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ON A CLASS OF ARCHIMEDEAN INTEGRAL DOMAINS 

RAYMOND A. BEAUREGARD AND DAVID E. DOBBS 

1. Introduction. Our starting point is an observation in elementary number 
theory [10, Exercise 26, p. 17]: if a and b are positive integers such that each 
number in the sequence a, b2, a3, &4, . . . divides the next, then a = b. Its proof 
depends only on Z being a unique factorization domain (UFD) whose units 
are 1, —1. Accordingly, we abstract and say that a (commutative integral) 
domain R satisfies (*) in case, whenever nonzero elements a and b in R are 
such that each element in the sequence a, b2, a3, bA, . . . divides the next, then 
a and b are associates in R (that is, a = bu for some unit u of R). The main 
objective of this paper is the study of the class of domains satisfying (*). 

This class is shown to be situated properly between the classes of completely 
integrally closed and of Archimedean domains (definitions recalled in Section 
2) and, for integrally closed domains, it fits nicely into the hierarchy introduced 
by Ohm [11]. As may be expected from the UFD case above, any Krull domain 
satisfies (*). However, such is not the case for GCD (pseudo-Bézout) domains, 
for which the properties of being completely integrally closed, Archimedean, 
and (*) coincide (thus generalizing a result about Bézout domains [5, Proposi
tion 3]). Finally, since (*) is reflected by polynomial extensions, consideration 
of nonmaximal orders in quadratic algebraic number fields shows, in contrast 
with the integrally closed case, that for each positive integer n, there is a 
Noetherian domain of Krull dimension n which does not satisfy (*). 

Throughout, R denotes a domain, with U(R) its group of units and R* its 
monoid of nonzero elements. It will be convenient to abbreviate "a divides 6" 
by "a\b" and "Krull dimension" by "dim." Any unexplained terminology is 
standard, as in [4] and [6]. 

2. The property (*). This section is concerned with the implications between 
condition (*) and some closely related conditions, as well as the stability of 
condition (*) under various domain-theoretic processes. Several related 
(counter) examples are presented in later sections. 

We begin by recalling two definitions. The domain R is said to be completely 
integrally closed (cic) if (r G R*, rxn £ R for each n ^ 1 => x £ R). Following 
[14], R is called Archimedean if C\ Rrn = 0 for each nonunit r of R. If R is cic, 
then R is integrally closed and, by [5, Corollary 5], also Archimedean. An 
Archimedean domain need not be cic, since a result of Ohm [11, Corollary 1.4] 
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implies that any 1-dimensional domain is Archimedean. The relation of these 
properties to (*) is given next. 

THEOREM 2.1. Consider the following statements: 
(i) R is cic; 

(ii) R satisfies (*) ; 
(iii) R is Archimedean; 
(iv) If a, b £ R* are such that each element in the sequence a, b2, a3, fr4, . . . 

divides the next and if either a\b or b\a, then a and b are associates in R; 
(v) R satisfies the ascending chain condition on principal ideals (accp). 

Then: (i) =» (ii) =» (iii) <̂> (iv) <̂= (v). 

Proof, (i) => (ii): Let R be cic, and let a, b G R* such that a\b2\az\b*\ . . . . 
As a[{ba~l)2]n G R for each n ^ 1, we have {ba~1)2 G R} and hence ba~l Ç R; 
i.e., a\b. A similar argument (using ab~l in place of ba~l) shows that b\a, and 
so a and b are associates, as required. 

(iv) ==> (iii): Suppose (iv) holds, and let 0 ^ b £ C\ Rrn. We need to show 
that r G U(R). This follows since b\ (rb)2\bz\ (rbY\ . . . and &|r&. 

(ii) => (iii): This is immediate from the implication just established, since 
(ii) =» (iv). 

(iii) => (iv): Let i? be Archimedean, and let a, b Ç i^* such that a|&2|a3|&4|.... 
Suppose, moreover, that b\a\ write a = r&, with r £ R. As a2n~l\b2n for each 
w è 1 (and as b j* 0), it follows readily that r21*-1^; thus, K H i^rw. Since 
i? is Archimedean, r G U(R), so that a and 6 are associates, as desired. The 
case a\b is handled similarly (using b2n\a2n+1 to show (ba~l)2n\a). 

