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1. Introduction. A (round-robin) tournament T consists 
n of n nodes u . u , . . . , u such that each pair of distinct nodes 

1 2 n 
u and u is joined by one of the (oriented) arcs u.u. or u u.. 

i J i J j i 
The arcs in some set S are said to be consistent if it is possible 
to relabel the nodes of the tournament in such a way that if the 
arc u.u. is in S then i > j . (This is easily seen to be equiva­
lent to requiring that the tournament contains no oriented cycles 
composed entirely of arcs of S. ) Sets of consistent arcs are 
of interest, for example, when the tournament represents the 
outcome of a paired-comparison experiment [1]. The object in 
this note is to obtain bounds for f(n), the greatest integer k 
such that every tournament T contains a set of k consistent 

n arcs. 

2. A lower bound for f(n). In this section we show that, 
for all positive integers n, 

(i) f<a>>[fl- Ë r l • 

where, as usual, [x] denotes the largest integer not exceeding 
x. 

This is trivially true when n = 1; suppose it has been 
established for all n such that 1 <n <m - 1, and consider any 

1 
tournament T . Since such a tournament has a total of - m ( m - l ) 

m 2 
arcs , there must exist some node, say u , from which at least 

m 
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1 
[—m] a r c s i ssue . By definition, the tournament defined by the 

remaining m-1 ver t ices contains a set S of at least f (m-l) 
consistent a r c s . It is c lear that the a r c s issuing from u and 

m 
the a r c s in S are consistent; therefore , appealing to the induc­
tion hypothesis, it follows that T contains a set of at least 

m 
r m, r m - l . r m . rm , rm+l_ 
[ "2 ] + [ — ] - [ 2 ] = [ 2 ] - [ ~ 2 - ] 

consistent a r c s . This suffices to complete the proof of (1) by 
induction. 

3. An upper bound for f(n). In this section we show 
that for any fixed positive € and all sufficiently large values 
of n, 

1 + € n 
(2) f(n) < - y - (2) . 

Let € > 0 be chosen. In a tournament T there a re nï 
n 

ways of relabelling the nodes and N = ( ) pa i rs of distinct nodes, 
N Hence, there a re at most n! (, ) such tournaments whose largest 
k 

set of consistent a r c s contains k a r c s . So, an upper bound for 
the number of tournaments T which contain a set of more than 
(1 +€ )N/2 consistent a r c s is given by 

k>(l+c)N/2 k ' U(l+<>N/2]A[N/2], 

(3) 

- n - N Z l [ ( l + e ) N / 2 ] ) l [ N / 2 ] ; 

, N (N-[N/2])(N-[N/2]-l) . . . (N -f(l+€)N/2] + 1 ) 
' n ([N/2] + 1) {[N/2] + 2) . . . [(l+c)N/2] 

, „..N -€2N/4 
< n! N2 e 
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The l a s t inequal i ty of (3) fol lows f rom a s imp le computa t ion 
— x 

us ing the fact tha t 1 - x < e for 0 < x < 1. But for a l l 
sufficiently l a rge n the l as t quant i ty in (3) i s e a s i l y s een to 

N 
be l e s s than 2 , the to ta l n u m b e r of t o u r n a m e n t s with n n o d e s . 
Hence , t h e r e m u s t be at l eas t one t o u r n a m e n t T which does 

n 
not conta in any se t of m o r e than (1 + €)N/2 c o n s i s t e n t a r c s . 
T h i s p r o v e s (2), by defini t ion. With a m o r e ca r e f u l a n a l y s i s 
of inequal i ty (3) t h i s a r g u m e n t ac tua l ly i m p l i e s tha t 

(4) f(n) < 1/2 (*) + (1 /2 + o(l)) (n 3 log n ) 1 / 2 . 

It would be d e s i r a b l e to obtain a b e t t e r e s t i m a t e for f(n). 

The a r g u m e n t employed in the p r e c e d i n g p a r a g r a p h i l l u s ­
t r a t e s the use fu lness of p r o b a b i l i s t i c m e t h o d s in e x t r e m a l 
p r o b l e m s in g raph t h e o r y , for while we can ea s i l y infer the 
e x i s t e n c e of a t o u r n a m e n t with a c e r t a i n r e q u i r e d p r o p e r t y we 
a r e unable to give an expl ic i t cons t ruc t i on ac tua l ly exhibi t ing 
such a t o u r n a m e n t in g e n e r a l . 

4. A m o r e g e n e r a l p r o b l e m . Let G(n ,m) denote an 
i ncomple t e t o u r n a m e n t , or o r i en t ed g raph , wi th n nodes and 
m a r c s . Let f (n ,m) denote the g r e a t e s t i n t ege r k such tha t 
e v e r y i ncomple t e t o u r n a m e n t G(n ,m) con ta ins a se t of a t l e a s t 
k c o n s i s t e n t a r c s . If it i s a s s u m e d tha t n log n/m~>0 a s n and 
m tend to infinity then it can be shown, by a r g u m e n t s s i m i l a r 
to t h o s e used above , tha t 

(5) l im f ( n , m ) / m = 1/2 . 
n->oo 
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