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1. Introduction. The purpose of this paper is to point out a flaw in H. B. Griffiths'
covering space approach to residual properties of groups [3]. One is led to this paper from
Lyndon and Schupp's book [4, pp. 114, 141] where it is cited for covering space methods
and a proof that F-groups are residually finite. However the main result of [3] is false.

The problem is as follows. Given a group-theoretic property n, a group G is said to
be residually n if for every element g ^ 1 of G there exists a quotient group G which is a
;r-group such that the image of g is non-trivial in G. Equivalently, G is residually n if and
only if the collection of normal subgroups N of G such that G/N is a ;r-group has trivial
intersection. For more details, see Magnus [5].

Consider the following situation. Suppose G is a group and let a series

G = G0^Gl^G2^G3^... (1)

of normal subgroups of G be given. Then if each quotient G/Gn is a 7r-group and the
intersection of the terms of the series is trivial, it follows that G is residually n.

To investigate the series (1) topologically, choose a locally 1-connected topological
space X such that K\{X) = G and form the sequence of covering spaces

A . . (2)

corresponding to the series of subgroups (1). Denote the inverse limit of the system (2) of
CO

topological spaces and maps by lim Xn. Let J = {~\ Gn and let Xj be the covering space
corresponding to the subgro.up J. "=0

In [3], Griffiths makes the claim that there is an injective homomorphism

of the Cech homology groups with compact carriers and arbitrary coefficients, see
Theorem 1 of [3]. However in Section 2 we given a counterexample to this.

As an alternative approach, we use singular homology. The corresponding assertion
in singular homology is true and easy to prove, see Theorem 3.2. But the singular
homology of the inverse limit lim Xn is usually more difficult to compute. Cech homology
has the computational advantage of being continuous in the sense that Hl(\\mXn) =
lim Hx(Xn), at least when the spaces involved are compact.

This technique is applied to study residual properties of groups as follows. Suppose
the quotient G/Gn is a ^-group for each term in the series (1). Then if one can show the
singular homology Hl(\imX,,) = 0, it follows that Hl(XJ) = 0; that is, J = it\(Xj) is a
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perfect group. And if G is known to contain no non-trivial perfect subgroups, then

J = P | Gn is trivial and hence G is residually n. As a specific example, in Section 4 we

give a covering space proof that free groups are residually finite /^-groups for any prime p.

NOTATION. For convenience, all topological spaces are assumed to come with a
preferred base point and if the space is a simplicial complex, the base point is at a vertex.
The base point is then omitted from the notation of the fundamental group. Furthermore,
all covering maps are assumed to be base point preserving.

If G is a group, its abelianization is denoted Gab. We use additive notation for Gab,
for example, p. Gab is the subgroup of pth powers in Gab. The torsion subgroup of Gab is
denoted T(G). If G is finitely generated, T(G) has a free abelian complement in Gab, i.e.,
Gab=T(G)®F(G) for some (non-unique) free abelian subgroup F(G)<=Gab.

2. Counterexample. We make use of the following observation. Let G be a finitely
generated group. Then there exists a series as in (1) of subgroups with the properties:

0) Gn*sG,
(ii) Gn has finite index in G,

(iii) The image of Gab
+1 -»Gab lies in p . F{Gn),

where F(Gn) is some free abelian complement of T{Gn) in Gab; thus Gf=T(Gn)®
F(Gn).

The sequence is constructed inductively as follows. Let Go = G. Having constructed
Go,.. . , Gn, write Gab = T(Gn)®F(Gn) where T(Gn) is the torsion subgroup and F(G,,) is
free abelian (note that (ii) implies G,, is finitely generated). Then let H £ G,, be the
subgroup corresponding to p. F(Gn), so that Gn/H = Gf'/p. F(Gn). Then H has finite
index in Gn and hence in G. So there exists a subgroup Gn+i^H such that Gn+i has finite
index and is normal in G. Moreover the inclusion induced homomorphism Ga + 1-»Ga,b

factors through //ab so its image lies in p. F(Gn). We see that Gn+1 satisfies (i)-(iii), as
required.