(v) => (iv): In the version (v) => (iii), this is immediate, as (v) is well 
known to be equivalent to the condition that every strictly descending infinite 
chain of principal ideals has zero intersection. (This follows, for example, from 
[1, Proposition 1].) The proof is complete. 

One consequence of the examples in Section 5 is the failure, even for integrally 
closed R, of all the possible implications amongst (i)-(v) which were not settled 
by Theorem 2.1. 

Remark 2.2. Since any cic domain satisfies (*) by virtue of Theorem 2.1, 
our store of domains satisfying (*) includes all Krull domains; in particular, 
any Noetherian integrally closed domain and (to recapture the motivating 
exercise of Niven-Zuckerman) any UFD satisfy (*). Moreover, a valuation 
ring R is cic if and only if dim (R) ^ 1 (cf. [4, Theorem 14.5(3)]), and inter
sections of cic domains are again cic. Consequently, all domains that are locally 
cic - for example, almost Krull domains and 1-dimensional Prufer domains-are 
cic and, hence, satisfy (*). As the proof of the following globalization result 
makes clear, the property of being preserved by intersections is one way in 
which (*) behaves like the property of being cic. 

PROPOSITION 2.3. / / RM satisfies (*) for each maximal ideal M of R, then 
R satisfies (*). 
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Proof. Let a, b G R* such tha t a|&2|a3|è4| . . . . The successive quotients may 
be viewed in each RM and so, by hypothesis, ab~l, ba~l Ç C\ RM = R, as 
required. 

We shall see later (Remark 4.1) tha t the converse of Proposition 2.3 is false, 
al though some positive results along those lines are available (Theorem 4.3). 
The next result will be used in Section 6 to analyze the Noetherian case. 

PROPOSITION 2.4. The following are equivalent: 

(i) R satisfies (*). 
(ii) i?[{Xa}] satisfies (*), for each set {Xa} of algebraically independent in-

determinates over R; 
(iii) (ii) with "each" replaced by "some." 

Proof. Since a simple degree argument shows U(R[{Xa}]) = U(R), it follows 
easily t ha t (iii) => (i). As (ii) => (iii) trivially, it remains only to show (i) =» 
(ii). Assume (i), and consider nonzero elements / , g £ i^[{Xa}] such t ha t 
/l&2l/3 |g4 | • • • • A s / , g involve only finitely many of t h e X a nontrivially, we may 
suppose, by induction, t h a t / , g £ R[X]. If a and b are the leading coefficients 
o f / a n d g, respectively, the divisibility conditions on the powers o f / a n d g lead 
easily to a|fr2|a3|&4| . . . . By (i), we have a = bu, for some u G U(R). However, 
if K denotes the quotient field of R, we may view the successive quotients 
arising from / |g 2 | / 3 | g 4 | . . • inside (the UFD) K[X], so tha t / = gv, for some 
v G U(K[X]). By comparing leading coefficients, a = bv, so tha t u = v. Hence 
f = gu, to complete the proof. 

Recall t ha t an example of Samuel [12, Theorem 9.1, p. 40] shows tha t R a 
UFDi*R[[X]] a UFD. A similar result holds for (*); tha t is, R satisfies 
(*) =fi R[[X]] satisfies (*). To establish this invalidity of the analogue of 
Proposition 2.4 for power series, use the next proposition (for which we are 
indebted to R. Gilmer) and the fact tha t domains satisfying (*) need not be 
cic (cf. Example 5.2 or Theorem 6.1 below). 

PROPOSITION 2.5. R is cic if and only if R[[X]] satisfies (*). 

