst

1,p : H(GL2(Qp), I1,p)
−
→ Qp be the systems of Hecke

eigenvalues at p of f and f st, respectively. Note that χ1,p is the restriction of χst
1,p to the abstract

spherical Hecke algebra at p.
Recall from § 2.2 that for g = 1, 2 there is an isomorphism of Q-algebras

ιT2
I2,p

: H(GSp2g(Qp), Ig,p)
−
→ H(Tg(Qp), Tg(Zp))−.

817

https://doi.org/10.1112/S0010437X19007048 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007048


A. Conti

Let ιI2,pT2
be its inverse. Then χst

g ◦ ι
Ig,p
Tg

is a character H(Tg(Qp), Tg(Zp))− → Qp, that can be

extended uniquely to a character (χst
g,p◦ ι

Ig,p
Tg

)ext : H(Tg(Qp), Tg(Zp))→ Qp.
The morphism λ1,p factors as ι−1,p◦λ

−
1,p for some morphism

λ−1,p : H(GSp4(Qp), I2,p)
−
→ H(GL2(Qp), I1,p)

−

and the natural inclusion ι−g,p : H(Tg(Qp), Tg(Zp))−→ H(GSp2g(Qp), Ig,p).

Definition 9.6. We set λ1 = λNp ⊗ λ−1,p.

Let χst,i
2 : HN2 → Qp be the character defined by:

(i) χst,i
2,` = χst

1,`◦λi for every prime ` - Np;

(ii) χst,i
2,p = (χst

1,p◦ ι
T1
I1,p

)ext◦λi,p◦ ι
I2,p
T2

.

Proposition 9.7. For every i ∈ {1, 2, . . . , 8}, the form Sym3 f has a p-stabilization (Sym3 f)st
i

with associated system of Hecke eigenvalues χst,i
2 . Conversely, if (Sym3 f)st is a p-stabilization of

Sym3 f with associated system of Hecke eigenvalues χst
2 , then there exists i ∈ {1, 2, . . . , 8} such

that χst
2 = χst,i

2 .

Proof. In this proof, we leave the composition with the isomorphism ιT1
I1,p

and ιT2
I2,p

implicit and we
consider χst

1,p and χst
2,p as characters of H(T1(Qp), T1(Zp))− and H(T2(Qp), T2(Zp))−, respectively,

for notational ease. Let ρf,p : GQ→ GL2(Qp) be the p-adic Galois representation associated with
f , so that the p-adic Galois representation associated with Sym3 f is Sym3 ρf,p. Via p-adic Hodge
theory, we attach to ρf,p a two-dimensional Qp-vector space Dcris(ρf,p) endowed with a Qp-linear
Frobenius endomorphism ϕcris(ρf,p) satisfying det(1−Xϕcris(ρf,p)) = χ1,p(Pmin(t

(2)
p,2;X)).

We use the notation of § 2.2.1 for the elements of the Weyl groups of GL2 and GSp4. Let αp and
βp be the two roots of χ1,p(Pmin(t

(2)
p,2;X)), ordered so that χst

1,p(t
(1)
p,1) = αp and βp = χst

1,p((t
(1)
p,1)w).

Let Dcris(ρSym3 f,p) be the four-dimensional Qp-vector space attached to ρSym3 f,p by p-adic
Hodge theory. Denote by ϕcris(ρSym3 f,p) the Frobenius endomorphism acting onDcris(ρSym3 f,p). It
satisfies det(1−Xϕcris(ρSym3 f,p)) = χ2,p(Pmin(t

(2)
p,2;X)) by [Urb05, Théorème 1]. The coefficients

of Pmin(t
(2)
p,2;X) belong to the spherical Hecke algebra at p, so we have χst

2,p(Pmin(t
(2)
p,2;X)) =

χ2,p(Pmin(t
(2)
p,2;X)). From the relation ρSym3 f,p = Sym3 ρf,p and (4) we deduce that

(X − χst
2,p(t

(2)
p,2))(X − χst

2,p((t
(2)
p,2)w1)) · (X − χst

2,p((t
(2)
p,2)w2))(X − χst

2,p((t
(2)
p,2)w1w2))

= (X − α3
p)(X − α2

pβp)(X − αpβ2
p)(X − β3

p).

In particular, the sets of roots of the two sides must coincide. As t(2)
`,2(t

(2)
`,2)w1w2 = (t

(2)
`,2)w1(t

(2)
`,2)w2

we have eight possible choices. Four choices for the 4-tuple

(χst
2,p(t

(2)
`,2), χst

2,p((t
(2)
`,2)w1), χst

2,p((t
(2)
`,2)w2), χst

2,p((t
(2)
`,2)w1w2))

are

(α3
p, α

2
pβp, αpβ

2
p , β

3
p), (α3

p, αpβ
2
p , α

2
pβp, β

3
p), (α2

pβp, α
3
p, β

3
p , αpβ

2
p), (α2

pβp, β
3
p , α

3
p, αpβ

2
p).

