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Abstract

The aim of the paper is to show the existence of a 'Hall's ray* for the particular case of the one-sided
inhomogeneous diophantine approximation problem, where the irrational is the golden ratio. The proof
uses a sum-set method similar to that used by Marshall Hall for the original result of this kind.

1991 Mathematics subject classification (Amer. Math. Soc): 11J06, 11J20.

1. Introduction

For a real number §, the homogeneous approximation constant \{%) is defined by

(1) '

where q is a positive integer and ||x|| denotes the distance from x to the nearest
integer. The set of values taken by A(f) as £ runs through the real numbers is called
the Lagrange spectrum. Much is known about the distribution of the numbers in this
spectrum (see Cusick and Flahive [3]). In particular, it follows from a result of Hall
[6] that there exists a number w such that all numbers in the interval [w, oo) belong
to the Lagrange spectrum (see [3, Chapter 4]). This infinite interval contained in the
Lagrange spectrum is called Hall's ray.

The purpose of this paper is to prove that there is an infinite interval, analogous to
Hall's ray, contained in the set of inhomogeneous diophantine approximation constants
associated with the quadratic irrational a defined by

(2) a = 1 (l + ^
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Given any real numbers w, v we define the (one-sided) inhomogeneous diophantine
approximation constant k(w, v) by

(3) k(w, u)"1 = liminf q\\qw — u||,
q—

where q is a positive integer. There is also a two-sided inhomogeneous approximation
constant T(ID, V) defined by

r(w, u)"1 = liminf |q\\\qw — u||,
|<7|-»oo

where q is an arbitrary integer. The theory of these two-sided constants is more
complicated for the problem we are studying in this paper, so we shall confine our
work below to the one-sided constants.

Not much is known about the distribution of the values of the inhomogeneous
constants k(w, v), though Barnes [1] gives a proof that for any sufficiently small r
there exist uncountably many w and, for each such w, uncountably many v such that
k(w,v) = r. In fact, as Barnes has pointed out to us, the method of proof shows more,
namely that for any w whose partial quotients tend to infinity there exist uncountably
many such v. Thus Barnes produces a Hall's ray for numbers w with partial quotients
tending to infinity. His result treats numbers which are at the opposite extreme from
the golden ratio in their diophantine approximation properties .

One of the reasons for the paucity of results is the lack of a sufficiently simple
analogue of the well-known continued fraction algorithm. It is the use of continued
fractions which leads to so many of the results in the homogeneous case. For example,
the fact that the lim inf in (1) can be computed by considering only those integers q
which occur as denominators of the convergents pn/qn to the continued fraction for £
greatly facilitates the study of the constants M§). There is a kind of inhomogeneous
analogue for the continued fraction which was first given by Cassels [2] and which
we shall to some extent utilise below. However, the Cassels algorithm is much more
complicated than the continued fraction; in particular, the sequence of integers for
which the lim inf in (3) is approached cannot in general be described in a straightfor-
ward way. It turns out that when w = a (as defined in (2)), the relevant sequence of
integers is relatively simple and can be handled in a satisfactory way by making use
of a method of Cusick, Rockett and Szusz [4]. This leads to a proof of the following
theorem, which is the main result of this paper.

THEOREM. Given a = (1 + V5)/2, there is a number A such that for any number
y in the interval [A, oo), there exists a number (5 for which k(u, $) = y. An allowable
value for A is a3.
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2. An inhomogeneous diophantine approximation algorithm

This section is based largely on the paper of Cusick, Rockett and Szusz [4]; we
shall quote the needed results from that paper without reproducing their proofs.

We use the usual notation

| = [a0, aua2,...]

for the regular continued fraction for §; thus a0 = [£] ([•] denotes the greatest integer
function) and the other partial quotients ak (k > 1) are positive integers. We write the
k-th complete quotient £t as

Hk = [ak,ak+x,...]

and for the k-th convergent pk/qk we have

— = [ao,aua2,...,ak].
Ik

Finally, we define

Dk = q& -pk = (-l)k($k+lqk + ft-,)"1 (* = 0, 1, 2, . . . ) .