Proof. The "only if" half follows immediately from [4, Theorem 12.9] and 
Theorem 2.1. For the converse, assume tha t R is not cic; choose a £ R* and 
d (in the quotient field of R bu t ) not in R such tha t adw G R for each n ^ 1. 
Sett ing b = a(l — dX), we have a|&2|a3|fr4| . . . , with quotients in i?[[X]]. 
As ba~l £ R[[X]], it follows tha t R[[X]] does not satisfy (*), to complete the 
proof. 

We next note several additional methods (which are used later) for building 
domains satisfying (*) or related properties. 

PROPOSITION 2.6. Let T be a domain containing R. 

(i) If R is integrally closed, T is integral over R and T satisfies (*), then R 
satisfies (*). 
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(ii) If U(R) = U(T) and T satisfies accp (respectively, (*)), then R satisfies 
accp (respectively, (*)). 

Proof, (i) Let a, b £ R* such that a|&2|a3|&4| . . . . Viewing the successive 
quotients in T, we have ab~l, ba~l G T, since T satisfies (*). If K is the quotient 
field of R, then ab~l G C7(r) P\ X = [/(i?), as required. 

(ii) Let Ra\ C Raz C • • • be an ascending sequence of nonzero principal 
ideals of R. If T satisfies accp, then for some n, Tan = Tat for all i > n; then 
an(ai)~1 G U(T) = U(R), so that Ran = Rau and R also satisfies accp. The 
proof of the final assertion may safely be omitted. 

The following result is a partial converse of Proposition 2.6 (i) and is moti
vated by a result of Krull (cf. [4, Theorem 12.8]) about cic domains. 

PROPOSITION 2.7. Let R be integrally closed and satisfy (*). Let T be the 
integral closure of R in a purely inseparable field extension L of K, the quotient 
field of R. Then T satisfies (*). 

Proof. Let a, b G T* such that a|fr2|a3|64| . . . . There is a positive integer m 
such that am, bm G K, since L/K is purely inseparable; select r G R* such that 
R contains c = ram and d= rbm. It is straightforward to verify that c|d2 |c3 |d4 |..., 
with successive quotients in T C\ K = R. Since R satisfies (*), (ba~l)m = 
dc~l G U(R). Thus bar1, ab~x are integral over R and so lie in T\ i.e., a and b 
are associates in T, completing the proof. 

The section closes with an observation which will be of help in Sections 4 
and 5. For background material on the D + M construction, see [4, Appendix 
2]. 

Remark 2.8. Let F be a valuation ring of the form K + M, where K is a field 
and M(T^O) is the maximal ideal of V. If D is a subring of K such that D + M 
satisfies (*), then D = K. 

Proof. It suffices to show that any nonzero a G K lies in D. Select 0 ^ m G 
M. Then m\ (am)2\mz\ (am)A\ . . . , with successive quotients in Km C M C 
£> + M. By (*), a = (am)m-1 G U(D + M), so that a G £/(£> + M) H 2£ = 
£/(£>) C -D, as required. 

Since 1-dimensional domains are Archimedean, the analogue of Remark 2.8 
for the Archimedean property is invalid. 

3. The GCD case. As we observed in the introduction, any UFD satisfies 
(*). Since R is a UFD if and only if R is both a Krull domain and a GCD domain, 
it is natural to ask whether any GCD domain satisfies (*). (Recall from Remark 
2.2 that any Krull domain satisfies (*).) Since all valuation rings are GCD 
domains, a negative answer to this question is provided by any valuation ring 
of dimension ^ 2. This fact follows from the earlier observation that a valua-
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tion ring is cic if and only if its dimension is ^ 1, together with the next theorem, 
which characterizes the GCD domains which satisfy (*). 

THEOREM 3.1. For a GCD domain R, the following are equivalent: 
(a) R is cic; 
(b) i?[[X]] is integrally closed; 
(c) R is Archimedean; 
(d) R satisfies (*). 