The other four choices are obtained by exchanging αp with βp in the above.
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By writing αp = χst
1,p(t

(1)
p,1), βp = χst

1,p((t
(1)
p,1)w) and recalling the relations t(2)

p,1 = t
(2)
p,2(t

(2)
p,2)w1 and

t
(2)
p,0 = t

(2)
p,2(t

(2)
p,2)w1w2 , we find that the first four choices for the triple

(χst
2,p(t

(2)
`,0), χst

2,p(t
(2)
p,1), χst

2,p(t
(2)
p,2))

are

(χst
1,p(t

(1)
p,0)3, χst

1,p(t
(1)
p,0(t

(1)
p,1)4), χst

1,p((t
(1)
p,1)3)), (χst

1,p(t
(1)
p,0)3, χst

1,p((t
(1)
p,0)2(t

(1)
p,1)2), χst

1,p((t
(1)
p,1)3)),

(χst
1,p(t

(1)
p,0)3, χst

1,p(t
(1)
p,0(t

(1)
p,1)4), χst

1,p(t
(1)
p,0t

(1)
p,1)), (χst

1,p(t
(1)
p,0)3, χst

1,p((t
(1)
p,0)4(t

(1)
p,1)−2), χst

1,p(t
(1)
p,0t

(1)
p,1)). (26)

The four other choices are obtained by replacing t(1)
p,0 and t(1)

p,1 in the triples above by their images
via the automorphism δ of H(T1(Qp), T1(Zp)) defined by (25).

Let λp : H(T2(Qp), T2(Zp))− → H(T1(Qp), T1(Zp)) be a morphism satisfying χst
2 =

(χst
1 )ext◦λp◦ ι−2,p (recall that we leave the maps ιTgIg,p implicit). By the arguments of the previous

paragraph, this happens if and only if the triple (λi,p(t
(2)
p,0), λi,p(t

(2)
p,1), λi,p(t

(2)
p,2)) coincides with one

of the four listed in (26) or the four derived from those by applying δ. A simple check shows that
these triples correspond to the choices λp = λi,p for i ∈ {1, 2, . . . , 8}. 2

Let f st
α be a p-stabilization of a classical, cuspidal, non-CM GL2-eigenform f . Let h be the

slope of f . For i ∈ {1, 2, 3, 4}, denote by Sym3(f st
α )i the GSp4-eigenform (Sym3 f)st

i given by
Proposition 9.7. The forms (Sym3 f)st

i with 5 6 i 6 8 coincide with (Sym3 f st
β )i, 1 6 i 6 4, where

f st
β is the p-stabilization of f different from f st

α . Let k and h be the weight and slope, respectively,
of f st

α . The following corollary is derived from Proposition 9.7 via some simple calculations.

Corollary 9.8. The slopes of the forms Sym3(f st
α )i, with 1 6 i 6 4, are

sl(Sym3(f st
α )1) = 7h, sl(Sym3(f st

α )2) = sl(Sym3(f st
α )3) = k − 1 + 5h,

sl(Sym3(f st
α )4) = 4(k − 1)− h.

If f st is a p-old GL2-eigenform of level Γ1(N)∩Γ0(p), we write χi2,f st for the system of Hecke
eigenvalues of Sym3(f st)i, 1 6 i 6 4. For a Qp-point x of DM2 let χx : HN2 → Qp be the system
of Hecke eigenvalues associated with x. For 1 6 i 6 4, let SSym3

i be the set of Qp-points x of DM2
defined by the condition

x ∈ SSym3

i ⇐⇒ ∃ a p-old GL2 -eigenform f st of level Γ1(N) ∩ Γ0(p) such that χx = χi2,f st .

By combining Corollary 9.8 with the fact that the slope is bounded on an affinoid domain, we
obtain the following.

Corollary 9.9. If i 6= 1, then the set SSym3

i is discrete in DM2 .

Remark 9.10. As a consequence of Corollary 9.9, the only symmetric cube lifts that we can hope
to interpolate p-adically are those in the set SSym3

1 .
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9.2 The symmetric cube morphism of eigenvarieties
We fix until the end of the paper a continuous representation ρ : GQ → GL2(Fp). We let DN1,ρ
be the union of the connected components of DN1 having ρ as associated residual representation.
From now on we replace DN1 implicitly with DN1,ρ (that is, we write DN1 for DN1,ρ). The only purpose
of this choice is to assure that the symmetric cube morphism of eigenvarieties of Proposition 9.11
is a closed immersion. We also replace implicitly DM2 with DM

2,Sym3 ρ
, because the symmetric cube

morphism from DN1,ρ will land into this connected component of DM2 .
There is a map Sym3

1 from the set of classical, non-CM, p-old points of DN1,ρ to the set

SSym3

1 of Corollary 9.9; it maps a point x corresponding to an eigenform f to the point of SSym3

1

corresponding to (Sym3 fx)st
1 . As we are fixing the residual representation ρ, the map Sym3

1 is
injective. Indeed, one has Sym3 ρ ∼= Sym3 ρ′ for ρ, ρ′ : GQ → GL2(Qp) if and only if ρ is a twist
of ρ′ with a character of order 3, but this can be checked to be incompatible with them having
the same residual representation.