Now, to make a counterexample to Griffiths' claim, start with a finitely presented
solvable group G that is not residually finite. For the existence of such groups, see Abels
[1]. Construct a series of subgroups (1) satisfying (i)-(iii) as above. Choose a compact,
connected simplicial complex X such that Kl(X) = G. Then each space Xn, in the
sequence of coverings (2) corresponding to the series of subgroups (1), is also compact as
the Gn have finite index in G. Furthermore //1(A'n) = Ga,b as X,, is a simplicial complex,
and the sequence of homology groups induced by (2) is naturally isomorphic to

G ab /~<ab /-~-ab /-«ab /OX

- G o <-G, <r-G2 <-... (3)

where Gab
+, -> Gab is induced by the inclusion Gn+l c Gn.

We observe that conditions (i)-(iii) imply

(iv) lim Gab = 0.

To see this, let (gn)"=() be an element of lim G^b. Fix an integer n > 0. Then for each
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integer m >0, gn is in the image of Gf+m^>Gf. By (iii), this image lies in the subgroup

p'" . F(Gn). Hence each gn e (~) pm • F(Gn) = 0, so (gn) = 0 as required.
m=0

Now by the continuity of tech homology (see Eilenberg-Steenrod [2]), //,(lim Xn) =

lim Hi(Xn) = lim GJlb = 0. Since G is non-residually finite, J = n Gn # 1. But G is solvable,
so it contains no non-trivial perfect subgroups. Hence H}(Xj) = Jab ¥= 0 and there
cannot be an injective homomorphism //l(Ar

y)^//i(lim Xn). Therefore Griffiths' result is
false in general.

3. The result in singular homology. Recall the setup of the introduction: a group G
and a series of subgroups (1) of G are given; X is a locally 1-connected topological space
with K\(X) = G and we form the sequence (2) of covering spaces corresponding to the
sequence of subgroups (1). (Assume throughout that all spaces are connected.)

We may assume that A' is a connected simplicial complex. Then the sequence (2) is
an inverse system of simplicial complexes and simplicial maps. There are two ways to
form the inverse limit of this system: either in the category of topological spaces or in the
simplicial category. We now describe these and note that in general the results are
different spaces.

The inverse limit in the topological category, which we denote by limA',,, is defined

to be the subset of the cartesian product IT Xn consisting of the sequences (xn)"=() such

that *,,_, = ip,,(x,,)- There are continuous projections qm:lim Xn —»Xm such that the
diagrams:

Xm
qm

lim Xn

<?«

are commutative for all positive integers m. Indeed lim A'n and the projections are

characterized by being universal among spaces and projections with this property.
The inverse limit of (2) in the simplicial category, denoted A, is constructed as

follows. The simplexes of A consist of sequences (an)^=0 where an is a simplex in Xn and
Vnivn) = o"/i-i- The face relation is given by: (a'n) is a face of (an) if a'n is a face of a,, in
X,, for each n. This collection of simplexes and the face relation form an (abstract)
simplicial complex. Let A be the realization with the usual simplicial complex topology.

There is a natural simplicial (hence continuous) map &—*Xn for each n. These maps
determine a continuous map h: A—> lim Xn.

REMARK 3.1. The map h is easily seen to be bijective, though we don't use this fact.
But h is not necessarily a homeomorphism. For example, if each Xn is a finite complex
(i.e., compact) then it is well-known that lim Xn is also compact. However if the number

of simplexes in Xn is unbounded as n—»°°, then A is not compact (i.e., it has infinitely
many simplexes).
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cc

Recall that J = f~) Gn and Xj —» X is the covering space corresponding to the
«=o

subgroup J. Since / ^ Gn, there is a unique base point preserving lift Xj—*Xn for each n.
These maps determine a map <p: Xj -»lim A"n into the inverse limit. Since the maps
A'y—»A",, are simplicial, they also determine a simplicial map 6:Xj-+A. Note that the
composition

Xj •?*&•** Mm Xn

is <p. We have the following.