Proof. By Theorem 2.1, (a) => (d) =» (c); as in [11, Theorem 0.2], (a) =» 
(b) =» (c). Finally, to show (c) => (a), assume (c), and suppose rxn G R for 
each w ^ l ,wi th r G i?*. Write x = afr-1 for relatively prime elements a, b G R. 
For each w, 6n is relatively prime to an

} by [6, Theorem 49(c)]; as bn\ran, [6, 
Exercise 7, p. 41] implies bn\r. Hence, r ^ H Rbn and, by (c), & G U(R), so 
that x G i?, as required. 

Another GCD domain (this time, nonvaluation) which fails to satisfy (*) is 
given by 5 = Z + XQ[X], the subring of Q[X] consisting of the polynomials 
with integral constant term. (It is straightforward to verify that S is a GCD 
domain; to show that it does not satisfy (*), test any of the conditions in 
Theorem 3.1.) Note, moreover, that 5 is a Bézout domain. For the special 
case of Bézout domains, Theorem 3.1 is a consequence of [5, Proposition 3] 
(together with Theorem 2.1 and [11, Theorem 0.2]), since any Bézout domain 
is QR, in the sense that each of its overrings is a localization. Indeed, Bézout 
domains may be characterized as GCD domains which are QR. 

For a nonBézout illustration of Theorem 3.1, let X, Y be algebraically 
independent indeterminates over a Bézout domain B. Then T = B[X, Y] is a 
GCD nonBézout domain; moreover, by Proposition 2.4, T satisfies (*) if and 
only if B satisfies (*). 

Remark 3.2. Instead of appealing to either the cic property or Theorem 3.1, 
we can easily give a direct proof that a valuation ring V satisfies (*) if and 
only if dim (V) S 1. First, one checks easily that V is Archimedean if and 
only if the value group G of the associated valuation v is Archimedean qua 
totally ordered group, i.e. if and only if dim (V) = rank (G) ^ 1. On the 
other hand, V is Archimedean if and only if V satisfies (*), in view of Theorem 
2.1 and the observation that, for a,b G V*} either a\b or b\a. 

It is of some interest to use G in order to show directly, in case dim (V) ^ 1, 
that a|fr2|a3|fr4 |. . . implies Va = Vb. If a = be with c G F, it follows from 
a2n-i\b2n t h a t C2n-i\bf a n d SQ ^ ) ^ (2« - l)v(c) for each » è 1; as G is 
Archimedean, v(c) = 0, so that c G U{V) and a is associated to b. The case 
a\b is handled similarly. 

The above emphasis on the role of the value group is in the spirit of Krull 
[7, Satz 8, p. 170], who showed that a valuation ring is cic if and only if its 
associated value group is Archimedean. 

https://doi.org/10.4153/CJM-1976-038-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-038-x


370 R. A. BEAUREGARD AND D. E. DOBBS 

I t is convenient next to present an example which will be revisited in 

Example 5.1. 

Example 3.3. Let A be the ring of all algebraic integers, i.e. the integral 
closure of Z in some algebraic closure of 0 - Then dim (^4) = 1, A is a Bézout 
domain, A satisfies (*) and A is not a UFD. Indeed, the first assertion follows 
by integrali ty; the second is well known (cf. [6, Theorem 102]) ; the third then 
follows from Remark 2.2; and the final assertion follows, e.g., by observing 
the essentially different factorizations 2.3 = (1 + ( - 5 ) 1 / 2 ) ( 1 - ( - 5 ) 1 / 2 ) . 

Remark 3.4. Let R be a ring of algebraic integers, i.e. the integral closure of Z 
in some finite (algebraic) field extension of 0 - Since R is a Dedekind domain, 
Remark 2.2 implies t ha t R satisfies (*). Another proof may be obtained by 
applying Proposition 2.6 (i) and Example 3.3. 

T h e section closes with an a t t e m p t to get more mileage from the s tandard 
proof [4, Theorem 14.5] of the characterization of cic valuat ion rings. We 
assume the notion of a goingdown ring (cf. [3, Theorem 1]), familiar examples 
of which are valuation rings and 1-dimensional domains. By a result of AlcAdam 
[9, Corollary 11], a quasilocal integrally closed domain is a going-down ring if 
and only if each prime ideal is comparable to each principal ideal. 