We remind the reader that we only work on the connected components of identity of the
various weights spaces. The association k 7→ (2k − 1, k + 1) is interpolated by the morphism of
rigid analytic spaces

ι : W◦1 ↪→W◦2 ,
T 7→ (u−1(1 + T )2 − 1, u(1 + T )− 1).

Recall the morphism λ1 : HN2 →HN1 of Definition 9.6. The following proposition gives a morphism
of eigenvarieties that interpolates the map Sym3

1.

Proposition 9.11 [Con16, Propositions 3.9.5-7 and Definition 3.9.8]. There exists a closed

immersion ξ : DN,G1 → DM2 of rigid analytic spaces over Qp such that the following diagrams
commute.

DN,G1

ξ //

��

DM2

��
W◦1

ι //W◦2

HN2
λ1 //

��

HN1

��

O(DM2 )
ξ∗ // O(DN,G1 )

(27)

The proof of Proposition 9.11 presented in [Con16] relies on the results of [BC09, § 7.2.3].
One can give an alternative proof using [Han17, Theorem 5.1.6] instead.

Remark 9.12. Let f be a classical, cuspidal, CM GL2-eigenform of level Γ1(N). As f is CM,
the GSp4-eigenform Sym3 f provided by Corollary 9.2 may not be cuspidal. Suppose that it is
not. Let x be a point of DN1 corresponding to a positive slope p-stabilization of f . By [CIT16,
Corollary 3.6], x is a CM point of a non-CM component I of DN1 . Then ξ(x) belongs to the
cuspidal eigenvariety DM2 , but it is not cuspidal since Sym3 f is not. This means that ξ(x) is a
non-cuspidal specialization of a cuspidal family of GSp4-eigenforms. Brasca and Rosso [BR16]
constructed an eigenvariety for GSp4 parametrizing the systems of Hecke eigenvalues associated
with the non-cuspidal overconvergent eigenforms and they glued it with DM2 . It should be possible
to show that a cuspidal and a non-cuspidal component of this glued eigenvariety cross at ξ(x).

10. The symmetric cube locus on the GSp4-eigenvariety

The goal of this section is to give two definitions (a Galois-theoretic one and an automorphic
one) of a symmetric cube locus on the GSp4-eigenvariety and to show that they coincide. This is
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the content of Theorem 10.1. The main ingredient of the proof is Theorem 3.8. To apply it, we
assume from now on that the representation ρ fixed in the beginning of § 9.2 satisfies conditions
(∗ρ).

In the following, p is a prime number, N is a positive integer prime to p and M = N3. Let
T1 : GQ→ O(DN1 ) and T2 : GQ→ O(DM2 ) be the pseudocharacters provided by Proposition 2.5.
By an abuse of notation, if V1 and V2 are subvarieties of DN1 and DM2 , respectively, we still
write ψ1 : HN1 → O(V1) and ψ2 : HN2 → O(V2) for the compositions of ψ1 and ψ2 with the
restrictions of analytic functions to V1 and V2, respectively. We also write TV1 : GQ→ O(V1) and
TV2 : GQ → O(V2) for the compositions of T1 and T2 with the restrictions of analytic functions
to V1 and V2, respectively.

Theorem 10.1. Let V2 be a rigid analytic subvariety of DM2 . Consider the following four
conditions.

(1a) There exists a morphism of rings ψ
(1)
2 : HNp1 → O(V2) such that the following diagram

commutes.

HNp2
λNp //

ψ2

��

HNp1

ψ
(1)
2{{

O(V2)

(28)

(1b) There exists a pseudocharacter TV2,1 : GQ→ O(V2) of dimension two such that

TV2 = Sym3 TV2,1. (29)

(2a) There exists a rigid analytic subvariety V1 ofDN1 and a morphism of rings φ : O(V1)→O(V2)
such that the following diagram commutes.

HNp2
λNp //

ψ2

%%
HNp1

ψ1 // O(V1)
φ // O(V2)

(30)

(2b) There exists a rigid analytic subvariety V1 ofDN1 and a morphism of rings φ : O(V1)→O(V2)
such that

TV2 = Sym3(φ◦TV1). (31)

Then:

(i) conditions (1a) and (1b) are equivalent;

(ii) conditions (2a) and (2b) are equivalent;

(iii) condition (2b) implies condition (1b);

(iv) when V2 is a point, the four conditions are equivalent.

Proof. We prove statements (i), (ii) and (iii) for an arbitrary rigid analytic subvariety V2 of DM2 .