We note that
Dk-i {k = 0 , 1 , 2 , . . . )

where D-\ = — 1, and

(4) ^ ± i = - § - + ' 2 (k = 0 , 1 , 2 , . . . ) .

In order to describe our homogeneous approximation algorithm, we need the fol-
lowing lemma, which is [4, Lemma 1]; an equivalent lemma was given in a paper of
Sos [7].

LEMMA 1. Given f = [a0, au a2,...] and any real number fi satisfying — £f1 <
/J < 1 — f f1, there is a representation of f$ in the form

(5) P =
k=0

where ck is an integer, 0 < cx < ax, 0 < ck+l < ak+l for k > 0 and ck+x = ak+i

implies ck — 0. The representation is unique apart from changes that could be made
using the identities

>
" a2k+n+lD2k+n = -£)„_, (n = 0, 1, 2 , . . . ) .
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We shall call an expansion of the form (5) with coefficients ck+l satisfying all of
the conditions of Lemma 1 except possibly the condition 0 < cx < a\, a ij-expansion
for p". We do not require 0 < Ci < a\ so as to allow §-expansions for numbers outside
of the interval \—%^x, 1 — If1).

For each pair w, v, the inhomogeneous diophantine approximation algorithm of
Cassels [2] gives a sequence S(w, v) of integers such that the lim inf in (3) can be

-computed by considering only those integers q which occur in the sequence S(w, v).
Unfortunately, the sequence S(w, v) is in general a complicated one. The elements
of S(w, v) need not be distinct and the sequence need not be monotone increasing.
Descombes [5, pp. 287-303] gives a detailed exposition of the Cassels algorithm
which clearly brings out the erratic nature of the sequence S(w, v). In the case w — a
(where a = (1 + V5)/2), however, we can find a simple set of integers q which will
give the lim inf in (3).

LEMMA 2. Suppose a = (1 + \/5)/2, p" satisfies —a~l < p" < 1 — a"1 and the
a-expansion of ft is given by (5). Then

where
n

(7) Qn = J^ck+1qk (n = 0 , 1 , 2 , . . . )
k=O

and qk (k — 0, 1, 2,.. .) is the denominator of the k-th convergent pk/qk to a.

PROOF. This is part of Lemma 2 of [4].

Both expressions in the minimum in (6) are easy to describe asymptotically. If
Dk = qka — pk, then it follows from (4) that

Dk+l/Dk = -a-1 (* = 0,1,2, . . . )

so
Dk = (-l)k(a - l)cT* (* = 0,1,2, . . . ) .

This and the elementary fact that

give the asymptotic formula

k=n+\

by using the a-expansion (5) of p\ A similar calculation yields a corresponding formula
for the other term but as the next lemma shows it is not needed.
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LEMMA 3. For n sufficiently large, the minimum in (6) always occurs at the first of
the two terms; that is

(Qn+qn)\\(Qn+qn)0l - fi\\ > Qn II 6»« ~ fit

PROOF. Evidently the term (Qn + qn) is greater than Qn. Now consider \\(Qn +
qn)a - fi\\. By Lemma 1,

00

fi = 2_.ck+iDk, where ck = 0 or 1
k=0

and Dk = qka — pk. Therefore

11(6-+ <?«)«- P\\ =
k=0 *=0

ck+xDk + Dn

k=n+l

= \\a~"(a- 1)(-1)" - - D

and for large n this equals

(a - l)a"
k=\

Let

xn = = (a -
k=\

Then for xn > —1/2, 11 + x« | > |jcn | and there is nothing more to prove. If, on the
other hand, xn < —1/2 then Qn < qn + qn+2 + qn+4 + • • •, so that

and this is the maximum possible value of |xn \/11 + xn\. This completes the proof of
the lemma.