PROPOSITION 3.5. Let R be quasilocal and integrally closed. Then dim (R) ^ 1 
if and only if R is an Archimedean going-down ring. 

Proof. The "only if" par t is immediate. If the converse fails, select dist inct 
nonzero prime ideals P C M of R. Let a £ M\P and 0 ^ b G P . By McAdam's 
result, P = Pa, and so b G ^ Pan, contradict ing the assumption tha t R is 
Archimedean. 

4. Loca l i za t ion . We next consider the behavior of (*) under localization, 
and begin with the promised counterexample to the converse of Proposition 2.3. 

Remark 4 .1 . If R satisfies (*) and M is a maximal ideal of P , then RM need 
not satisfy (*). For an example, let R be constructed as in Example II of 
Sheldon [15] ; then R is a cic Bézout domain and dim (R) = 2. Since R is cic, it 
does indeed satisfy (*). However, if M is a height 2 prime of R, RM is a 2-
dimensional valuat ion ring and, by Remark 3.2, cannot satisfy (*). 

T h e following lemma paves the way for a positive s t a tement about (*) and 
localization. As usual, we shall call a nonzero element in a domain prime in case 
it generates a prime ideal. 

LEMMA 4.2. Let R satisfy accp and let S be a (necessarily saturated) multiplica
tive subset of R generated by U(R) and a set of prime elements of R. Then: 

(1) Each a £ P * may be expressed as a = a0So, where s0 (z S and a0 G R is 
relatively prime to S (in the sense that S contains no nonunit factor of a 0 ) . 

https://doi.org/10.4153/CJM-1976-038-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-038-x


INTEGRAL DOMAINS 371 

(2) If a0So = a\S\ with s0, Si G S and 0 9e ao, o>i relatively prime to S, then 
Rao = Rai (and so RSQ = Rsi). 

(3) / / a0 G R* is relatively prime to S, then Rscio H R = Ra0. 
(4) S satisfies accp, in the sense that there is no infinite strictly ascending chain 

{Ssn\ with each sn G S. 
(5) S satisfies (*), in the sense that a\b2\az\bA\ . . .for a,b ^ S implies Ra = Rb. 

Proof. (1). Deny. The accp provides Rr maximal such tha t r G R* is not 
expressible as desired. Consequently, r is not relatively prime to S, and so r = 
as, with a (z R and 5 G S\U(R). Then a is not expressible as desired, contra
dicting the maximali ty of Rr. 

(2). Ape the s tandard proof for uniqueness of factorization in a principal 
ideal domain. 

(3). I t suffices to show that , if f is - 1a 0 = r G R with rly r G R and s £ S, 
then r G i^o- By (1), write r± = boSo, with s0 G S and 60 relatively prime to S; 
similarly, write r = biSi with appropriate factors. As a0&o is relatively prime 
to S, (2) gives u G U(R) such tha t b\ = boaoU, so tha t r = b0usiao, as required. 

(4). I t suffices to observe that , if Ssi ^ S$2 for Si, s2 (: S and if Si is expres
sible (apart from unit factor) as a product of n generating primes (counting 
multiplicities), then s2 is associated to a product of fewer than n generating 
primes. 

(5). If a|fr2|a3|&4| . . . with a, b nonunits of S, then (ab)(ba~l)n G 5 for each 
n ^ 1. Wri te ba~l = dc~l where d, c G S have no prime factor in common. 
Aping the proof tha t (c) => (a) in Theorem 3.1, we find ab G H -S^. As i? is 
Archimedean, c G U(R), so tha t a|6. Finally, apply the implication (v) => (iv) 
in Theorem 2.1 to show tha t a and b are associates. 