(1a) =⇒ (1b). Let ψ(1)
2 : HNp1 → O(V2) be a morphism of rings making diagram (28)

commute. By the argument in the proof of Proposition 9.7, the commutativity of diagram (28)
gives an equality

ψ2(Pmin(t
(2)
`,2 ;X)) = Sym3(ψ

(1)
2 (Pmin(t

(1)
`,1 ;X))). (32)
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Choose a character ε1 satisfying ε6
1 = ε. For every ` not dividing Np, let P` be a polynomial

in HNp2 [X]deg=2 satisfying

Sym3 P`(X) = ψ2(Pmin(t
(2)
`,2 ;X)); (33)

P`(0) = ε1 · (1 + T )log(χ(g))/log(u). (34)

Such a polynomial exists thanks to (32) and to Remark 4.8, and it is clearly unique. The roots
of P` differ from those of ψ2(Pmin(t

(2)
`,2 ;X)) by a factor equal to a cubic root of 1. The map

P : {γ Frob` γ
−1}`-Np; γ∈GQ → O(V2)[X]deg=2,

γ Frob` γ
−1 7→ P`,

is continuous with respect to the restriction of the profinite topology on GQ. This follows from
the fact that the maps

{γ Frob` γ
−1}`-Np; γ∈GQ → O(V2)[X]deg=4

γ Frob` γ
−1 7→ ψ2(Pmin(t

(2)
`,2 ;X)) = Sym3 P (γ Frob` γ

−1)(X)

and

{γ Frob` γ
−1}`-Np; γ∈GQ → O(V2)×

γ Frob` γ
−1 7→ P (γ Frob` γ

−1)(0) = ε1 · (1 + T )log(χ(g))/log(u)

are continuous on {γ Frob` γ
−1}`-Np; γ∈GQ . By Chebotarev’s theorem P can be extended to a

continuous map P : GQ → O(V2)[X]deg=2. Now define a map TV2,1 : GQ → O(V2) by TV2,1(g) =
(P (g)(−1)P (g)(1))/2. We can check that TV2,1 is a pseudocharacter of dimension two. Its
characteristic polynomial is P , so the fact that TV2 = Sym3 TV2,1 follows from (33).

(1b) =⇒ (1a). Suppose that there exists a pseudocharacter TV2,1 : GQ → OV2 such that
TV2 = Sym3 TV2,1. Then Pchar(TV2) = Sym3 Pchar(TV2,1). By evaluating the two polynomials at
Frob` we obtain

ψ2(Pmin(t
(2)
`,2 ;X)) = Pchar(TV2)(Frob`) = Sym3 Pchar(TV2,1)(Frob`)

= Sym3

(
X2 − TV2,1(Frob`)X +

TV2,1(Frob`)
2 − TV2,1(Frob2

` )

2

)
, (35)

where the first equality is given by Proposition 2.5 and the last one comes from a trivial
calculation. Let ψ(1)

2 : HNp1 → O(V2) be a morphism of rings satisfying

X2 − TV2,1(Frob`)X +
TV2,1(Frob`)

2 − TV2,1(Frob2
` )

2
= X2 − ψ(1)

2 (T
(1)
`,1 )X + `ψ

(1)
2 (T

(1)
`,0 ) (36)

for every ` - Np. It is clear that such a morphism exists and is unique. Note that the right-hand
side of (36) is ψ(1)

2 (Pmin(t
(1)
`,1 ;X)). Then (35) gives

ψ2(Pmin(t
(2)
`,2 ;X)) = Sym3(ψ

(1)
2 (Pmin(t

(1)
`,1 ;X))).

Exactly as in the proof of Proposition 9.7, by developing the two polynomials and comparing
their coefficients we obtain that ψ2 = ψ

(1)
2 ◦λNp. Hence ψ

(1)
2 fits into diagram (28).
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(2a) ⇐⇒ (2b). Let V1 be a subvariety of DN1 and let φ : O(V1)→ O(V2) be a morphism of
rings. We show that the couple (V1, φ) satisfies condition (2a) if and only if it satisfies condition
(2b). For g = 1, 2 and every prime ` - Np Proposition 2.5 gives

Pchar(TVg)(Frob`) = ψg(Pmin(t
(g)
`,g ;X)). (37)

The argument in the proof of Proposition 9.7 gives an equality

λNp(Pmin(t
(2)
`,2 ;X)) = Sym3(Pmin(t

(1)
`,1 ;X)). (38)

As the set {γ Frob` γ
−1}`-Np; γ∈GQ is dense in GQ, the pseudocharacters Sym3(φ◦TV1) and TV2

coincide if and only if their characteristic polynomials coincide on Frob` for every ` - Np. By
(37), the condition above is equivalent to

Sym3(φ◦ψ1(Pmin(t
(1)
`,1 ;X))) = ψ2(Pmin(t

(2)
`,2 ;X))

for every ` - Np. Thanks to (38) the left-hand side can be rewritten as

Sym3(φ◦ψ1(Pmin(t
(1)
`,1 ;X))) = φ◦ψ1(Sym3(Pmin(t

(1)
`,1 ;X))) = φ◦ψ1◦λNp(Pmin(t

(2)
`,2 ;X)).

When ` varies over the primes not dividing Np the coefficients of the polynomials Pmin(t
(2)
`,2 ;X)

generate the Hecke algebra HNp2 . Hence, the equality of the right-hand sides of the last two
equations holds if and only if φ◦ψ1◦λNp = ψ2.

(2b) =⇒ (1b). Suppose that condition (2b) is satisfied by some closed subvariety V1 of
DN1 and some morphism of rings φ : O(V1) → O(V2). Consider the pseudocharacter TV2,1 =

φ◦TV1 : GQ→ O(V2). Clearly TV2,1 satisfies condition (1b).