3. Proof of Theorem

Our methods are reminiscent of those of Hall in [6]. We take the logarithm of the
first term in the minimum in (6) and then realise the problem as one of showing that
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the sum of two Cantor sets contains an interval. We begin by exploring two Cantor
dissections of intervals in R. Let

F = (-l)*a~* : ck, ck+l not both 1 )

and
E = \^2cka k '• ck,ck+i not both 1 1.

In fact these two sets are much simpler than they seem.

LEMMA 4. E = [0, 1] and F = [ -1 , or1].

PROOF. We will employ the notation CiC2c3... for the sum YlT=i c*a * when dis-
cussing E and for the sum Y1T=\ ck(—l)ka~k when F is under consideration.

We first consider E. Evidently the smallest member of £ is 0 and the largest value
is 1010... which is 1. Now let x be any element of the interval (0, 1). We may write
A: as a decimal in base a. Suppose that this contains a word of the form 11, and let the
first occurrence of this 11 be in a situation of the form wllv. It follows that w has
length k — 1, contains no 11 's, and ends with a 0. Since 011 = 100 we may replace
the 011 in the k — 1, k, k + 1 slot by 100. This may result in a 11 in the new w but in
this case it is preceded by a 0 and again the 011 may be replaced by a 100. Continuing
in this way, we can eliminate all 11 's from the new IO'S as they arise. Note that we
cannot finish this process with a w starting with 11 as this number would be not less
than 1. Thus we have replaced the expression for x by one with no 11 's before the
k + 1 slot. Now we repeat this procedure where necessary to eliminate all 11 's from
x. This proves the first claim.

Now we look at the set F. It is clear that its maximum value occurs at

010101...= a"1

and its minimum is at 101010... = — 1. We consider the Cantor dissection process
which gives rise to F. The largest value in F which starts with the digit 1 is

100101010... = - a " 1 + a"3 = - a " 2 .

On the other hand the smallest member of F starting with 0 is

001010101... = -or1.

Hence the 'gap' at the first level of the Cantor dissection has length zero. In general
there are two possible kinds of dissections. In the first a word w will have length
k odd and end with a 0 and the 'gap' will be between the largest element starting
with u>0 and the smallest element starting with awl . The former is IUOOIOIOIOI . . .
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and the latter w 10010101 After subtracting w and rescaling, we have to compare
00101010... with 10101.... The former is - a " 2 and the latter is - o r 1 +a"3 . These
are identical as in the first level case.

hi the second kind of dissection w is a word of length k even ending with a 0, and
we wish to compare the largest word starting with w 1 with the smallest word starting
with wO. The former is w 1001010101... and the latter is IUOOIOIOIOI .... Thus
after rescaling we compare again —a~l + a~3 with —aT2 and deduce that there is no
gap.

It will be necessary however to replace E and F by two less simple sets. For k
a positive integer let Ek and Fk be the subsets of E and F which are defined by the
constraint that the sequence (ck) contains no block of k +1 consecutive zeroes. These
are genuine Cantor sets. Nevertheless the product of them contains an interval.

LEMMA5. Fork >4,Ek- \Fk\ D [or2*, 1].

PROOF. We apply Hall's criterion [6] (for deciding whether the sum of two Cantor
sets is an interval) to the logarithms of the sets Ek and \Fk\. This criterion is that
the gaps formed at each stage of the Cantor construction are shorter than the adjacent
intervals, and that the ratio of the lengths of the initial undissected intervals is between
1/3 and 3. Evidently log Ek and log \Fk\ satisfy the latter condition.