T H E O R E M 4.3. Let R satisfy accp and let S be a multiplicative subset of R 
generated by a set of prime elements. Then R satisfies (*) if and only if Rs satisfies 

Proof. I t is harmless to augment S by U(R), so tha t Lemma 4.2 is applicable. 
Assume R satisfies (*). Consider nonzero elements a, b of Rs such tha t 

a|fr2|a3|fr4| . . . , with successive quotients in Rs. As our aim is to prove Rsa = 
Rsb, we may take a, b G R', moreover, by par t (1) of Lemma 4.2, a and b 
may be supposed relatively prime to 5 . Then (3) implies tha t Ra D Rb2 Z) 
Ra*Z) Rb4D As R satisfies (*), Ra = Rb and, a fortiori, Rsa = Rsb. 

Conversely, assume tha t Rs satisfies (*), and consider a, b G R* such tha t 
a|62|a3|fr4| . . . . By (1), write a = a050, b = biSi with s0, si G -S and a0, b\ 
relatively prime to S. An immediate consequence of ( l ) - ( 2 ) is t ha t 
Oo|(6i)2l(oo)8|(6i)4l . . . and s0| (si)2|0>o)3| ( ^ ) 4 | . . . . By (5) and the hypoth
esis about Rs, we have Rs0 = Rs± and a0(&i)_1 G U(Rs), respectively. 
T h e la t ter assertion yields Rs&o = Rsbi, so t ha t Ra0 = Rbi, by (3). Hence 
Ra = Rb, to complete the proof. 
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Example 4.4. The assumption that R satisfies accp may not be deleted from 
Theorem 4.3. T o illustrate this, consider the ring of restrained power series 
R = Z 2 Z + XQ[[X]] and its multiplicative subset S consisting of powers of 2. 
Now Rs = Q[ [^ ] ] satisfies (*) because it is a discrete (rank 1) valuat ion r ing; 
however, Remark 2.8 implies t ha t R does not satisfy (*). (Of course, R does not 
satisfy accp ei ther: consider {RX2~n}.) 

5. Integra l ly c losed e x a m p l e s . The examples presented below will settle 
the questions left open by Theorem 2.1, and will relate (*) to the properties 
studied by Ohm [11]. In particular, Examples 5.2 and 5.3 serve to eliminate 
generalizations of Theorem 3.1 which might, a t first blush, seem possible. 

Example 5.1. We present here two examples of 1-dimensional cic domains 
which do not satisfy accp. The first is the ring A of all algebraic integers. This 
was shown to be 1-dimensional and cic in Example 3.3; to see t h a t A fails to 
satisfy accp, it suffices to consider the ascending chain {A21/2n}. 

The second example is a valuat ion ring V, whose corresponding valuat ion v 
has (rank 1) value group 0 - (For instance, construct V as in [2, Exemple 6, 
p . 107].) Select elements an Ç V such t ha t v(an) = 2~n+l for each » ^ 1. As 
v{an{an+i)~l) = 2_w , each an(an+i)~l is a nonuni t of V, so t ha t { Van\ is a 
str ict ly ascending chain, and V fails to satisfy accp. 

Example 5.2. This example is of an integrally closed domain which satisfies (*) 
and accp, bu t is not cic. Let X, Y be algebraically independent indeterminates 
over a field K. We claim tha t R = K 0 K[X] Y 0 K[X] Y2 0 . . . , viewed as 
a subring of K[X, Y], has the desired properties. 

Indeed, since K[X, Y] is a Noetherian UFD, the assertions in Proposition 
2.6 (ii) show tha t R satisfies accp and (*). (The former was observed by Evans 
[6, Exercise 8, p. 114] in another connection.) Moreover, R is not cic, since 
YXn G R for each w ^ l while X d R. Finally, to show tha t R is integrally 
closed, observe first t ha t K[X, Y] = K[X] + R is integrally closed. According
ly, it suffices to show tha t , if a £ K[X] is integral over R, then a Ç K. By 
focusing on the coefficient of F° in an integrali ty equation of a over R, we see 
t ha t a is integral over K, thus giving the desired result, since K is algebraically 
closed in K[X]. (Indeed, appeals to [11, Theorem 3.2] and [6, Theorem 188] 
now yield more: the power series ring i?[[7"]] is integrally closed.) 