It remains to prove that condition (1b) =⇒ condition (2b) when V2 is a Qp-point of DM2 .
Here, we need to apply Theorem 3.8. Write x2 for the point V2; the system of eigenvalues ψx2

is that of a classical GSp4-eigenform. By Remark 2.6(i) Tx2 is the pseudocharacter associated
with a representation ρx2 : GQ → GL4(Qp). Let E be a finite extension of Qp over which ρx2 is
defined. Suppose that x2 satisfies condition (1b). Let Tx2,1 : GQ → Qp be a pseudocharacter
such that Tx2

∼= Sym3 Tx2,1. By Taylor’s theorem in [Tay91] there exists a representation
ρx2,1 : GQ → GL2(Qp) such that Tx2,1 = Tr(ρx2,1). From the definition of the symmetric cube
of a pseudocharacter, we deduce that ρx2

∼= Sym3 ρx2,1. As ρx2 is attached to an overconvergent
GSp4-eigenform, Theorem 3.8(ii) implies that ρx2,1 is the p-adic Galois representation attached
to an overconvergent GL2-eigenform f . Such a form defines a point x1 of the eigencurve DN1 .
Thus, the subvariety V1 = x1 satisfies condition (2b). 2

In light of Theorem 10.1, we give the following definitions.

Definition 10.2.

(i) We say that a subvariety V2 of DM2 is of Sym3 type if it satisfies the equivalent conditions
(2a) and (2b) of Theorem 10.1.

(ii) The Sym3-locus of DM2 is the set of points of DM2 of Sym3 type.
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Recall the closed immersion ι : W◦1 → W◦2 defined in § 9.2. Let DM2,ι be the one-dimensional
subvariety of DM2 fitting in the following Cartesian diagram.

DM2,ι

��

// DM2
w2

��
ι(W◦1 )

ι //W◦2

The following lemma follows from a simple computation involving the generalized Hodge–Tate
weights of a point of Sym3 type.

Lemma 10.3. The Sym3-locus of DM2 is contained in the one-dimensional subvariety DM2,ι.

The Sym3-locus of DM2 admits a Hecke-theoretic definition thanks to condition (2b) of
Theorem 10.1.

We define an ideal ISym3 of O(DM2 ) by

ISym3 = ψ2(ker(ψ1◦λNp)) · O(DM2 ).

We denote by DM
2,Sym3 the analytic Zariski subvariety of DM2 defined as the zero locus of the ideal

ISym3 .

Proposition 10.4.

(i) The Sym3-locus of DM2 is the set of points underlying DM
2,Sym3 .

(ii) The variety DM
2,Sym3 is of Sym3 type.

(iii) A rigid analytic subvariety V2 of DM2 is of Sym3 type if and only if it is a subvariety of
DM

2,Sym3 .

(iv) A rigid analytic subvariety V2 of DM2 satisfies conditions (1a) and (1b) of Theorem 10.1 if
and only if it is a subvariety of DM

2,Sym3 .

Proof. Statements (i) and (ii), together with the ‘if’ implications of statements (iii) and (iv),
follow immediately from the definition of DM

2,Sym3 . If V2 satisfies condition (2a) of Theorem 10.1,
then one has ψ2 = φ◦ψ1◦λNp for some φ : O(V1)→ O(V2), so ψ2 must vanish on ker(ψ1◦λNp),
giving the ‘only if’ implication of statement (iii).

For the remaining direction of statement (iv), let V2 be a rigid analytic subvariety of DM2
satisfying conditions (1a) and (1b) of Theorem 10.1. Let x2 by a point of V2. Then x2 satisfies
conditions (1a) and (1b). By Theorem 10.1, x2 also satisfies conditions (2a) and (2b), so it is a
point of DM

2,Sym3 . We conclude that V2 is a subvariety of DM
2,Sym3 . 2

Remark 10.5. By Proposition 10.4 the Sym3-locus in DM2 can be given the structure of a Zariski-
closed rigid analytic subspace. From now on, we will always consider the Sym3-locus as equipped
with this structure and we will identify it with the subvariety DM

2,Sym3 of DM2 .

Proposition 10.4(i) and Lemma 10.3 give the following.

Corollary 10.6. The Sym3-locus intersects each irreducible component of DM2 in a proper
analytic subvariety of dimension at most 1.
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Propositions 10.4(iii) and (iv) allow us to improve the result of Theorem 10.1.

Corollary 10.7. For every rigid analytic subvariety V2 of DM2 , conditions (1a), (1b), (2a) and

(2b) of Theorem 10.1 are equivalent.

11. An automorphic description of the Galois level

11.1 The fortuitous Sym3-congruence ideal of a finite slope family
Let θ : Th � I◦ be a finite slope family and let ρ : GQ → GSp4(I◦Tr) be the representation
associated with θ in the previous section. Recall that ρ is absolutely irreducible by assumption.
We also assume that ρ is Zp-regular and of residual Sym3 type, as in Definitions 3.10 and 3.11.
In this section, we define a ‘fortuitous congruence ideal’ for the family θ. It is the ideal describing
the intersection of the Sym3-locus of DM2 with the family θ. Recall that the Sym3-locus is the
zero locus of the ideal ISym3 of O(DM2 )◦ defined in § 10 and that rDM,h2,Bh

: O(DM2 )◦→ Th denotes

the restriction of analytic functions.