First we consider Ek. The smallest point of Ek is (0* 1)°° and its largest point is the
same as that of E, namely 1. However now there is a gap between (01)°° and the next
point in the set, which is 1(0* I)00. This is, in fact, the smallest point in Ek starting
with a 1. Thus the gap in this case is a"1 /(a*+1 — 1) whereas the length of the right
hand interval is

a~k~2

a ' -

and the left hand interval has length

, 1
a — ((**+> - 1)

The effect of taking logarithms can be estimated in terms of the derivative of log. This
has the effect of expanding the left hand interval relative to the gap and so merely
improves the ratio between the length of the left hand interval and the gap. At the
right hand end the effect of the logarithm is to shrink the interval by an amount of no
more than a relative to the gap, since the lower endpoint of the gap is at a~x and the
upper endpoint of the interval is at 1. Thus the criterion is satisfied at the first level
for Ek provided k > 2.

At the next level the four intervals in the Cantor dissection for Ek are

[01(0*1)°°, (01)°°], [1(0*1)°°, 1(01)°°], [11(0*1)°°, 1].
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Essentially the same calculation as we have already done at the first level shows that
the gaps are shorter than the adjacent intervals. Indeed the first two intervals are
merely the intervals of the first level scaled down by a factor of or1 and the second
two are translations of the first two intervals by or1. The effect of taking logarithms
on the first two intervals is the same as at the first level, and the effect on the second
two intervals is less severe since they are further away from 0. Thus the criterion is
again satisfied at this level. It is now clear that the argument will continue to work at
all succeeding levels provided k > 2.

In the case of Fk (k even) it is convenient to restrict attention to (—Fk) n [0, 1].
For this the smallest point is 0* 1001(01)°° and the largest point is again 1. The first
level gap has left hand endpoint 10* 1001(01)°° and right hand endpoint 10*"110(01)°°.
Subsequent dissections are obtained by scaling and translating this one. The lengths
of the left and right intervals and gap in the initial dissection are respectively

a'1 - a~(k+2) + -?• - a-<*+1) +

a

~ik+5))

(1-<*-*)

Again it is easy to check that Hall's criterion is satisfied at this level provided in this
case that k > 4. At subsequent levels, as in the case of Ek, the situation is no worse.

Since the sets Fk are nested (Fk C Fk+X), the result remains true for k odd.

Now fix x in the interval Ix = [a"10, or3] and choose members e and / of the sets
£4 and -F4 n [0, 1] respectively such that e • f = a3x. Let e = Y1T=\ eka~k and / =
^k*Lx(—l)k+lfkci~k. We define (ck) as follows. Let cx, c2, c3, c4, c5 be the first five
members of the sequence fore in the reverse order, that is e5, e4, e3, e2, ex. The next
five members of (Q) are all 0, and the following five members are fx, f2, /3, fa, f5.
Now we repeat the same process with the first 10 members of the sequence for e in
reverse order followed by 5 O's and then the first ten members of the sequence for / .
We continue in this way taking in turn a block of length 5r from the beginning of (ek)
in reverse order followed by five O's and then a block of length 5r from the beginning
of (fk). In this way the sequence (ck) is constructed.

Now we use the formula (6), or at least the first term in the minimum. The infimum
of the expression

~~ ~~ (-l)*ct+1oT*
*=0 k=n+\

over n > N, say, is taken at a point n which lies in a block of 5 zeroes. Thus, by the
construction of the sequence, the lim inf is the limit of
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5r

k=l

5r

k=l

as r tends to infinity, where

Sr = o(Yeka-k)
k=l

and
5r

k=\

This limit is therefore equal to x. It follows that the interval I\ is contained in the
spectrum.

Now we perform the same construction for (ck) except that we intersperse the
blocks of ek 's and fk 's with blocks of 6 zeroes. This reduces the lim inf by a factor
of a""1. It follows that /2 = a~lI\ is also in the spectrum. Evidently by increasing
the number of zeroes interspersing the terms from the sequences (ek) and (fk) we can
cover the whole of the interval [0, a~3]. This interval is, therefore, in the spectrum
and constitutes a 'Hall's ray' for the inhomogeneous minimum problem.
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