Note also tha t R does not satisfy proper ty (e) of [11], since [6, Exercise 8, 
p. 114] shows tha t F is a nonuni t of R contained in no height 1 prime ideal. 

Example 5.3. T h e final example in this section is of a 1-dimensional domain R 
which satisfies accp, does not satisfy (*), and is such t ha t i?[[X]] is integrally 
closed. (By [2, Exercice 27, p . 76] or [11, Corollary 1.4], such R must be 
Archimedean and, of course, integrally closed.) 

T h e construction is due to Krull [8, pp. 670-671]. Let r, s be indeterminates 
over a field k, and define a discrete (rank 1) valuat ion v on k(r, s) by sett ing 
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v(r) = 1 and v(s) = 0. I ts valuation ring is V = k(s) + M, with maximal 
ideal M. We claim tha t R = k + M has the desired properties. (Note tha t 
Krull observed R is not cic.) 

Indeed, [4, Theorem A(c), (d), ( / ) , p. 560] implies tha t dim (R) = 1 and 
U(R) = R\M. T o show tha t i? satisfies accp, deny, and select a strictly in
creasing chain {Ran) of principal ideals of R. Since V is Noetherian, Fa„ = 
Van+1 for some n ; then an = ban+1, with b £ [R H U(V)]\U(R) = 0, the 
desired contradiction. Hence, R satisfies accp. Finally, Remark 2.8 shows tha t 
R does not satisfy (*), and an argument of Ohm [11, p. 329] shows tha t i?[[X]] 
is integrally closed. 

Remark 5.4. I t is now straightforward to use the preceding examples in order 
to show tha t , for each of the possible implications amongst ( i ) - (v) which 
Theorem 2.1 did not resolve, there is an integrally closed counterexample. With 
the aid of Theorem 2.1, the above examples, and Ohm's summary of results 
[11, p . 322], it is also easy to settle all bu t two of the possible implications 
involving Ohm's properties (a), (b), (c), (d), (e) (described in [11, p. 321]), 
together with ( / ) R is integrally closed and satisfies (*), and (g) R is integrally 
closed and satisfies accp. (Recall tha t (6), (c), (d) are, respectively, the proper
ties of R t ha t R be cic, t ha t i?[[X]] be integrally closed, and tha t R be integrally 
closed Archimedean.) The two open questions concern ( /) => (c) and (g) => 
(c) ; we suspect t ha t both of these implications fail. 

6. N o e t h e r i a n examples . Recall t ha t a Noetherian integrally closed do
main, being completely integrally closed, satisfies (*). The next result and 
remark show tha t any a t t empt to classify the Noetherian domains satisfying 
(*) must contend with number-theoretic problems. 

T H E O R E M 6.1. Let n be a positive integer. Then there exist Noetherian domains 
Rn and Tn such that dim (Rn) = n = dim (Tn), neither Rn nor Tn is integrally 
closed, Rn satisfies (*), and Tn does not satisfy (*). 

Proof. Recall (cf. [2, Corollaire 1, p. 19; 5, Corollary 2]) tha t a domain D is 
integrally closed if and only if the polynomial ring D[X] is integrally closed. 
In view of the Hilbert basis theorem and Krull 's result on the dimension of a 
polynomial ring over a Noetherian ring (cf. [4, Theorem 25.5]), Proposition 
2.4 shows tha t it is enough to handle the case n = 1. 

Let d be a negative squarefree integer other than —3, such tha t d = 1 
(mod 4 ) ; set R = Z[dl/2]. Note tha t dim (R) = 1 (by integrality) and R is 
Noetherian (by Hilbert basis theorem); moreover, R is not integrally closed, 
since the (unique) maximal order of Q(d1/2) is 5 = Z [ ( l + d1/2)/2]. Since 
d * - 3 , U(S) = {1, - 1 } (cf. [13, Proposition 1, p. 76]); thus, U(R) = U(S). 
As S is Noetherian and integrally closed, 5 satisfies (*), and so the second par t 
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of Proposition 2.6(H) shows that R also satisfies (*). Accordingly, R is a 
suitable choice for R\. 