Definition 11.1. The fortuitous Sym3-congruence ideal for the family θ : Th → I◦ is the ideal
of I◦0 defined by

cθ = (θ◦ rDM,h2,Bh

)(ISym3) · I◦ ∩ I◦0.

In most cases, we will simply refer to cθ as the ‘congruence ideal’. The next proposition
describes its main properties. Let I be an ideal of I◦ and let ITr = I ∩ I◦Tr. Let ρI : GQ →

GSp4(I◦Tr/ITr) be the reduction of ρ modulo I. If θ1 : Th,1 → J is a finite slope family of GL2-
eigenforms we denote by ρθ1 : GQ→ GL2(J) the associated Galois representation. For an ideal J
of J we let ρθ1,J : GQ→ GL2(J/J ) be the reduction of ρθ1 modulo J .

For an ideal I of I◦0 we denote by ρI : H0→ GSp4(I◦0/I) the reduction of ρ|H0 modulo I. We
give the following characterization of cθ.

Lemma 11.2. Let P0 be a prime ideal of I◦0. The following are equivalent:

(i) P0 ⊃ cθ;

(ii) there exists a finite extension I′ of I◦Tr/P0I◦Tr and a representation ρP0I◦Tr,1
: GQ → GL2(I′)

such that ρP0I◦Tr

∼= Sym3 ρP0I◦Tr,1
over I′;

(iii) for one prime P of I◦Tr lying above P0, there exists a finite extension I′ of I◦Tr/P and a

representation ρP,1 : GQ→ GL2(I′) such that ρP ∼= Sym3 ρP,1 over I′;
(iv) there exists a representation ρP0,1 : H0→ GL2(I◦0/I) such that ρP0

∼= Sym3 ρP0,1 over I◦0/I.

Note that we did not specify the image in the weight space of the admissible subdomain of
DN1 associated with the family θ1. It is the preimage in W◦1 of the disc B2,h via the immersion
ι : W◦1 →W◦2 defined in § 9.2.

Proof. As all the coefficient rings are local and all the residual representations are absolutely
irreducible, we can apply the results of § 10 by replacing pseudocharacters everywhere with the
associated representations, that exist by [Rou96, Corollary 5.2] and are defined over the ring of
coefficients of the pseudocharacter by Carayol’s theorem [Car94, Théorème 1].
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Now the equivalence (i)⇐⇒ (ii) follows from Proposition 10.4(iv) applied to the rigid analytic
variety V2 = I. The equivalence (ii) ⇐⇒ (iii) follows from Proposition 10.4(iii) by checking that
the slopes satisfy the required inequality: this is a consequence of Corollary 9.8 and Remark 9.10.

If condition (iii) is satisfied by some ρP0,1, then ρP0,1 = ρP,1|H0 satisfies condition (iv). If
condition (iv) holds, then the image of ρP0 is contained in Sym3 GL2(I◦0/I). As ρP0 = ρP0I◦Tr

|H0

Lemma 3.14 implies that, after extending the coefficients to a finite extension I′0 of I◦Tr/P0I◦Tr the
image of ρP0I◦Tr

is contained in Sym3 GL2(I′0). This gives condition (ii), completing the proof. 2

We gather some information on the congruence ideal.

Lemma 11.3.

(i) The ideal cθ is of height one. In particular, it is non-zero.

(ii) If there is no representation ρ1 : GQ→ GL2(Fp) satisfying ρ ∼= Sym3 ρ1, then cθ = I◦0.

(iii) Suppose that there exists a non-CM classical point x ∈ DN1 of weight k such that sl(x) 6 h/7
and ι(k) ∈ B2,h and k > h − 4. Then there exists a family θ of GSp4-eigenforms of slope
bounded by h such that cθ has a prime divisor of height 1.

Proof. Part (i) is an immediate consequence of Corollary 10.6. Part (ii) follows trivially from
the definition of cθ. We prove part (iii). Let x be a point satisfying the assumptions of part (iii)
and let f be the corresponding classical GL2-eigenform. Let Sym3 x be the point of DM2 that
corresponds to the form (Sym3 f)st

1 defined in Proposition 9.7. Let ξ : DN,G1 → DM2 be the map
of rigid analytic spaces given by Proposition 9.11. The image of an irreducible component J of
DN,G1 containing x is an irreducible component of DM2 that contains ξ(J). By Corollary 9.8, we
have sl(Sym3 x) 6 h. As k + 1 > h − 3, the weight map is étale at the point Sym3 x, so there
exists only one irreducible component of DM2 containing Sym3 x. We denote by θ the finite slope
family supported in such a component and containing Sym3 x, and by I the support of θ. By our
last remark, the space ξ(J) intersects the admissible domain I in a one-dimensional subspace.
The ideal of I◦ = O(I)◦ consisting of elements that vanish on ξ(J) is a height-one ideal of I that
divides the congruence ideal cθ. In particular, cθ admits a height-one prime divisor. 2