THEOREM 3.2. 77te induced map (p:l.:H:i.(Xj)—>H!i.(MmXn) on singular homology with

any coefficients is injective. Moreover, this map splits so H%(Xj) is a retract of H^(Mm Xn).

Proof. Let |5(lim Xn)\ be the geometric realization of the singular complex of lim Xn.
Since Xj is a simplicial complex, the map <p:Xj —> lim X,, factors through |5(lim X,,)\:

where a:\Si\\mXn)\^Mm.Xn is the canonical map. Now |5(limA'n)| is a connected

CW-complex and the map

factors through U\{Xn) = Gn for all n, so the image is in C]Gn =J. Thus |S(limXn)\->X

lifts to Xj. Then

is a lift of the covering map Xj—*X. By uniqueness of lifts, the composition is the identity;
whence H^Xj) -* H*(\S{Mm Xn)\) is split injective. Since a*: //^(^(lim Xn)\) --> //^(lim Xn)

is an isomorphism, the statement of the theorem follows.

COROLLARY 3.3. The induced map dil..Hif{Xj)^>H%{L) on singular {or simplicial)
homology is injective.

Next consider the inverse limit lim C(Xn) of the system of simplicial chain complexes
induced by the sequence (2). The natural chain maps C(A)—»C(A',,) determine a chain
mapC(A)-»limC(*n).

LEMMA 3.4. The chain map C(A)—»lim C(Xn) is injective.

Proof. Given a non-trivial chain 5) «,o-, in C(A), notice that for sufficiently large n,
the o", are mapped by C(k)^>C(Xn) to distinct simplexes in C{Xn). Whence the image
of 2 n,o-, is non-trivial in lim C{Xn).

The following consequence is used in the next section.
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LEMMA 3.5. If X is a 1-complex then there is an injective homomorphism

//,(A)-»lim//,(*„).

Proof. In this case, each Xn and A are also 1-complexes so their 1st homology groups
are equal to the simplicial 1-cycles: //,(A) = Z,(A) and Hx(Xn) = Z ,(*„). Therefore the
natural inclusion C1(A)-»lirnC1(A

r
n) of the previous lemma restricts to the desired

monomorphism.

4. Application to free groups. As an application, we give a proof of a result due to
Iwasawa:

Free groups are residually finite p-groups for any prime p.

Since finite p-groups are nilpotent, an immediate consequence is Magnus' theorem [6]
that free groups are residually nilpotent, that is, the terms of the lower central series of a
free group intersect trivially; also see [7, p. 314].

To prove Iwasawa's theorem, it clearly suffices to consider only finitely generated
free groups. So let G be a finitely generated free group and consider the series (1)
constructed in Section 2. Since the abelianization of a free group is torsion free, the
construction simplifies and it follows that for n > l , G,, = GP"[G,G] where Gp" is the
subgroup jenerated by p"th powers of elements of G. That is, G,, is the subgroup
corresponding to p". Gab. Observe that the series satisfies a stronger form of condition
(ii), namely:

(ii') GIG,, = Gahlpn. Gab is a finite p-group.
The proof is completed by showing that J = P|«=o G,, is trivial. For this, let A' be a

finite graph (connected 1-complex) with nl{X) = G and form the sequence of covering
spaces

X = XQ *.— X i <— X 2 *— X 2 *— . . .

corresponding to the series in G constructed above. Then the composite of the maps of
Corollary 3.3 and Lemma 3.5 gives an injective homomorphism //|(A"y)—»lim H{{Xn),

where X} is the covering space corresponding to the subgroup J. But lim//,(A'n)s

lim Gab = 0 as noted in (iv) of Section 2. Consequently Jab = Hi(Xj) is trivial and hence

J is trivial because free groups contain no non-trivial perfect subgroups.
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