We claim that T = Z[( —3)1/2] is a suitable 7\. Indeed, as above, dim (T) = 
I, T is Noetherian and T is not integrally closed. To show that T does not 
satisfy (*), let a = 1 + ( - 3 ) 1 / 2 and b = 1 - ( -3 ) 1 / 2 . After observing that 
a2 = — 2bfb

2 = — 2a and a3 = bs = — 8, one checks readily that a\b2\as\b4\ . . . , 
the successive quotients repeating in blocks of six. However, a and b are not 
associated in T, since a&_1 = — b/2 d T. This completes the proof. 

Remark 6.2. (a) The rings Ri and 7\ in Theorem 6.1 may also be constructed 
using real quadratic algebraic number fields. For instance, Z[(17)1/2] is a satis
factory Ri\ the verification proceeds as before, since an analysis of the Pell-
Fermat equation shows that the fundamental unit of Q[(17)1/2] is 4 + (17)1/2 

(cf. [13, p. 77]), forcing Z[(17)1/2] to contain every unit of the maximal order. 
To find a real Ti> use Z[d1/2] with d = 5 (respectively, 13), and observe that the 
fundamental unit u of Q(d1/2) is (1 + 51/2)/2 (respectively, (3 + (13)1 /2)/2); 
set a = 1 - 51/2 (respectively, 3 - (13)1/2) and b = au = - 2 . Further 
examples may be similarly constructed. 

(b) The rings Tn of Theorem 6.1 and (a) above are examples of Archimedean 
domains which do not satisfy (*) and are not integrally closed. A related in
tegrally closed example was given in Example 5.3. 

(c) The use of nonmaximal orders in algebraic number fields in constructing 
T\ above, shows that (Proposition 2.6 (i) notwithstanding) a domain need not 
inherit (*) from its integral closure. 

REFERENCES 

1. R. A. Beauregard, Chain type decomposition in integral domains, Proc. Amer. Math. Soc. 39 
(1969), 77-80. 

2. N. Bourbaki, Algèbre commutative, Chapitres 5-6 (Hermann, Paris, 1964). 
3. D. E. Dobbs and I. J. Papick, On going down for simple overrings III, Proc. Amer. Math. 

Soc., Ô4 (1976), 35-38. 
4. R. Gilmer, Multiplicative ideal theory, Queen's Papers in Pure and Appl. Math., No. 12, 

Queen's University, Kingston, Ontario, 1968. 
5. R. Gilmer and W. J. Heinzer, On the complete integral closure of an integral domain, J. Aust. 

Math. Soc. 6 (1966), 351-361. 
6. I. Kaplansky, Commutative rings (Allynand Bacon, Boston, 1970). 
7. W. Krull, Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167 (1932), 160-196. 
8. Beitrdge zur Arithmetik kommutativer Integritatsbereiche. II, Math. Zeit. 4.1 (1936), 

665-679. 
9. S. McAdam, Simple going down, J. London Math. Soc, to appear. 

10. I. Niven and H. S. Zuckerman, An introduction to the theory of numbers (Wiley, New York, 
1972). 

I I . J. Ohm, Some counterexamples related to integral closure in D[[x\], Trans. Amer. Math. Soc. 
122 (1966), 321-333. 

12. P. Samuel, Lectures on unique factorization domains, Tata Institute of Fundamental Re
search, Bombay, 1964. 

13. Théorie algébrique des nombres (Hermann, Paris, 1967). 

https://doi.org/10.4153/CJM-1976-038-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-038-x


INTEGRAL DOMAINS 375 

14. P. B. Sheldon, How changing D[[x\] changes its quotient field, Trans. Amer. Math. Soc. 159 
(1971), 223-244. 

15. Two counterexamples involving complete integral closure in finite-dimensional Priifer 
domains, J. Algebra 27 (1973), 462-474. 

University of Rhode Island, 
Kingston, Rhode Island; 
Rutgers University, 
New Brunswick, New Jersey 

https://doi.org/10.4153/CJM-1976-038-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-038-x