The fortuitous Sym3-congruence ideal is an analogue of the congruence ideal of [CIT16,
Definition 3.10]. There is an important difference between the situation studied here and in
[CIT16] and those treated in [Hid15, HT15]. In [Hid15, HT15], the congruence ideal describes
the locus of intersection between a fixed ‘general’ family (i.e. such that its specializations are not
lifts of forms from a smaller group) and the ‘non-general’ families. Such non-general families are
obtained as the p-adic lift of families of overconvergent eigenforms for smaller groups (e.g. GL1/K

for an imaginary quadratic field K in the case of CM families of GL2-eigenforms, as in [Hid15],
and GL2/F for a real quadratic field F in the case of ‘twisted Yoshida type’ families of GSp4-
eigenforms, as in [HT15]). In our setting, there are no non-general families: the overconvergent
GSp4-eigenforms that are lifts of overconvergent eigenforms for smaller groups must be of Sym3

type by Lemma 3.15 and Theorem 3.8, and we know that the Sym3-locus on the GSp4-eigenvariety
does not contain any two-dimensional irreducible component by Lemma 11.3(i). Hence, the ideal
cθ measures the locus of points that are of Sym3 type, without belonging to a two-dimensional
family of Sym3 type. For this reason, we call it the ‘fortuitous’ Sym3-congruence ideal. This is a
higher-dimensional analogue of the situation of [CIT16], where it is shown that the positive slope
CM points do not form one-dimensional families, but appear as isolated points on the irreducible
components of the eigencurve (see [CIT16, Corollary 3.6]).
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11.2 Comparison of the Galois level with the congruence ideal
In § 8, we attached a Galois level to a family of finite slope GSp4-eigenforms. The goal of this
section is to compare this Galois theoretic objects with the congruence ideal introduced in § 11.1,
that is an object defined in terms of congruences of overconvergent automorphic forms.

We work in the setting of Theorem 8.1. In particular, h is a positive rational number, θ : Th→
I◦ is a family of GSp4-eigenforms of slope bounded by h and ρ : GQ → GSp4(I◦Tr) is the Galois
representation associated with θ. We make the same assumptions on θ and ρ as in Theorem 8.1;
in particular, ρ is Zp-regular and the residual representation ρ is either full or of symmetric cube
type. With the family θ we associate two ideals of I0:

– the ideal cθ · I0, where cθ is the fortuitous (Sym3, I◦0)-congruence ideal (see Definition 11.1);
– the Galois level lθ (see Definition 8.4).

To simplify notation, we write cθ for cθ ·I0. For every ring R and every ideal I of R, we denote
by VR(I) the set of primes of R containing I. The theorem below is an analogue of [CIT16,
Theorem 6.2]. The set Sbad of ‘bad’ primes of I◦0 was defined in § 7.1. Note that VI0(lθ) ∩ Sbad is
empty because the property defining the Galois level only involves lθ ·Br, and the primes in Sbad

are invertible in Br.

Theorem 11.4. There is an equality of sets VI0(cθ)− Sbad = VI0(lθ).

Recall that there is a natural inclusion ιr : I0 ↪→ Ir,0.

Proof. First we prove that VI0(cθ)−Sbad ⊂ VI0(lθ)−Sbad. Choose a radius r in the set {ri}i∈N>0

defined in § 4. Let P ∈ VI0(cθ) − Sbad and let ρP be the reduction of ρ|H0 : H0 → GSp4(I0)
modulo P . By Proposition 11.2 there exists a representation ρP,1 : H0 → GL2(I0/P ) such that
ρP ∼= Sym3 ρP,1. Let ρr,P = ιr◦ ρP and ρr,P,1 = ιr◦ ρP,1. The isomorphism above gives ρr,P ∼=
Sym3 ρr,P,1.

Suppose by contradiction that lθ 6⊂ P . By the definition of lθ, we have Gr ⊃ lθ ·sp4(Br). Recall
that Br/P = Ir,0/P by the construction of Br. By looking at the previous inclusion modulo P ,
we obtain

Gr,P ⊃ (lθ/(P ∩ lθ)) · sp4(Ir,0/P ). (39)

As lθ 6⊂ P , we have lθ/(P ∩ lθ) 6= 0. By definition, Gr,P = Qp · log Im ρr,P . By our previous
argument Im ρr,P ⊂ Sym3 GL2(Ir,0/P Ir,0), so log Im ρr,P cannot contain a subalgebra of the form
I · sp4(Ir,0/P Ir,0) for a non-zero ideal I of Ir,0/P Ir,0. This contradicts (39).

We prove the inclusion VI0(lθ) − Sbad ⊂ VI0(cθ) − Sbad. Let P be a prime of I0. We have
to show that if P /∈ Sbad and lθ ⊂ P , then cθ ⊂ P . Every prime of I0 is the intersection of the
maximal ideals that contain it, so it is sufficient to show the previous implication when P is a
maximal ideal.

Let P be a maximal ideal of I0 such that P /∈ Sbad and lθ ⊂ P . Let κP be the residue field
I0/P . We define two ideals of Ir,0 by lθ,r = ιr(lθ)Ir,0 and Pr = ιr(P )Ir,0. Note that ιr induces an
isomorphism I0/P ∼= Ir,0/Pr. In particular, Pr is maximal in Ir,0 and Ir,0/Pr ∼= κP , which is a
local field.

As before, let ρr,P = ιr◦ ρP . The residual representation ρr,P : H0 → GSp4(I◦r,0/mI◦r,0)

associated with ρr,P coincides with ρ|H0 . In particular, ρr,P is of residual Sym3 type in the
sense of Definition 3.11. Let Gr,P = Im ρr,P and G◦r,P be the connected component of the identity

in Gr,P . Let G◦r,P
Zar be the Zariski-closure of G◦r,P in GSp4(Ir,0/Pr). As ρr,P is residually either
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full or of symmetric cube type, by the classification preceding Lemma 3.15 one of the following
must hold:

(i) the algebraic group G◦r,P
Zar is isomorphic to Sym3 SL2 over Ir,0/Pr;

(ii) the algebraic group G◦r,P
Zar is isomorphic to Sp4 over Ir,0/Pr.

In both cases, let H0 denote the normal open subgroup of H0 satisfying Im ρr,P |H0 = G◦r,P .
As H0 is open and normal in GQ, H0 is also open and normal in GQ. In case (i), there exists a
representation ρ0

r,P : H0
→ GL2(Ir,0/Pr) such that ρr,P |H0

∼= Sym3 ρ0
r,P . As the image of ρr,P |H0

is Zariski-dense in the copy of SL2(Ir,0/Pr) embedded via the symmetric cube map, the image
of ρ0

r,P is Zariski-dense in SL2(Ir,0/Pr). From Lemma 3.14, we deduce that Im ρ0
r,P contains

a congruence subgroup of SL2(Ir,0/Pr). Now the hypotheses of Lemma 3.14 are satisfied by
the representation ρ0

r,P and the group H0, so we conclude that there exists a representation
ρ′H0,r,P

: H0 → GL2(Ir,0/Pr) such that ρH0,r,P
∼= Sym3 ρ′H0,r,P

. By Lemma 11.2, the prime P
must contain cθ, as desired.

We show that case (ii) never occurs. Suppose by contradiction that G◦H0,r,P
Zar ∼= Sp4 over

Ir,0/Pr. By Propositions 5.11 and 5.14, we know that the field I0/P is generated over Qp by
the traces of Ad(ρP |H0). Hence, the field Ir,0/Pr is generated over Qp by the traces of Ad ρr,P .
By Theorem 3.13 applied to Im ρr,P , there exists a non-zero ideal lr,P of Ir,0/Pr such that Gr,P
contains the principal congruence subgroup ΓIr,0/Pr(lr,P ) of Sp4(Ir,0/Pr). By definition Gr,P =

Qp · log(Im ρr,P |Hr), where Hr is open in GQ, so up to replacing lr,P by a smaller non-zero ideal
we have

lr,P · sp4(Ir,0/Pr) ⊂ log(ΓIr,0/Pr(lr,P )) ⊂ log(ιr,0(GP )) ⊂ Gr,P . (40)

The algebras Gr,P are independent of r in the sense of Remark 7.3, so there exists an ideal lP of
I0/P such that, for every r in the set {ri}i>1, the ideal lr,P = ιr(lP ) satisfies (40). We choose the
ideals lr,P of this form.

As before, ∆ is the set of roots of GSp4 with respect to the chosen maximal torus. Let α ∈ ∆.
Let Uαr and Uαr,Pr be the nilpotent Lie subalgebras of Gr and Gr,Pr , respectively, corresponding
to α. We denote by πPr the projection gsp4(Br)→ gsp4(Br/PrBr). Clearly Gr,Pr = πPr(Gr), so
Uαr,Pr = πPr(U

α
r ). Equation (40) gives lr,Puα(Ir,0/Pr) ⊂ Uαr,Pr . Choose a subset AαP of uα(I0) such

that, for every r, ιr(AαP ) ⊂ Uαr and πPr(ιr(AαP )) = lr,Pu
α(Ir,0/Pr). Such a set exists because the

algebras Uαr are independent of r by Remark 7.3 and the ideals lr,P have been chosen of the form
ιr(lP ). Let AP be the ideal generated by AP in uα(I0) and set AP =

(∏
α∈∆ AαP

)4. By the same
argument as in the proof of Theorem 8.1, the ideal AP satisfies

ιr(AP ) · sp4(Br) ⊂ Gr.

As lθ · sp4(Br) ⊂ Gr for every r, we also have (lθ + AαP )sp4(Br) ⊂ Gr for every r.
By assumption lθ ⊂ P , so πP (lθ) = 0. By the definition of AP , we have πP (AP )⊃ πP (AP ) = lP ,

so πP (lθ + AP ) = lP . We deduce that lθ + AP is strictly larger than lθ. This contradicts the fact
that lθ is the largest among the ideals l of I0 satisfying l · sp4(Br) ⊂ Gr. 2

By combining Theorem 11.4 and Lemma 11.3(ii), we obtain the following.

Corollary 11.5. When the residual representation ρ is full, the Galois level lθ is trivial.
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